Forecasting Asthma Hospital Admissions from Remotely Sensed Environmental Data

Rute Almeida¹,², Ana Cláudia Teodoro³, Hernâni Gonçalves¹, Alberto Freitas¹,⁴, Ana Sá-Sousa¹, Cristina Jácome¹ and João Fonseca¹,⁴,⁵

¹ CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa 4200-450 Porto, Portugal
² CMUP - Centre of Mathematics of the University of Porto, Porto, Portugal
³ Department of Geoscience, Environment and Land Planning/Institute of Earth Sciences (ICT), Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
⁴ MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa 4200-450 Porto, Portugal
⁵ CUF Porto Institute & Hospital, Estrada da Circumvalação 14341, 4100-180 Porto, Portugal

Keywords: Asthma Exacerbation, NDVI, Temperature, NO₂, Air Pollution, Meteorological Parameters, Forecasting System.

Abstract: Asthma has a major social impact and is prone to exacerbations. It is known that environmental factors, such as meteorological conditions and air pollutants, have a role over their occurrence. In a previous work, positive associations were found between hospital admissions due to asthma exacerbation at highly urbanized regions of Portugal and higher atmospheric NO₂ levels, lower vegetation density and higher air temperatures, estimated using remote sensing. In this study we propose the use of georeferenced environmental factors to forecast the risk of hospital admissions due to asthma exacerbation. We applied linear discriminant analysis using monthly averages based in 2003–2007 environmental data to forecast positive monthly admission rates in municipalities of Lisboa district (Portugal) during 2008. Space-time estimates of nitrogen dioxide (NO₂), vegetation density from MODIS Normalized Difference Vegetation Index (NDVI) and near-surface air temperature (Ta) were considered as independent variables. We identified over 65% of the combinations months/municipalities having hospital admissions in the testing set, with less than 10% of false positives. These results confirm that NO₂, NDVI and Ta levels obtained from remotely sensed data can be used to predict hospital admissions due to asthma exacerbation, and may be helpful if applied in warning systems for patients in the future.

1 INTRODUCTION

Asthma is an inflammatory disorder of the airways associated with a hyper-responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing. It is among the most common chronic diseases, affecting people of all ages throughout the world, with increasing prevalence in many countries, especially among children (GINA, 2016). The Portuguese National Asthma Survey (2010) found a prevalence of 6.9% (43% uncontrolled asthma) (Sá-Sousa et al., 2012; Ferreira-Magalhães et al., 2015). Asthma is punctuated by exacerbations, which are characterized by the worsening of symptoms and increase in reliever medication usage, which are the main cause for a huge social impact, by leading to unscheduled healthcare usage, including hospitalizations, absenteeism and productivity loss at workplace.

There is evidence that the delivery of healthcare via information and communication technology has beneficial effects in chronic diseases management (Bashshur et al., 2014). Studies with Portuguese asthma patients showed that they are willing and ready to use information and communication technology to help managing their asthma (Fonseca et al., 2006; Cruz-Correia et al., 2007). In a Cochrane review of mobile applications to improve asthma symptom control performed in 2013 (Marcano Belisario et al., 2013), only two randomized control studies...
were found over hundreds of articles and only one reporting higher asthma-related quality life scores. Therefore patient self-management using information and communication technology tools may represent high value patient care in near future, which potential is still to be achieved.

It is known that several environmental factors, such as meteorological conditions and air pollutants, have a role over exacerbations occurrence. Nevertheless, there is no consensus regarding the specific factors which should be considered, and attempts to predict asthma exacerbation from environmental parameters have produced inconsistent results (Akinbami et al., 2010; Delamater et al., 2012; Moustris et al., 2012; Soyiri et al., 2013; GINA, 2016).

The association between hospital admissions due to asthma exacerbation and remotely sensed data (MODIS sensor) for air pollutants NO2, PM10, relative humidity (RH), Normalized Difference Vegetation Index (NDVI) and near-surface air temperature (Ta), in Mainland Portugal and considering spatial information, has been recently studied by Ayres-Sampaio et al. (Ayres-Sampaio et al., 2014). In that work, linear univariate regression analysis and Pearson correlation coefficients were used to quantify separately the association between asthma hospital admissions (dependent variable) with which one of the five environmental variables, considering six-year (2003-2008) based seasonal averages. A positive association between asthma hospitalizations at highly urbanized regions of Portugal mainland and higher atmospheric NO2 levels, lower vegetation density and higher air temperatures.

In the current research we propose that the combined use of georeferenced environmental factors data are able to forecast the geographical dependent risk of hospital admissions due to asthma exacerbation. In this work we explored the potential of the environmental factors previously reported in (Ayres-Sampaio et al., 2014) as determinants of asthma hospitalizations due to asthma - Ta, NDVI and NO2- to forecast the positive admission rates by municipality at the Lisboa district (Portugal).

2 DATA AND METHODS

The study area of this research was the district of Lisboa (Figure 1), as it represents more than 45% of the population living at the Portuguese districts with high (> 10%) urban coverage and nearly a quarter of all population living in Portugal, with a population ranging from 2 190 197 to 2 238 484 between 2003 and 2008. Lisboa district has 16 municipalities, which were considered as separate data points to attend to spatial dependency of environmental exposition.

The data sources used in this work were the same used in (Ayres-Sampaio et al., 2014) as well as the preprocessing of environmental data. All processing was performed using ArcGIS 10.0 and MATLAB R2014a.

2.1 Environmental Data

Several environmental variables have been reported as associated to asthma hospital admissions. Attending to the previously found associations between the admissions due to asthma exacerbation at high urban coverage districts and NO2, NDVI and Ta (Ayres-Sampaio et al., 2014), those parameters were chosen as independent variables in this research.

The air temperature Ta at a given point can be computed by a linear regression if the lapse rate (L) the altitude (H), and the temperature at sea level (T0) are known. The altitude H was given by Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) composed by 23 1X1-degree images with 90m of spatial resolution and after resampled in a 5 km resolution image provided monthly at 5 km resolution image (DEM5); L0 and T0 were determined using MODIS temperature profile. MODIS temperature profile was acquired from MOD07 products. The MODIS Atmospheric Profiles product (MOD07) consists of several parameters, all of than are produced day and night for Level 2 at 5X5 1-km pixel resolution. The NDVI was obtained directly from the MOD13A3 product. The NDVI assumed values between −1 and +1 and is computed as:

\[NDVI = [(\rho_{NIR} - \rho_{Red})]/(\rho_{NIR} + \rho_{Red}) \]

where \(\rho_{NIR} \) and \(\rho_{Red} \) are respectively the near-infrared reflectance and red reflectance. MOD13A3 data are provided monthly at 1-km spatial resolution. In generating this monthly product, the algorithm takes all the 16-day 1-km products that overlap the month. Hourly NO2 measurements were collected from the Portuguese Environmental Agency through an online database available at http://www.qualar.org/, followed by the computation of monthly averages from the daily averages.

The 1-km spatial resolution of the remote sensed data is enough considering the municipality spatial unit considered for hospitalizations.

2.2 Hospitalizations Data

Data from hospitalizations is a subset of that used in (Ayres-Sampaio et al., 2014), which refers to all of the
public acute care hospitals of the National Health Service as provided by the Ministry’s of Health Central Authority for Health Services (Administracão Central do Sistema de Saúde, ACSS). The database includes diagnostic codes according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), from which cases with a principal diagnosis of asthma (code ICD-9-CM 493.x) were retrieved.

A total of 4,889 admissions in the Lisboa district in the period from 2003 to 2008 were analyzed (Table 1), which represent over 25% of the total of the asthma hospital admissions in Portugal during that period. Monthly admission rates per 1000 inhabitants were calculated for each municipality from annual resident population data obtained from the National Statistical Institute (Instituto Nacional de Estatística, INE).

2.3 Classification Strategy

The forecasting of hospital admissions due to asthma exacerbation was based on the following binary classes defined for each municipality:

- **class 0**: no admissions were registered in that month;
- **class 1**: at least one admission was registered in that month.

Training set was defined as the reported data from 2003 to 2007. The classifier was constructed by taking the averages in each month per municipality, both for the independent variables (\(T_a\), NDVI and NO\(_2\)) and dependent variable (asthma related monthly admission rates per 1000 inhabitants).

Supervised classification was performed by Linear Discriminant Analysis (LDA). The LDA classifier was evaluated over 3 data sets:

- **i. training data (averages)**, the monthly 5-years (2003-2007) based averages for each of the 16 municipalities (192 data points);
- **ii. training data (monthly)**, the 12 monthly values for each year from 2003 to 2007 for each of the 16 municipalities (960 data points);
- **iii. test data (monthly)**, the 12 monthly values for 2008 for each of the 16 municipalities (192 data points).

The outcome achieved in a binary classification can be easily displayed as a confusion matrix, which is a two-by-two table (Table 2). In the confusion matrix, True Negatives (TN) and True Positives (TP) correspond to the number of correct classifications for respectively classes 0 and 1, while False Positives (FP) and False Negatives (FN) correspond to the number of mis-classifications as class 1 and class 0, respectively. The misclassification error rate based on the training data was quantified as the apparent error rate:

\[
err = 1/2 (FP/(TN+FP) + FN/(FN+TP))
\]

where 1/2 corresponds to the prior probabilities for the groups. Additionally, a 10-fold cross-validation scheme of training data was used.
Table 1: Hospital admissions due to asthma exacerbation, per municipality and year, in the Lisboa district.

<table>
<thead>
<tr>
<th>Municipality</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alenquer</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>Amadora</td>
<td>71</td>
<td>62</td>
<td>86</td>
<td>103</td>
<td>85</td>
<td>55</td>
<td>462</td>
</tr>
<tr>
<td>Arruda dos Vinhos</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Azambuja</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Cadaval</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cascais</td>
<td>49</td>
<td>55</td>
<td>68</td>
<td>78</td>
<td>57</td>
<td>36</td>
<td>343</td>
</tr>
<tr>
<td>Lisboa</td>
<td>251</td>
<td>238</td>
<td>224</td>
<td>197</td>
<td>192</td>
<td>222</td>
<td>1324</td>
</tr>
<tr>
<td>Loures</td>
<td>67</td>
<td>79</td>
<td>57</td>
<td>67</td>
<td>68</td>
<td>412</td>
<td>3</td>
</tr>
<tr>
<td>Lourinhã</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>Mafra</td>
<td>17</td>
<td>19</td>
<td>12</td>
<td>17</td>
<td>12</td>
<td>18</td>
<td>86</td>
</tr>
<tr>
<td>Odivelas</td>
<td>82</td>
<td>87</td>
<td>62</td>
<td>59</td>
<td>78</td>
<td>77</td>
<td>445</td>
</tr>
<tr>
<td>Oeiras</td>
<td>74</td>
<td>76</td>
<td>65</td>
<td>57</td>
<td>36</td>
<td>27</td>
<td>335</td>
</tr>
<tr>
<td>Sintra</td>
<td>128</td>
<td>159</td>
<td>165</td>
<td>209</td>
<td>182</td>
<td>132</td>
<td>975</td>
</tr>
<tr>
<td>Sobral de Monte Agraço</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Torres Vedras</td>
<td>34</td>
<td>36</td>
<td>24</td>
<td>25</td>
<td>10</td>
<td>22</td>
<td>151</td>
</tr>
<tr>
<td>Vila Franca de Xira</td>
<td>44</td>
<td>38</td>
<td>37</td>
<td>34</td>
<td>37</td>
<td>22</td>
<td>212</td>
</tr>
</tbody>
</table>

For all data sets, the performance was also measured in terms of the sensitivity (S), positive predictive value (P+) and accuracy (A)

\[
S = \frac{TP}{TP + FN} \quad (3)
\]
\[
P+ = \frac{TP}{TP + FP} \quad (4)
\]
\[
A = \frac{(TP + TN)}{(TP + FP + FN + TN)} \quad (5)
\]

Table 2: Confusion matrix for binary classification.

<table>
<thead>
<tr>
<th>Truth</th>
<th>Classifier</th>
<th>class 0</th>
<th>class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 0</td>
<td>TN</td>
<td>FP</td>
<td></td>
</tr>
<tr>
<td>class 1</td>
<td>FN</td>
<td>TP</td>
<td></td>
</tr>
</tbody>
</table>

3 RESULTS AND DISCUSSION

The frequency distributions of hospital admission rates in each data set are represented in Figure 2. As consequence of averaging, a single admission within the 5-year period (2003-2007) is sufficient to produce non-zero mean. Thus, the class 0 (no admissions) in the monthly averages is less represented that in monthly data.

Considering performance evaluation over training data (averages), the apparent error rate was 24% and a 36% error was found using 10-fold cross-validation. The confusion matrices considering training and testing data are presented in Table 3, while sensitivity (S), positive predictivity (P+) and accuracy (A) values can be found in Table 4. Notice that the LDA classifier was able to correctly identify roughly 2/3 of the combinations months/municipalities having hospital admissions (with S = 65% in testing data), while the fraction of false positive identifications was always below 15%. For test data, less than 10% of the positive forecastings would be false alarms for hospital admissions in that month for the specific municipality. The results obtained confirm that Ta, NDVI and NO\(_2\) levels based on remotely sensed data have the ability to predict existence of hospital admissions due to asthma exacerbation, using simple linear methods, which do not consider any possible nonlinear dependencies.

Table 3: Confusion matrices for training and testing data.

<table>
<thead>
<tr>
<th>Truth</th>
<th>Classifier</th>
<th>Training data (averages)</th>
<th>no admissions</th>
<th>admissions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 0</td>
<td>TN</td>
<td>19</td>
<td>64</td>
<td>83</td>
<td>107</td>
</tr>
<tr>
<td>class 1</td>
<td>FN</td>
<td>2</td>
<td>105</td>
<td>117</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Truth</th>
<th>Classifier</th>
<th>Training data (monthly)</th>
<th>no admissions</th>
<th>admissions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 0</td>
<td>TN</td>
<td>238</td>
<td>179</td>
<td>417</td>
<td>543</td>
</tr>
<tr>
<td>class 1</td>
<td>FN</td>
<td>64</td>
<td>479</td>
<td>543</td>
<td>1022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Truth</th>
<th>Classifier</th>
<th>Testing data (monthly)</th>
<th>no admissions</th>
<th>admissions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 0</td>
<td>TN</td>
<td>55</td>
<td>8</td>
<td>63</td>
<td>71</td>
</tr>
<tr>
<td>class 1</td>
<td>FN</td>
<td>44</td>
<td>85</td>
<td>129</td>
<td>214</td>
</tr>
</tbody>
</table>

It is important to mention that many of asthma exacerbation episodes does not require healthcare attention and from those requiring it, only a small fraction results on hospitalization. Thus, hospital admissions are not a good indicator of mild asthma exacerbation, quantifying only the most severe cases. Furthermore only admissions with principal diagnosis of asthma...
were retrieved, excluding the cases of hospital admissions in which other diseases (co-morbidities) were classified as primary diagnosis in spite of asthma exacerbation were also occurring (e.g. hospital admissions during asthma exacerbation but with concomitant pneumonia). This constitutes a main limitation of this work and alternative indicators and sources of data for less severe exacerbation should be pursued. Even using the most populated district of Portugal, hospital admissions per municipality were not very high, and the data size is likely to limit the performance of discriminant analysis. Additionally, the loss of time reference within the month can introduce spurious information, as an admission at the first days of a particular month will surely not depend on the future environmental exposition during the whole month. Future studies could therefore include a larger dataset, for example by including more districts, and analyze shorter time periods (e.g. weekly data).

Only environmental factors for which the monthly base seasonal average showed relevant correlation with admissions due to asthma in (Ayres-Sampaio et al., 2014) were considered in this work. Nevertheless PM_{10} and RH exposition has been related with asthma exacerbation in the past (Akinbami et al., 2010; Delamater et al., 2012). It is that any possible effect of those factors was diluted by the month-based averages. Furthermore, the environmental effects on asthma are likely to be more immediate (weekly or even daily) possibly non visible using month-based values. In particular, with respect to air temperatures and pollutants, the intrinsic daily variability and exposition to extreme values which were not considered in this work, can matter. Also, in the present work we considered the time range from 2003 to 2008 because we used environmental factors data already processed in a previous work ((Ayres-Sampaio et al., 2014)). In the near future we will consider a wider and more recent temporal window and include these alternative variables in the analysis, possibly using weekly data.

The implemented strategy only considers global geographically dependent risk, thus other personal exposure factors such as indoor air pollution, time spent outdoors, passive smoking, allergen avoidance behavior, and viral infections were not considered. Also if a patient moves across several municipalities (multi
locations exposure), both locations should be considered.

All these previously mentioned particularities and limitations of the present work, namely using rough temporal scales and not considering a personalized approach, might explain the lower sensitivity values compared to the overall accuracy. Still, regarding the interest for asthma self-management tools, the classification obtained can be used as geographical dependent risk indicator, in spite of the above listed limitations.

4 CONCLUSIONS

The classifier developed in this work allowed to forecast asthma related admissions with good accuracy levels. The reduced rate of false positive is important if it is to be included in information and communication technology tools for patient self-management. It can be used as a risk warning tool, to be combined with individual monitoring factors. Despite all the environmental variables have been processed and analyzed in a GIS software, in the future a deeper analysis using a GIS approach and considering other factors, not considered in this work will improve the information on the spatial distribution of asthma hospitalizations and their relationship with the environment.

ACKNOWLEDGEMENTS

This article was supported by the Project NORTE-01-0145-FEDER-000016 (NanoSTIMA), financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). Hernâni Gonçalves is financed by a post-doctoral grant (SFRH/BPD/69671/2010) from the Fundação para a Ciência e a Tecnologia (FCT), Portugal. The MATLAB licenses used in this work were supported by Portuguese funds through CMUP UID/MAT/00144/2013, funded by the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia). The authors wish to thank the Portuguese Ministry’s of Health Authority for Health Services (Administração Central do Sistema de Saúde, ACSS) for providing access to national hospital admissions data and to Diogo Ayres Sampaio by the initial preprocessing of the data.

REFERENCES

Moustris, K. P., Douros, K., Nastos, P. T., Larissi, I. K., Anthracopoulos, M. B., Paliatsos, A. G., and Priftis,
