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Abstract: Currently, the cost of cloud computing infrastructures for Web applications is calculated in deployment and 
production phases. Recently, the scientific community is offering several methodologies to calculate the 
most suitable infrastructure at these stages. On the other hand, the Model Driven Web Engineering is taking 
advantages of code generation from Design level. With both concepts in the scene, in this work we show the 
first steps toward an approach to estimate the production costs in cloud computing infrastructures at Design 
phase. 

1 INTRODUCTION 

In the last years, cloud computing infrastructure has 
become the most used solution for deploying Web 
applications, mainly due to the flexibility, agility and 
availability capabilities that it offers (Fu, Cang, Zhu, 
and Deng. 2015). Cloud computing enables Web 
developers to use remote hosting services to improve 
onsite infrastructure. In that sense, the organization 
systems can be specified at a deep level of detail 
according to the service and quality level agreements 
that determine the kind of servers, its arrangement 
and its scalability options. In that sense, there are 
many factors that impact the pricing structures, 
mainly related to the resources used in each moment. 
As an example, high availability, high data volume 
and high number of concurrent users are key factors 
to be considered in data intensive Web applications 
deployment (Suresh and Sakthivel. 2016). Thus, 
since cost is of utmost importance for the 
infrastructure, getting an optimal cloud 
infrastructure is critical, especially when this kind of 
Web applications came into this scenario.  
 
Concretely, the definition of a deployment 
infrastructure for a Web application, previously 
implemented, is based on a general specification of a 
service level agreement (SLA) that is usually 
defined in terms of (Andzrejak, D. Kondo, and S. 
Yi, 2010) (Cheng Tian, Ying Wang, Feng Qi, and 

Bo Yin, 2012): (1) Network latency, (2) host CPU 
and throughput, (3) memory and (4) storage.  
 
On the other hand, data intensive Web applications 
development has been widely studied by Model 
Driven Web Engineering community (MDWE). 
Among the many benefits provided by MDWE 
approaches, such as IFML/WebRatio (Brambilla, 
M., Fraternali, P., 2014) or, OOHDM (Rossi,  G,  
Pastor,  O,  Schwabe,  D,  Olsina,  L.,  2007), it is 
worth to mention the automatic generation of the 
final application code from the design so that this 
phase (design) becomes the most important step in 
the software development process. Other advantages 
provided by these approaches include productivity 
improvements, an important increase in software 
quality or a reduction in costs to adapt the system to 
changes in requirements. However, these approaches 
do not support the identification or estimation of 
production costs for the Web application in a 
selected cloud infrastructure yet. This identification 
needs to be made in post-design software 
development lifecycle stages, such as performance-
testing phase (Huihong He, Zhiyi Ma, Xiang Li, 
Hongjie Chen and Weizhong Shao. 2012) neglecting 
the benefits of an earlier identification.  
 
As an example, the identification at design level of 
design decisions that may have a relevant impact in 
the infrastructure costs may involve changes that 
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would be accomplished before the final system has 
been generated. The identification of these decisions 
once the final system has been generated would 
imply higher cost changes (Barry W. Boehm, 1981). 
 
Given this opportunity, we have formulated the 
following research question: can we estimate at 
design phase the costs of production for a given Web 
System, developed with a specific MDWE approach 
and given a service quality requirements 
specification, to determine a Cloud deployment 
infrastructure? 
 
The main goal of this paper is to present a first step 
towards an approach for the definition of a cloud 
computing cost estimation model for Web 
applications during the design phase. In other words, 
a design-time evaluation of the infrastructure needed 
at the next production stage to cover a certain quality 
of service for the application. This approach would 
reduce the impact of changes due to decisions about 
the capabilities and costs of the cloud infrastructure 
on the development process. As a first step to carry 
out this estimation, this work presents an analysis of 
the throughput times of an application, based on 
different design decisions, in order to have more 
information to anticipate the impact of the design on 
the infrastructure.  
 
This paper is structured as follows. In Section 2 we 
gather the steps and data used to carry out this first 
estimation as a function of throughput time. Section 
3 analyses the data obtained. Finally, Section 4 
presents the conclusions and future work. 

2 WORKING ENVIRONMENT 

In order to make concrete the conceptual framework 
that the work presented here relies on, we have 
analyzed different MDWE approaches that were 
mature enough to be used by industry (Toffetti, G.,  
Comai,  S.,  Preciado,  J.  C.,  Linaje,  M.,  2011). 
Among the current approaches, it is worth to 
mention IFML (Interactive Flow Modelling 
Language) (Brambilla, M., Fraternali, P., 2014), an 
OMG standard that allows the design and 
development of data intensive Web applications. 
This standard has also become a reference for the 
industry in the data intensive web applications 
development area. WebRatio, the case tool that 
supports the development of applications by using 
IFML, allows managing and validating IFML 
models but also the automatic generation of the final 

code of the application based on a particular J2EE 
target platform. 
 
Thus, based on the usage of IFML, our main 
research question, introduced in previous section, 
was refined as follows: can we estimate at design 
phase the costs of production for a given Web 
System, developed with IFML/WebRatio and given a 
service quality requirements specification, to 
determine a Cloud deployment infrastructure? 
 
As a first step to answer this question, in this work 
we focus on assessing how different design and 
production parameters (independent variables of our 
study) impact the response time (dependent variable) 
of a Web application. 
 
To analyze the impact of the independent variables 
treatment in the study, we have defined a canonical 
design that will be used in all the assessments. This 
design consists of an IFML navigation model 
composed of a set of CRUD operations (Create, 
Read, Update, Delete). Note that CRUD operations 
represent the tasks that are more frequently repeated 
in IFML designs and, thus, the operations with a 
higher activity load in data intensive Web 
applications (Rodriguez-Echeverria R., M. Conejero 
J., Preciado J. and Sanchez-Figueroa F., 2016). The 
model that has been designed follows the next 
pattern: first, a Create operation is executed; second, 
a Read is performed; next, an Update; and, finally, a 
Delete.  
 
Once the core design has been specified, the 
independent variables related to the design aspects 
that may affect its response time have been defined. 
Concretely, the variables are the next: (a) number of 
attributes in the data entity that the operation is 
performed over (in this case, we have considered 
values of 1, 10, 20, 30, 40, 50); (b) persistence type 
considered for the operation (data stored into the 
data base, data as session variable or data as 
application variable at memory level). For the sake 
of simplicity, the attributes of the data entities of the 
design have been defined just as string. For the 
persistent entities database, the mapping has been 
defined for a PostgreSQL 9.5.4 database. 
 
On the other hand, the production independent 
variables refer to the technical characteristics of the 
deployment infrastructure that may affect the 
response time of the application. In this case, the 
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independent variables considered are: (c) 
computational capacity of the server instance were 
the tests are performed (two different machines are 
used: an EC2 t2.micro Amazon Web Services with a 
2,5 GHz Intel Xeon processor and 1 GB of RAM 
memory; an EC2 t2.small Amazon Web Services 
with a 2,5 GHz IntelXeon processor and 2 GB of 
RAM memory); (d) the number of concurrent users 
that may launch a particular operation in the Web 
application (in our case, this parameter may have the 
values 1, 5 and 10).  
 
Table 1 summarizes the independent variables 
considered in the study together with the values that 
they may have. 

Table 1: Independent variables for the study. 

Category  Variable Range of values 
Design CRUD operation 2000 operations per

type  

Design Number of attributes of
the entity 

1, 10, 20, 30, 40 or 50 

Design Persistence  Application, session or 
data base 

Production Computational 
capacity  

EC2 t2.micro Amazon
Web Services 
EC2 t2.small Amazon
Web Services 

Production Number of concurrent
users  

1, 5 or 10 

In order to have a relevant set of data and to be able 
to dismiss abnormal results, each combination of 
values for the independent variables has been 
repeated 2000 times. Thus, we have executed 2000 
create operations, then, 2000 reads and so on. So, the 
behavior of the design with the CRUD operations 
has been studied in each infrastructure (the two 
machines used in the study) with a different number 
of users (3 different sets) and by using different set 
of attributes (6 options) and persistence types (3 
options).  

3 FIRST ANALYSIS 

Given the great amount of data and the existence of 
different combinations for the testing groups, all the 
results have been represented by means of a 5-
dimension ROLAP (Konstantinos Morfonios, Stratis 
Konakas, Yannis Ioannidis, and Nikolaos Kotsis., 

2007) cube. Those 5 dimensions are: operation type 
(C, R, U, D), persistence type (data base, session, or 
application), attribute number (1, 10, 20, 30, 40, 50), 
simultaneous user number (1,5), deployment 
machine (AWS t2.micro, or AWS t2.small) and 
theirs respectably RDS storage using PosgreSQL 
9.5.4 with 20GB (AWS db.t2.micro, or db.t2.small). 
 
Once finished the different tests, all the resulting 
data have been processed by R to assess their 
reability/confidence, i.e., how similar the execution 
times of the same test throughout its 2.000 
repetitions are. We have applied k-means 
(MacQueen, J, 1967) to identify that the behavior 
was homogeneous in the great majority of the data 
(>91%) and to be able to discard not relevant 
outliers. Therefore, given a homogeneity coefficient 
greater than 91%, we can derive a relevant mean 
execution time for every operation. Then, these 
mean times can be used in the design phase of an 
application to estimate its production costs. By 
example, the Tables 1, 2, 3 and 4 show the mean 
times (in miliseconds) for the CRUD operations 
considered, given 1 user. 

Table 2: Mean execution times CREATE. 

CREATE Attributes 1 10 20 30 40 50 
Application_small 0,72 0,93 0,64 1,00 1,02 1,09 
Session_small 0,82 0,94 1,26 0,82 0,89 1,00 
Persistent_small 23,76 98 190,53 273,89 264,91 304,00 
Application_micro 0,69 1,91 1,96 2,00 2,08 2,60 
Session_micro 0,75 1,26 1,88 2,01 2,24 2,77 
Persistent_micro 32,58 330,89 332,09 361,58 471,87 620,99 

Table 3: Mean execution times READ. 

READ Attributes 1 10  20  30  40 50 
Application_small 0,00 0,00 0,00 0,00 0,00 0,00 
Session_small 0,00 0,00 0,00 0,00 0,00 0,00 
Persistent_small 1,10 1,20 1,22 1,30 1,32 1,36 
Application_micro 0,29 1,37 1,45 1,42 1,43 1,49 
Session_micro 0,65 1,32 1,41 1,49 1,50 1,60 
Persistent_micro 0,89 1,09 1,09 1,18 1,27 1,38 

Table 4: Mean execution times UPDATE. 

UPDATE          Attributes 1  10 20  30  40  50 
Application_small 5,21 14,60 17,52 23,83 29,28 35,43 
Session_small 7,11 16,32 18,69 25,43 32,72 38,27 
Persistent_small 18,62 79,26 102,54 176,55 216,88 220,98 
Application_micro 3,22 209,58 271,14 272,82 339,31 498,04 
Session_micro 2,92 217,25 265,79 289,68 329,91 498,75 
Persistent_micro 22,37 169,28 197,04 242,97 289,94 307,57 

Table 5: Mean execution times DELETE. 

DELETE Attributes 1 10 20  30  40  50 
Application_small 0,00 0,98 1,05 1,05 0,99 1,10 
Session_small 0,00 1,03 1,08 1,08 1,10 1,11 
Persistent_small 31,22 101,44 124,00 134,96 151,72 275,00 
Application_micro 1,01 12,47 10,18 11,55 22,77 36,63 
Session_micro 1,10 12,51 10,00 11,41 22,76 36,64 
Persistent_micro 41,18 303,30 314,36 372,20 416,23 443,78 
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Figures 1, 2, 3 and 4 visually present the results for 
the four CRUD operations, considering just 1 user, 
for all the different combinations of values from the 
dimensions: machine, persistence and attribute 
number.  

 

Figure 1: Mean time values plot for every case. CREATE. 

 

Figure 2: Mean time values plot for every case. READ. 

 

Figure 3: Mean time values plot for every case. UPDATE. 

 

Figure 4: Mean time values plot for every case. DELETE. 

From the data obtained, here textually and visually 
given, we can observe several interesting facts. On 
the one hand, CREATE and DELETE operations 
(Figures 1 and 4) behave properly with persistence 
at memory level (Session and Applications 
variables), i.e., both operations take really low 
portion of time for its execution, the memory size 
seems to be not relevant to perform them.  
 
On the other hand, for both CREATE and DELETE 
operations when working on persistence at data base 
level the time became a key factor and we can also 
noticed that the size of the memory plays a relevant 
role in these cases, being a little bit higher in the 
AWS t2.micro/db.t2.micro case. In addition, when 
the number of attributes increases, it has a 
significant impact on performance. 
 
Regarding READ operations (Figure 2), the scenario 
range comprises from 0 up to 1,6 milliseconds. We 
can observe that the execution of READ operations 
involves a really low portion of time but, in a 
particular way, the memory size is really relevant 
when reading from memory level. The number of 
attributes from 1 up to 50 does not significantly 
impact executions times. For all cases, but mainly in 
READ case, millisecond seems to be a measure with 
not enough level of detail to perform the study, at 
least nanoseconds level should be considered. 
 
As also expected, better hardware features set (more 
RAM, in this case) of the deployment machine 
implies a relevant reduction on the mean execution 
time for every considered case of the UPDATE 
operation (Figure 3). Conversely, a greater number 
of attributes implies higher execution times. 
Additionally, it may be noted the high impact of the 
RAM availability when data entities are stored 
inside session or application scopes. 
 
From the first data here obtained we can make 
decisions in order to optimize the execution times of 
the CRUD operations groups at design phase and we 
can give the first step to estimate the throughput 
time to convey the general services level 
specification. For it, once we have the operation 
times estimated from this initial study for the 
different combination, it is possible to assign a 
concrete value to each particular operation that 
conforms an operation chain in the business logic of 
an application at design phase. We define an 
Operation Chain as the set of all of the CRUD 
operations that are launched sequentially and that 
must be executed from the first to the last, as if it 
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was a transaction. We do it by adding up all the 
operation times of each of the operations involved in 
such operation chain.  

 

The formula above obtains the estimated execution 
time of the longest operation chain (Cj) by selecting 
the maximum value from the set of estimated 
execution times of all the Operation Chains (OC) in 
the design. The function time returns the mean time 
of every operation (Oi) inside the Operation chain Cj 
given its type, the number of attributes in the 
involved data entity, and its type of persistence. 
For instance, suppose the application needs two 
operation chains. In the first one (OP1 – Figure 5) 
the whole chain is composed sequentially by a 
CREATE (10 attributes at data base) + CREATE (40 
attributes at session) + READ (40 attributes at 
session) + UPDATE (10 attributes at data base) + 
DELETE (40 attributes at session). For the second 
one (OP2 – Figure 6) the whole chain is composed 
sequentially by a CREATE (20 attributes at data 
base) + UPDATE (20 attributes at data base) + 
DELETE (20 attributes at data base).  

 

Figure 5: Operation chain OP1. 

Figure 6: Operation chain OP2. 

The SLA establishes a maximum unitary user 
performance time of 400 milliseconds –Time 
(ml)1u– with a runtime growth, following a 
logarithmic scale depending on the number of 
concurrent users, with a maximum performance 
peak of 4 seconds for 1.600 users –Time (ml)nu–. 
Table 2 shows the operations for OP1 and OP2 and 
the values for each operation regarding persistence 
type and number of attributes. The column named as 
Time (ml)1u adds up the whole operation for each 
case.  
If we analyze the data of this example, collected in 
Table 2, we can observe that the level of 1 user in 
SLA is fulfilled for both operations if we use a 
machine t2.small (179ml in OP1 and 417 ml in 
OP2). However, when we plan the results up to 
1,600 users we can appreciate that the first operation 
chain (OP1) could be executed in a t2.small within 
the required parameters (3,604 seconds) but the 
second operations chain (OP2) does not reach it 
(4,192 seconds) and therefore should be redesigned 
in order to use a t2.small infrastructure. 

4 RELATED WORK 

Optimization of cloud computing infrastructre in the 
Web production phase has been addressed recently 
by several works. Concretely, in (Andzrejak, D. 
Kondo, and S. Yi,, 2010) and (Cheng Tian, Ying 
Wang,   Feng  Qi,  and  Bo  Yin.,  2012)  the  authors 

Table 6: SLA coverage in OP1 and OP2. 
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propose diferrents methods for estimating the cloud 
infrastructure pricing, once the application has been 
developed. In (Andzrejak et al., 2010), a 
probabilistic model is introduced to determinate the 
pricing, performance and reliability given a set of 
service requeriments. This information is combined 
with the real cloud provider prices to find the most 
suitable cloud infrastructure.  
 
A wide range of executions with different values for 
the parameters used must be performed over the 
final application to identify the most suitable 
infrastructure combination. Similarly, (Cheng Tian 
et al., 2012) presents a model based on the 
characteristics of three purchasing options provided 
by Amazon EC2, which can be used for guiding the 
capacity planning activity once the application is 
ready to be deployed. 
 
On the other hand, in (Huihong He, Zhiyi Ma, Xiang 
Li, Hongjie Chen and Weizhong Shao. 2012) the 
authors describe also an approach to calculate 
operating cost and performance needs to suggest a 
suitable cloud computing infrastructure but at design 
phase in this case. It can be performed by means of a 
UML extension that collects the cloud computing 
infrastructure capabilities for designing the 
infrastructure combinations. This approach 
incorporates a cost estimation algorithm to calculate 
the production pricing, that uses previously known 
values for factors like load, storage, concurrency, 
peaks, and so on. 
 
In (Fu, Cang, Zhu, and Deng. 2015), the authors 
propose a heuristic algorithm to help the developer 
in the decisions related to the placement of the tasks 
when deploying a web application into a cloud 
infraestructure. The algorithm deals with the 
placement of the subtasks in the different nodes of 
the virtual machines in order to reduce data 
transmission and communication traffic. The authors 
claim that the algorithm provides important benefits 
in terms of completion time of the web applications. 
Unlike our work, this algorithm would be executed 
once the system (and its resources) has been 
completely generated. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, a first approach for estimating 
production  costs  and  cloud  infrastructure  for  data  

intensive   Web   applications   has   been  presented.  
 
As a first step of the approach, an experiment has 
been developed where the execution times of 
different CRUD operations have been measured 
based on a series of design and production 
parameters. This first analysis shows interesting and 
promising results regarding the possibility of 
establishing a first infrastructure estimation based on 
the significant (independent) variables considered in 
the study. That is, in light of the results, this first 
step would help the designer to anticipate, in the 
early stages of design, the computing needs and 
cloud infrastructure that the application will need for 
its later deployment. 
 
To do this, we have already identified the following 
immediate steps for our research. First, it would be 
useful to modify the WebRatio TimeUnit to achieve 
a finer grain level of detail in term of nanoseconds.  
It would allow a more objective assessment of the 
results of the study, specially when the service load 
increases. Secondly, we plan to monitor the behavior 
of the processor, RAM and storage capacity at each 
point in the execution of the operation chain in order 
to evaluate the quality requirements in these aspects. 
Thirdly, we are going to modify the operation chain 
so that the sequence of tests and data collection 
when repeating the test can be heterogeneous, that 
is, the execution of the operation that is launched 
and measured at any time can execute CRUD 
operations randomly.  
 
We already observe in this first analysis that there 
are aspects can influence the effectiveness of cost 
estimation such as data base type, cache capabilities, 
the ability to scale the application on several 
machines by elastic growth or resources sharing by 
other applications, as well as the correlations 
between these aspects and the throughput time. 
Notwithstanding, we are currently defining the 
experiments to monitor and then evaluate the impact 
of those aspects and cloud service providers offer 
basic monitoring capabilities for controlling 
computation and data transfer costs. 
 
Complementary, we are planning to evaluate the 
impact for each type of attribute placed in an entity 
(float, integer, date, time, text, etc.) and to identify 
how their different combinations may affect the 
results. Regarding the data model, we need also to 
identify the perfomance data when using 1:N (one to 
many) and N:M (many to many) relationships. 
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Once we advance in the study of all these variables, 
we will work on a plugin for WebRatio that will 
provide the designer with automatic suggestions 
about what cloud infrastructure is estimated as 
necessary based on the identification of the design 
parameters discussed in this work. Morever, by 
means of connecting to the AWS (Amazon Web 
Services) infrastructure cost calculator (AWS 
Calculator, 2017), the plugin could also 
automatically calculate infrastructure pricings based 
on the selected operating parameters. Even, the 
plugin could suggest a first visual infrastructure 
proposal by connecting to Cloudcraft (Amazon 
CloudCraft, 2017). 
 
Finally, our future research lines include the 
application of the study to other MDWE proposals 
or even to Web development frameworks commonly 
used in software factory environments. This advance 
would allow us to be able to estimate at design time 
the infrastructure costs of different frameworks and 
to be able to compare them, supporting the decision 
making regarding the chosen infrastructure. 
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