
A First Step to Cloud Infrastructure Cost Estimation in Early Stages
of Web Development

Rubén Martín, Juan Carlos Preciado, Roberto Rodriguez-Echeverria,
José María Conejero and Fernando Sánchez-Figueroa

QUERCUS Software Engineering Group, School of Technology. University of Extremadura, Spain

Keywords: Web Engineering, Web Design, Costs, CRUD.

Abstract: Currently, the cost of cloud computing infrastructures for Web applications is calculated in deployment and
production phases. Recently, the scientific community is offering several methodologies to calculate the
most suitable infrastructure at these stages. On the other hand, the Model Driven Web Engineering is taking
advantages of code generation from Design level. With both concepts in the scene, in this work we show the
first steps toward an approach to estimate the production costs in cloud computing infrastructures at Design
phase.

1 INTRODUCTION

In the last years, cloud computing infrastructure has
become the most used solution for deploying Web
applications, mainly due to the flexibility, agility and
availability capabilities that it offers (Fu, Cang, Zhu,
and Deng. 2015). Cloud computing enables Web
developers to use remote hosting services to improve
onsite infrastructure. In that sense, the organization
systems can be specified at a deep level of detail
according to the service and quality level agreements
that determine the kind of servers, its arrangement
and its scalability options. In that sense, there are
many factors that impact the pricing structures,
mainly related to the resources used in each moment.
As an example, high availability, high data volume
and high number of concurrent users are key factors
to be considered in data intensive Web applications
deployment (Suresh and Sakthivel. 2016). Thus,
since cost is of utmost importance for the
infrastructure, getting an optimal cloud
infrastructure is critical, especially when this kind of
Web applications came into this scenario.

Concretely, the definition of a deployment
infrastructure for a Web application, previously
implemented, is based on a general specification of a
service level agreement (SLA) that is usually
defined in terms of (Andzrejak, D. Kondo, and S.
Yi, 2010) (Cheng Tian, Ying Wang, Feng Qi, and

Bo Yin, 2012): (1) Network latency, (2) host CPU
and throughput, (3) memory and (4) storage.

On the other hand, data intensive Web applications
development has been widely studied by Model
Driven Web Engineering community (MDWE).
Among the many benefits provided by MDWE
approaches, such as IFML/WebRatio (Brambilla,
M., Fraternali, P., 2014) or, OOHDM (Rossi, G,
Pastor, O, Schwabe, D, Olsina, L., 2007), it is
worth to mention the automatic generation of the
final application code from the design so that this
phase (design) becomes the most important step in
the software development process. Other advantages
provided by these approaches include productivity
improvements, an important increase in software
quality or a reduction in costs to adapt the system to
changes in requirements. However, these approaches
do not support the identification or estimation of
production costs for the Web application in a
selected cloud infrastructure yet. This identification
needs to be made in post-design software
development lifecycle stages, such as performance-
testing phase (Huihong He, Zhiyi Ma, Xiang Li,
Hongjie Chen and Weizhong Shao. 2012) neglecting
the benefits of an earlier identification.

As an example, the identification at design level of
design decisions that may have a relevant impact in
the infrastructure costs may involve changes that

Martín, R., Preciado, J., Rodriguez-Echeverria, R., Conejero, J. and Sánchez-Figueroa, F.
A First Step to Cloud Infrastructure Cost Estimation in Early Stages of Web Development.
DOI: 10.5220/0006393904370443
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 437-443
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

437

would be accomplished before the final system has
been generated. The identification of these decisions
once the final system has been generated would
imply higher cost changes (Barry W. Boehm, 1981).

Given this opportunity, we have formulated the
following research question: can we estimate at
design phase the costs of production for a given Web
System, developed with a specific MDWE approach
and given a service quality requirements
specification, to determine a Cloud deployment
infrastructure?

The main goal of this paper is to present a first step
towards an approach for the definition of a cloud
computing cost estimation model for Web
applications during the design phase. In other words,
a design-time evaluation of the infrastructure needed
at the next production stage to cover a certain quality
of service for the application. This approach would
reduce the impact of changes due to decisions about
the capabilities and costs of the cloud infrastructure
on the development process. As a first step to carry
out this estimation, this work presents an analysis of
the throughput times of an application, based on
different design decisions, in order to have more
information to anticipate the impact of the design on
the infrastructure.

This paper is structured as follows. In Section 2 we
gather the steps and data used to carry out this first
estimation as a function of throughput time. Section
3 analyses the data obtained. Finally, Section 4
presents the conclusions and future work.

2 WORKING ENVIRONMENT

In order to make concrete the conceptual framework
that the work presented here relies on, we have
analyzed different MDWE approaches that were
mature enough to be used by industry (Toffetti, G.,
Comai, S., Preciado, J. C., Linaje, M., 2011).
Among the current approaches, it is worth to
mention IFML (Interactive Flow Modelling
Language) (Brambilla, M., Fraternali, P., 2014), an
OMG standard that allows the design and
development of data intensive Web applications.
This standard has also become a reference for the
industry in the data intensive web applications
development area. WebRatio, the case tool that
supports the development of applications by using
IFML, allows managing and validating IFML
models but also the automatic generation of the final

code of the application based on a particular J2EE
target platform.

Thus, based on the usage of IFML, our main
research question, introduced in previous section,
was refined as follows: can we estimate at design
phase the costs of production for a given Web
System, developed with IFML/WebRatio and given a
service quality requirements specification, to
determine a Cloud deployment infrastructure?

As a first step to answer this question, in this work
we focus on assessing how different design and
production parameters (independent variables of our
study) impact the response time (dependent variable)
of a Web application.

To analyze the impact of the independent variables
treatment in the study, we have defined a canonical
design that will be used in all the assessments. This
design consists of an IFML navigation model
composed of a set of CRUD operations (Create,
Read, Update, Delete). Note that CRUD operations
represent the tasks that are more frequently repeated
in IFML designs and, thus, the operations with a
higher activity load in data intensive Web
applications (Rodriguez-Echeverria R., M. Conejero
J., Preciado J. and Sanchez-Figueroa F., 2016). The
model that has been designed follows the next
pattern: first, a Create operation is executed; second,
a Read is performed; next, an Update; and, finally, a
Delete.

Once the core design has been specified, the
independent variables related to the design aspects
that may affect its response time have been defined.
Concretely, the variables are the next: (a) number of
attributes in the data entity that the operation is
performed over (in this case, we have considered
values of 1, 10, 20, 30, 40, 50); (b) persistence type
considered for the operation (data stored into the
data base, data as session variable or data as
application variable at memory level). For the sake
of simplicity, the attributes of the data entities of the
design have been defined just as string. For the
persistent entities database, the mapping has been
defined for a PostgreSQL 9.5.4 database.

On the other hand, the production independent
variables refer to the technical characteristics of the
deployment infrastructure that may affect the
response time of the application. In this case, the

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

438

independent variables considered are: (c)
computational capacity of the server instance were
the tests are performed (two different machines are
used: an EC2 t2.micro Amazon Web Services with a
2,5 GHz Intel Xeon processor and 1 GB of RAM
memory; an EC2 t2.small Amazon Web Services
with a 2,5 GHz IntelXeon processor and 2 GB of
RAM memory); (d) the number of concurrent users
that may launch a particular operation in the Web
application (in our case, this parameter may have the
values 1, 5 and 10).

Table 1 summarizes the independent variables
considered in the study together with the values that
they may have.

Table 1: Independent variables for the study.

Category Variable Range of values
Design CRUD operation 2000 operations per

type

Design Number of attributes of
the entity

1, 10, 20, 30, 40 or 50

Design Persistence Application, session or
data base

Production Computational
capacity

EC2 t2.micro Amazon
Web Services
EC2 t2.small Amazon
Web Services

Production Number of concurrent
users

1, 5 or 10

In order to have a relevant set of data and to be able
to dismiss abnormal results, each combination of
values for the independent variables has been
repeated 2000 times. Thus, we have executed 2000
create operations, then, 2000 reads and so on. So, the
behavior of the design with the CRUD operations
has been studied in each infrastructure (the two
machines used in the study) with a different number
of users (3 different sets) and by using different set
of attributes (6 options) and persistence types (3
options).

3 FIRST ANALYSIS

Given the great amount of data and the existence of
different combinations for the testing groups, all the
results have been represented by means of a 5-
dimension ROLAP (Konstantinos Morfonios, Stratis
Konakas, Yannis Ioannidis, and Nikolaos Kotsis.,

2007) cube. Those 5 dimensions are: operation type
(C, R, U, D), persistence type (data base, session, or
application), attribute number (1, 10, 20, 30, 40, 50),
simultaneous user number (1,5), deployment
machine (AWS t2.micro, or AWS t2.small) and
theirs respectably RDS storage using PosgreSQL
9.5.4 with 20GB (AWS db.t2.micro, or db.t2.small).

Once finished the different tests, all the resulting
data have been processed by R to assess their
reability/confidence, i.e., how similar the execution
times of the same test throughout its 2.000
repetitions are. We have applied k-means
(MacQueen, J, 1967) to identify that the behavior
was homogeneous in the great majority of the data
(>91%) and to be able to discard not relevant
outliers. Therefore, given a homogeneity coefficient
greater than 91%, we can derive a relevant mean
execution time for every operation. Then, these
mean times can be used in the design phase of an
application to estimate its production costs. By
example, the Tables 1, 2, 3 and 4 show the mean
times (in miliseconds) for the CRUD operations
considered, given 1 user.

Table 2: Mean execution times CREATE.

CREATE Attributes 1 10 20 30 40 50
Application_small 0,72 0,93 0,64 1,00 1,02 1,09
Session_small 0,82 0,94 1,26 0,82 0,89 1,00
Persistent_small 23,76 98 190,53 273,89 264,91 304,00
Application_micro 0,69 1,91 1,96 2,00 2,08 2,60
Session_micro 0,75 1,26 1,88 2,01 2,24 2,77
Persistent_micro 32,58 330,89 332,09 361,58 471,87 620,99

Table 3: Mean execution times READ.

READ Attributes 1 10 20 30 40 50
Application_small 0,00 0,00 0,00 0,00 0,00 0,00
Session_small 0,00 0,00 0,00 0,00 0,00 0,00
Persistent_small 1,10 1,20 1,22 1,30 1,32 1,36
Application_micro 0,29 1,37 1,45 1,42 1,43 1,49
Session_micro 0,65 1,32 1,41 1,49 1,50 1,60
Persistent_micro 0,89 1,09 1,09 1,18 1,27 1,38

Table 4: Mean execution times UPDATE.

UPDATE Attributes 1 10 20 30 40 50
Application_small 5,21 14,60 17,52 23,83 29,28 35,43
Session_small 7,11 16,32 18,69 25,43 32,72 38,27
Persistent_small 18,62 79,26 102,54 176,55 216,88 220,98
Application_micro 3,22 209,58 271,14 272,82 339,31 498,04
Session_micro 2,92 217,25 265,79 289,68 329,91 498,75
Persistent_micro 22,37 169,28 197,04 242,97 289,94 307,57

Table 5: Mean execution times DELETE.

DELETE Attributes 1 10 20 30 40 50
Application_small 0,00 0,98 1,05 1,05 0,99 1,10
Session_small 0,00 1,03 1,08 1,08 1,10 1,11
Persistent_small 31,22 101,44 124,00 134,96 151,72 275,00
Application_micro 1,01 12,47 10,18 11,55 22,77 36,63
Session_micro 1,10 12,51 10,00 11,41 22,76 36,64
Persistent_micro 41,18 303,30 314,36 372,20 416,23 443,78

A First Step to Cloud Infrastructure Cost Estimation in Early Stages of Web Development

439

Figures 1, 2, 3 and 4 visually present the results for
the four CRUD operations, considering just 1 user,
for all the different combinations of values from the
dimensions: machine, persistence and attribute
number.

Figure 1: Mean time values plot for every case. CREATE.

Figure 2: Mean time values plot for every case. READ.

Figure 3: Mean time values plot for every case. UPDATE.

Figure 4: Mean time values plot for every case. DELETE.

From the data obtained, here textually and visually
given, we can observe several interesting facts. On
the one hand, CREATE and DELETE operations
(Figures 1 and 4) behave properly with persistence
at memory level (Session and Applications
variables), i.e., both operations take really low
portion of time for its execution, the memory size
seems to be not relevant to perform them.

On the other hand, for both CREATE and DELETE
operations when working on persistence at data base
level the time became a key factor and we can also
noticed that the size of the memory plays a relevant
role in these cases, being a little bit higher in the
AWS t2.micro/db.t2.micro case. In addition, when
the number of attributes increases, it has a
significant impact on performance.

Regarding READ operations (Figure 2), the scenario
range comprises from 0 up to 1,6 milliseconds. We
can observe that the execution of READ operations
involves a really low portion of time but, in a
particular way, the memory size is really relevant
when reading from memory level. The number of
attributes from 1 up to 50 does not significantly
impact executions times. For all cases, but mainly in
READ case, millisecond seems to be a measure with
not enough level of detail to perform the study, at
least nanoseconds level should be considered.

As also expected, better hardware features set (more
RAM, in this case) of the deployment machine
implies a relevant reduction on the mean execution
time for every considered case of the UPDATE
operation (Figure 3). Conversely, a greater number
of attributes implies higher execution times.
Additionally, it may be noted the high impact of the
RAM availability when data entities are stored
inside session or application scopes.

From the first data here obtained we can make
decisions in order to optimize the execution times of
the CRUD operations groups at design phase and we
can give the first step to estimate the throughput
time to convey the general services level
specification. For it, once we have the operation
times estimated from this initial study for the
different combination, it is possible to assign a
concrete value to each particular operation that
conforms an operation chain in the business logic of
an application at design phase. We define an
Operation Chain as the set of all of the CRUD
operations that are launched sequentially and that
must be executed from the first to the last, as if it

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

440

was a transaction. We do it by adding up all the
operation times of each of the operations involved in
such operation chain.

The formula above obtains the estimated execution
time of the longest operation chain (Cj) by selecting
the maximum value from the set of estimated
execution times of all the Operation Chains (OC) in
the design. The function time returns the mean time
of every operation (Oi) inside the Operation chain Cj
given its type, the number of attributes in the
involved data entity, and its type of persistence.
For instance, suppose the application needs two
operation chains. In the first one (OP1 – Figure 5)
the whole chain is composed sequentially by a
CREATE (10 attributes at data base) + CREATE (40
attributes at session) + READ (40 attributes at
session) + UPDATE (10 attributes at data base) +
DELETE (40 attributes at session). For the second
one (OP2 – Figure 6) the whole chain is composed
sequentially by a CREATE (20 attributes at data
base) + UPDATE (20 attributes at data base) +
DELETE (20 attributes at data base).

Figure 5: Operation chain OP1.

Figure 6: Operation chain OP2.

The SLA establishes a maximum unitary user
performance time of 400 milliseconds –Time
(ml)1u– with a runtime growth, following a
logarithmic scale depending on the number of
concurrent users, with a maximum performance
peak of 4 seconds for 1.600 users –Time (ml)nu–.
Table 2 shows the operations for OP1 and OP2 and
the values for each operation regarding persistence
type and number of attributes. The column named as
Time (ml)1u adds up the whole operation for each
case.
If we analyze the data of this example, collected in
Table 2, we can observe that the level of 1 user in
SLA is fulfilled for both operations if we use a
machine t2.small (179ml in OP1 and 417 ml in
OP2). However, when we plan the results up to
1,600 users we can appreciate that the first operation
chain (OP1) could be executed in a t2.small within
the required parameters (3,604 seconds) but the
second operations chain (OP2) does not reach it
(4,192 seconds) and therefore should be redesigned
in order to use a t2.small infrastructure.

4 RELATED WORK

Optimization of cloud computing infrastructre in the
Web production phase has been addressed recently
by several works. Concretely, in (Andzrejak, D.
Kondo, and S. Yi,, 2010) and (Cheng Tian, Ying
Wang, Feng Qi, and Bo Yin., 2012) the authors

Table 6: SLA coverage in OP1 and OP2.

A First Step to Cloud Infrastructure Cost Estimation in Early Stages of Web Development

441

propose diferrents methods for estimating the cloud
infrastructure pricing, once the application has been
developed. In (Andzrejak et al., 2010), a
probabilistic model is introduced to determinate the
pricing, performance and reliability given a set of
service requeriments. This information is combined
with the real cloud provider prices to find the most
suitable cloud infrastructure.

A wide range of executions with different values for
the parameters used must be performed over the
final application to identify the most suitable
infrastructure combination. Similarly, (Cheng Tian
et al., 2012) presents a model based on the
characteristics of three purchasing options provided
by Amazon EC2, which can be used for guiding the
capacity planning activity once the application is
ready to be deployed.

On the other hand, in (Huihong He, Zhiyi Ma, Xiang
Li, Hongjie Chen and Weizhong Shao. 2012) the
authors describe also an approach to calculate
operating cost and performance needs to suggest a
suitable cloud computing infrastructure but at design
phase in this case. It can be performed by means of a
UML extension that collects the cloud computing
infrastructure capabilities for designing the
infrastructure combinations. This approach
incorporates a cost estimation algorithm to calculate
the production pricing, that uses previously known
values for factors like load, storage, concurrency,
peaks, and so on.

In (Fu, Cang, Zhu, and Deng. 2015), the authors
propose a heuristic algorithm to help the developer
in the decisions related to the placement of the tasks
when deploying a web application into a cloud
infraestructure. The algorithm deals with the
placement of the subtasks in the different nodes of
the virtual machines in order to reduce data
transmission and communication traffic. The authors
claim that the algorithm provides important benefits
in terms of completion time of the web applications.
Unlike our work, this algorithm would be executed
once the system (and its resources) has been
completely generated.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, a first approach for estimating
production costs and cloud infrastructure for data

intensive Web applications has been presented.

As a first step of the approach, an experiment has
been developed where the execution times of
different CRUD operations have been measured
based on a series of design and production
parameters. This first analysis shows interesting and
promising results regarding the possibility of
establishing a first infrastructure estimation based on
the significant (independent) variables considered in
the study. That is, in light of the results, this first
step would help the designer to anticipate, in the
early stages of design, the computing needs and
cloud infrastructure that the application will need for
its later deployment.

To do this, we have already identified the following
immediate steps for our research. First, it would be
useful to modify the WebRatio TimeUnit to achieve
a finer grain level of detail in term of nanoseconds.
It would allow a more objective assessment of the
results of the study, specially when the service load
increases. Secondly, we plan to monitor the behavior
of the processor, RAM and storage capacity at each
point in the execution of the operation chain in order
to evaluate the quality requirements in these aspects.
Thirdly, we are going to modify the operation chain
so that the sequence of tests and data collection
when repeating the test can be heterogeneous, that
is, the execution of the operation that is launched
and measured at any time can execute CRUD
operations randomly.

We already observe in this first analysis that there
are aspects can influence the effectiveness of cost
estimation such as data base type, cache capabilities,
the ability to scale the application on several
machines by elastic growth or resources sharing by
other applications, as well as the correlations
between these aspects and the throughput time.
Notwithstanding, we are currently defining the
experiments to monitor and then evaluate the impact
of those aspects and cloud service providers offer
basic monitoring capabilities for controlling
computation and data transfer costs.

Complementary, we are planning to evaluate the
impact for each type of attribute placed in an entity
(float, integer, date, time, text, etc.) and to identify
how their different combinations may affect the
results. Regarding the data model, we need also to
identify the perfomance data when using 1:N (one to
many) and N:M (many to many) relationships.

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

442

Once we advance in the study of all these variables,
we will work on a plugin for WebRatio that will
provide the designer with automatic suggestions
about what cloud infrastructure is estimated as
necessary based on the identification of the design
parameters discussed in this work. Morever, by
means of connecting to the AWS (Amazon Web
Services) infrastructure cost calculator (AWS
Calculator, 2017), the plugin could also
automatically calculate infrastructure pricings based
on the selected operating parameters. Even, the
plugin could suggest a first visual infrastructure
proposal by connecting to Cloudcraft (Amazon
CloudCraft, 2017).

Finally, our future research lines include the
application of the study to other MDWE proposals
or even to Web development frameworks commonly
used in software factory environments. This advance
would allow us to be able to estimate at design time
the infrastructure costs of different frameworks and
to be able to compare them, supporting the decision
making regarding the chosen infrastructure.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of
TIN2015-69957-R (MINECO/FEDER, UE) project
and Homeria Open Solutions, S.L. to the work here
presented.

REFERENCES

Amazon CloudCraft, 2017. https://cloudcraft.co/
AWS Calculator, 2017.

https://calculator.s3.amazonaws.com/index.html
Andzrejak, D. Kondo, and S. Yi, “Decision Model for

Cloud Computing under SLA Constraints,” in IEEE
Int. Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems
(MASCOT), 2010

Barry W. Boehm. Software Engineering Economics 1st
Edition. Prentice Hall HTR. New Jersey. 1981. ISBN-
13: 978-0138221225

Brambilla, M., Fraternali, P. Interaction Flow Modeling
Language – Model-driven UI Engineering of Web and
Mobile Apps with IFML. Morgan Kauffman, USA,
2014.

Cheng Tian, Ying Wang, Feng Qi, and Bo Yin. 2012.
Decision model for provisioning virtual resources in
Amazon EC2. In Proceedings of the 8th International
Conference on Network and Service Management

(CNSM '12), International Federation for Information
Processing, Laxenburg, Austria, Austria, 159-163.

Fu, X., Cang, Y., Zhu, X. and Deng, S., 2015. Scheduling
Method of Data-Intensive Applications in Cloud
Computing Environments, Mathematical Problems in
Engineering, vol. 2015, doi:10.1155/2015/605439

Huihong He, Zhiyi Ma, Xiang Li, Hongjie Chen and
Weizhong Shao. 2012. An approach to estimating cost
of running cloud applications based on AWS. 19th
Asia-Pacific Software Engineering Conferencce. ISSN
1530-1362, ISBN 1467349305 (1) pp. 571-576.

Konstantinos Morfonios, Stratis Konakas, Yannis
Ioannidis, and Nikolaos Kotsis. 2007. ROLAP
implementations of the data cube. ACM Comput.
Surv. 39, 4, Article 12 (November 2007). DOI:
https://doi.org/10.1145/1287620.1287623

MacQueen, J. Some methods for classification and
analysis of multivariate observations. Proceedings of
the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, 281--
297, University of California Press, Berkeley, Calif.,
1967.

Rodriguez-Echeverria R., M. Conejero J., Preciado J. and
Sanchez-Figueroa F. (2016). AutoCRUD -
Automating IFML Specification of CRUD
Operations.In Proceedings of the 12th International
Conference on Web Information Systems and
Technologies - Volume 1: APMDWE, ISBN 978-989-
758-186-1, pages 307-314. DOI:
10.5220/0005923003070314

Rossi, G, Pastor, O, Schwabe, D, Olsina, L., 2007.
Web Engineering: Modelling and Implementing
Web Applications. Human-Computer Interaction
Series, Springer-Verlag, London.

Suresh, S. and Sakthivel, S, 2016, System modeling and
evaluation on factors influencing power and
performance management of cloud load balancing
algorithms, Journal of Web Engineering, Vol. 15, 5,6,
pages 484-500

Toffetti, G., Comai, S., Preciado, J. C., Linaje, M.,
2011. State-of-the Art and trends in the
SystematicDevelopment of Rich Internet Applications.
In Journal of Web Engineering, 10, 1, 70-86.

A First Step to Cloud Infrastructure Cost Estimation in Early Stages of Web Development

443

