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Abstract: One of land change model parameters in calibration step relates to how changes over time and space are 
considered in the model. A land change model can be calibrated with the state at one time point or with the 
difference between two time points. The purpose is describing land use and cover (LUC) state patterns, i.e. 
one time point calibration, and LUC transition patterns, i.e. two time points. For a case study in Spain we 
obtained the collections of factors for two calibration periods at one time point (dates 2000 and 2006) and 
the collections of factors for two calibration periods between two time points (periods 1990-2000 and 2000-
2006). Evidence likelihood is used to transform the explanatory variables into factors. The objective of this 
paper is to compare these four collections of factors to show how the choice of reference maps influences 
the factors and how these factors highlight the change patterns in two different calibration periods and in the 
calibration of two models. As a following step the detailed results for the different factors and LUC 
categories are analysed. 

1 INTRODUCTION 

The validity of the model and its outputs is one of 
the most important challenges in land change 
modeling (Paegelow and Camacho Olmedo, 2008; 
Paegelow et al., 2014). Pontius and Malanson (2005) 
demonstrate that output varies more as a result of the 
choice of model parameters than as a result of the 
choice of the model itself. One of these parameters 
relates to how changes over time and space are 
considered in the model, for the purpose of describing 
LUC state patterns, i.e. one time point calibration, or 
LUC transition patterns, i.e. two time points 
calibration (Camacho Olmedo et al., 2013; Kolb et al., 
2013).  

A model that is calibrated with the state at one 
time point has certain advantages and disadvantages 
compared to a model that is calibrated with the 
difference between two time points. The first 
approach does not explicitly consider the 
distribution of land cover resulting from recent past 
changes and instead assesses the total past changes  
(Paegelow and Camacho Olmedo, 2005; Villa et al., 
2007; Conway and Wellen, 2011; Yu et al., 2011). 
By contrast, the second approach evaluates the change 
potential for each possible transition, where the future 

potential of the space is split into specific transitions 
across a finite number of LUC categories (Eastman et 
al., 2005; Sangermano et al., 2010, Wang and 
Mountrakis, 2011). 

When calibrating the model, the patterns of change 
(or change behaviour) are analyzed by a collection of 
variables explaining LUC states and/or LUC 
transitions. From these variables, a collection of 
factors can be created with a large variety of methods 
and analyses, as described in previous research into 
land change modeling (Mas and Flamenco, 2011; 
Pérez-Vega et al., 2012; Camacho Olmedo et al., 
2013, 2015; Kolb et al., 2013; Soares-Filho et al., 
2013; Mas et al., 2014; Osorio et al., 2015; Abuelaish 
and Camacho Olmedo, 2016).  

Factors can be created without references to LUC 
locations, either states or transitions, using 
transformation methods as natural logarithm, fuzzy, 
etc. Alternatively, a collection of factors can be 
made on the basis of information about LUC 
locations. This is possible if methods such as 
evidence likelihood are used to create the factors, 
using the LUC states as the reference areas in one 
time point calibration, and the LUC transitions in 
two time points calibration. We chose this option 
because land change models describing LUC states 
or transitions must include LUC locations. 
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Our goals are therefore to obtain and compare 
factors in order to show how the choice of LUC 
reference maps influences the factors, how these 
factors represent the change patterns in two different 
calibration periods, how these factors represent the 
change patterns in the two models calibrated in 
different ways, and, finally the specific behavior of 
the different LUC categories and factors. 

We illustrate the procedure using the TerrSet 
software (Clark Labs, 2016). For a case study in 
Spain, we obtained the collections of factors for two 
calibration periods at one time point (dates 2000 and 
2006) and the collections of factors for two 
calibration periods between two time points (periods 
1990-2000 and 2000-2006). Evidence likelihood is 
used to transform the explanatory variables into 
factors. We then compared these four collections of 
factors so as to gain a better understanding of change 
patterns.  

2 TEST AREA AND DATA SETS 

Figure 1 shows the specific study area, which covers 
2,300 square kilometers in the province of Murcia 
(southern Spain). The two types of calibration are 
based on land use and cover data for the different 
time periods and the related explanatory variables. 
The maps of land use and cover (LUC) have four 
categories from the Corine Land Cover 
(CoORdination of INformation of the Environment, 
Instituto Geográfico Nacional, Spain) dataset: urban, 
industrial and transport uses; natural vegetation, 
unproductive land and water; irrigated crops; rainfed 
crops. In the rest of this article we refer to these 
categories as urban, natural, irrigated and rainfed. 
Corine maps at 1990 (t0), 2000 (t1) and 2006 (t2) 
are used for model calibration. The explanatory 
variables are topographic variables, protected areas, 
territorial accessibility (roads diversity and quality), 

distance to roads and distance to hydrographic 
network (Gómez and Grindlay, 2008). 

The study area has undergone profound 
territorial and economic transformations in the 
recent past. The most important change has been the 
transition from rainfed crops to irrigated crops, due 
to the development of water-related infrastructures 
and the increase in the water supply (Gómez Espín 
et al., 2011). Urban growth is a secondary change 
driven by the development of transportation and 
communication infrastructures. 

3 METHODS 

3.1 Obtaining Factors 

Evidence likelihood is used to transform the 
explanatory variables into factors. This procedure 
analyzes the relative frequency of the different 
categories of a given variable within the areas of 
LUC states or LUC transitions. It is an efficient 
means of introducing categorical variables into the 
analysis, and it accepts continuous variables that 
have been binned into categories.  

The reference areas represented in binary maps 
are therefore different for model calibration based on 
one time point or two time points. For one time 
point, the reference area is the most recent land use 
category, i.e. the LUC state. For two time points, the 
reference area is a map showing the changes that 
have taken place between two points in time, i.e. 
LUC transitions. This option aims to preserve the 
nature of the state of the categories and the nature of 
the changing categories. From now on, we refer to 
areas corresponding to an LUC state or an LUC 
transition as ‘reference maps’. 

We obtained four reference maps for each LUC 
category. In the first calibration period t0 – t1, the 
reference map for one time point is a set of binary 
categorical LUC maps (one for each category) at t1, 

Figure1: LUC in 1990 (left), 2000 (middle) and 2006 (right) in the Murcia region in southern Spain. Source: Corine Land
Cover. 
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and for two time points is a set of binary categorical 
LUC maps (one for each transition) between t0 – t1. 
In the second calibration period t1 – t2, the reference 
map for one time point is every LUC state at t2 and 
for two time points is every LUC transition between 
t1 – t2 (Table 1). Figure 2 shows the reference maps 
for irrigated crops as an example. 

Table 1: Reference maps for evidence likelihood in one 
time point and two time points based calibration in both 
calibration periods.  

 
First calibration 

period 
Second calibration 

period 

One time 
point 

2000 (t1) 2006 (t2) 

LUC state LUC state 

Two time 
points 

1990 (t0) – 2000 (t1) 2000 (t1) – 2006 (t2) 

LUC transitions LUC transitions 

In this study we discarded the transitions 
affecting small surface areas, and grouped together 
the transitions involving the same final category, a 
common procedure in transitions modeling. It is 
important to remember therefore that we are 
comparing LUC states with almost all, but not all, 
the LUC transitions. In the practical application only 
the following transitions are modeled: 
natural/irrigated/rainfed to urban; rainfed to natural; 
natural/rainfed to irrigated; natural to rainfed. By far 
the most important change in the area we studied is 
the transition to irrigated crops, which is followed 
some way behind by urban growth.  

Using these reference maps we obtained four 
collections of factors for each LUC category: for one 
time point and for two time points, and both of these 
for two calibration periods.  

3.2 Assessment Methods 

The Pearson correlation, a classical method for 
assessing the congruence of quantitative data, was 
used for comparing factors. Instead of looking for a 
causality relationship between pairs of data, the 
Pearson correlation tries to establish whether there is 
a relationship between them. Values range from -1 
to +1. High positive/negative Pearson values 
indicate a direct/indirect relationship between two 
data. Low positive/negative values indicate a lack of 
relationship. 

The Pearson correlation was calculated between 
all pairs of factors for the one and two time points 
based models and for the two calibration periods. 
Factors are quantitative data from 0.0 to 1.0. The 
higher the Pearson coefficient, the stronger the 
correlation of factors. We consider values of over 
0.8 to be very strong correlations. 

4 RESULTS AND DISCUSSION 

4.1 Collection of Factors 

For one time point and for two time points, and for 
each of the two calibration periods, the collections of 
factors were obtained for each LUC category. As an 
example, Figures 3 and 4 show the collection of 
factors derived from the elevation variable and from 
the slope variable in the reference maps for irrigated 
crops. 

4.2 Comparison of Four Collections of 
Factors 

In Figure 5, the Pearson correlation values for every 
pair of factors (each square corresponds to one 
comparison) is showed. Each cross tabulation matrix 
is composed of one column per factor grouped by 
LUC category (above) or per LUC category grouped 
by factors (below) and by four rows: One time point 
based model (first and second calibration period), 
Two time points based model (first and second 
calibration period), First calibration period (one and 
two time points based model), Second calibration 
period (one and two time points based model).  

In Figure 5 (above), the collections of factors for 
the urban category are all very similar. This means 

Figure 2: Reference maps for evidence likelihood of the
LUC state of irrigated crops in 2000 and in 2006 (above)
and of the LUC transition to irrigated crops over the
periods 1990-2000 and 2000-2006 (below). 
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that transitions patterns to this category are very 
close to the state pattern for this category in both 
calibration periods. The only exceptions are the 
elevation and aspect factors. As an example, if we 
focus on the Pearson correlation values for elevation 
factors related to the urban category, we can see that 
for 2000 and 2006 the situations are almost identical 
(first row); the transitions between 1990-2000 and 
2000-2006 are not so close (second row); the state in 
2000 is very similar to the transitions over the period 
1990-2000 (third row); and the state in 2006 is less 
similar to the transitions that took place over the 
period 2000-2006  (fourth row). 

The factors for the natural vegetation, 
unproductive and water category and the factors for 
irrigated crops vary more sharply: transition patterns 
in the first calibration period are not similar to those 
in the second. Transitions are not very close to the 
state pattern in either period. With respect to 
irrigated crops, in the second calibration period the 
transitions patterns are quite different from the state 
pattern. This is due to elevation, distance to a main 
irrigation channel and distance to a network of 
ditches. Finally, for the collection of factors for 
rainfed crops, a high dissimilarity is present in 
transition patterns for both calibration periods and 
with respect to the state pattern, particularly in the 
first calibration period. However, it is also important 
to emphasize that the state patterns are stable for all 

categories (first row in Figure 5, above, one time 
point based model). 

In brief, if we compare the two calibration 
methods, there is a medium to high linear 
relationship between LUC transitions and LUC 
states, which is higher in the first calibration period 
in all the categories except for one. Looking at each 
category, the urban patterns are very stable while at 
the opposite extreme, the patterns for rainfed crops 
show high variation. The situation also varies a great 
deal in the natural category and in irrigated crops: 
the transition patterns are not very stable and are not 
very similar to the state pattern.  

In Figure 5 (below), the Pearson values are 
grouped by factors. Only factors common to at least 
two LUC categories are shown. A quick overview 
confirms that the state patterns are stable for all 
categories (first row, one time point based model). 
Aspect is the factor with the highest values in both 
calibration periods and both models, followed by 
distance to secondary road, except in the rainfed 
crops category. Elevation and aspect seem to be the 
most sensitive factors. They show widely varying 
behavior, with high, medium and low Pearson 
values, which means that transition patterns and 
state patterns are not regular with respect to these 
variables. With regards to distance to main irrigation 
channel, the transition patterns for irrigated crops are 
not regular, although the most irregular are those for 

Figure 3: Irrigated crops and elevation. Evidence
likelihood of the LUC state for irrigated crops in 2000 and
2006 derived from the elevation variable (above) and of
the LUC transition to irrigated crops over the periods
1990-2000 and 2000-2006 derived from the elevation
variable (below). 

Figure 4: Irrigated crops and slope. Evidence likelihood of
the LUC state for irrigated crops in 2000 and 2006 derived
from the slope variable (above) and of the LUC transition
to irrigated crops over the periods 1990-2000 and 2000-
2006 derived from the slope variable (below). 
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rainfed crops. In brief, when looking at the different 
factors, the homogeneity or heterogeneity of LUC 
locations can lead to widely varying behavior. 
Previous researchers observed a relationship 
between environmental and accessibility factors and 
the initial conditions in which LUC changes are 
carried out (Lambin et al., 2001; Yu et al., 2011 
Osorio et al., 2015). 

For a better understanding of these patterns, we 
focused on the collection of factors for irrigated 
crops. Figures 6 and 7 present the histograms (ha) 
for the LUC state for irrigated crops in 2000 and 
2006 and for the LUC transition to irrigated crops 
over the periods 1990-2000 and 2000-2006, by 
elevation intervals and by slope intervals. 

If we compare these two variables, we can 
conclude that irrigated crops behave in a more 
homogenous manner with respect to slope (only 
some slope intervals are affected) than to elevation, 
which explains the different Pearson values 
commented above. Figure 6 shows that irrigated 
crops were located at lower elevations in the first 
calibration period, 1990-2000, and that the new 
irrigated fields planted from 2000 to 2006, went up 
to higher elevations, in other words, transitions 
occurred at different altitudes. However, we do not 
know if this is a general dynamic or if it is due to the 

particular behavior of one of the LUC origin 
categories (natural or rainfed). We must remember 
that, in this study, we grouped some transitions 
(natural/irrigated/rainfed to urban; natural/rainfed to 
irrigated) together. Although this is a common 
procedure in modeling, it does not allow us to 
distinguish between the categories that have been 
grouped together.  

Figures 6 and 7 show absolute surface area 
values (ha), which means that comments must also 
be relativized with respect to the surface areas of the 
reference maps. We assume that an LUC state or an 
LUC transition with a larger area offers more robust 
statistical representativeness. This means that the 
factors that are created and their patterns should be 
more stable. On the other hand, if the surface areas 
of the reference maps of LUC states and of LUC 
transitions are similar in size, the patterns should 
also be more similar, because the LUC transitions 
are included in the LUC state for the same 
calibration period.  

Figure 8 presents the surface area (ha) for the 
reference maps for all the LUC categories. As 
commented earlier, we decided not to model very 
small transitions or grouped heterogeneous 
transitions. For the natural category and the rainfed 
category, the surface areas of LUC states and LUC 

 
Figure 5: Representation of Pearson correlation values for each pair of factors (each square corresponds to one comparison).
Each cross tabulation matrix is composed of one column per factor grouped by LUC (above) and per LUC grouped by
factors (below), and of four rows: One time point based model (first and second calibration period), two time points based
model (first and second calibration period), first calibration period (one and two time points based model), second
calibration period (one and two time points based model). Factors legend (above): elevation (a), slope (b), aspect (c),
accessibility to main road (d), accessibility to human settlements (e), distance to secondary road (f), distance to main
irrigation channel (g), distance to secondary irrigation channels (h), distance to network of rivers and streams (i), distance to
network of ditches (j), distance to water catchments (k). LUC legend (below): urban (U), natural (N), irrigated (I) rainfed (R).
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transitions vary greatly and may therefore show a 
different pattern in the extracted factors. Besides, 
LUC transitions to these categories in both 
calibration periods affect only a small proportion of 
the study area (<900 ha in the natural category, <400 
ha in the rainfed crops category). In fact, LUC 
transitions to the natural category correspond to less 
than 2% of the natural LUC state, and LUC 
transitions to the rainfed category correspond to less 
than 1% of the rainfed LUC state. Therefore, 
modeling LUC transitions may not be statistically 
representative.   

For irrigated crops, even if the surface areas of 
LUC state and LUC transitions vary greatly, they 
still correspond to 26,386 and 26,026 ha or 36% and 
27% of the LUC state for irrigated crops in the two 
calibration periods respectively. The total surface 
area covered by urban areas is lower than the other 
categories, but LUC transitions, with 4,513 and 
2,969 ha in the two calibration periods, correspond 
to 38% and 20% of urban LUC states respectively. 
This means that modeling LUC transitions for these 
categories can be statistically representative.  

Valuable additional information can be obtained 
by assessing the coincidence between the reference 

Figure 6: Histograms (ha) for the LUC state for irrigated crops in 2000 and 2006 and for the LUC transition to irrigated
crops over the periods 1990-2000 and 2000-2006, by elevation intervals. 

 

Figure 7: Histograms (ha) for the LUC state for irrigated crops in 2000 and 2006 and for the LUC transition to irrigated
crops over the periods 1990-2000 and 2000-2006, by slope intervals.  
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maps for the two calibration periods. As commented 
in section 3.1., there is no coincidence between the 
areas of the reference maps in the two time points 
based model. In the one time point based model, the 
coincidence between the area in the first calibration 
period with respect to the area in the second 
calibration period is 100% for urban areas, 97.71% 
for the natural category, 97.51% for irrigated crops 
and 63.86% for rainfed crops. However, the 
coincidence between the areas in the second 
calibration period with respect to the area in the first 
calibration period is 79.97% for urban areas, 98.66% 
for the natural category, 73.20% for irrigated crops 
and 98.84% for rainfed crops. 

This study can be continued by comparing and 
assessing the soft-classified maps obtained by the 
different calibration based models. Camacho 
Olmedo et al. (2013) compared suitability maps (one 
time point based model) and transition potential 
maps (two time point based model) in one 
calibration period. The applied assessment method 
showed moderate-to-high correlation values between 
them, inchange-prone areas, for all categories except 
one. They assessed the predictive ability of soft-
classified maps with respect to real maps, and 
confirmed that a two time points based model 
outperformed a one time point based model in the 
case of modeling urban growth because the 
transition potential map for urban growth captured 
urban change more accurately than the suitability 
map did, while the opposite was true for the other 
categories. 

Current research into land change models tends 
to range from pattern-based models, which are 
calibrated on the basis of trends observed in the past, 

to models that try to simulate general processes of 
change by integrating expert knowledge (NRC, 
2013; Mas et al., 2014; Osorio et al., 2015). 

5 CONCLUSIONS 

A land change model can be calibrated with the state 
at one time point or with the difference between two 
time points. These approaches therefore involve 
modeling either LUC states or LUC transitions. The 
first approach implicitly includes all past changes, 
while the second considers past changes that 
occurred during a recent period. The calibration of 
land change models by one time point or two time 
points, i.e. states or transitions, gives different 
results. The choice of reference maps affects the 
similarity or dissimilarity of factors.  

Factors obtained from the LUC state (one time 
point based model) in two calibration periods show a 
high linear relationship. The state pattern is therefore 
stable. The one time point based calibration model 
could therefore be accurate at modeling categories in 
which transitions affect a proportionally small area 
and also when patterns of change vary in recent 
periods. This “total past trend” based calibration is 
more likely to capture historic patterns of change 
and simulations over longer time.  

Factors obtained from LUC transitions (two time 
points based model) in two calibration periods show 
highly varied values, from non-linear to highly 
linear relationships between them. Modeling LUC 
transitions can be statistically representative when 
they correspond to a proportionally larger area and 
when patterns of change are maintained over two 

 
Figure 8: Surface area (ha) of reference maps for the different LUC categories. 
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successive periods. This “two past trend” based 
calibration is more likely to capture recent patterns 
of change and simulations over shorter periods. 

A multi-temporal approach, integrating data 
about more than two training dates, could resolve 
potential errors resulting from only considering two 
past dates or by considering the total past, and would 
be more appropriate for creating forecasting 
scenarios. However, a choice must be made between 
using states or transitional data in the calibration of 
the models. Depending on multiple parameters, 
including form and intensity of dynamics, the two 
approaches may be complementary. 
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