An Image Data Learning Method by Discriminating Multiple ROIs Data Patterns for Extracting Weather Information

Jiwan Lee, Sunghoon Jung, Kijin Kim, Minhwan Kim and Bonghee Hong

Department of Electrical and Computer Engineering, Pusan National University, Busan, South Korea

Keywords: Image Data Analysis, Weather Information, Time-series Data Analysis, Learning, Clustering, CCTV Images.

Abstract: In order to generate weather information about rainfall and foggy visibility through analysis of CCTV images, the analysis on the changing patterns of time-series image data is a new approach to generating weather information from CCTV images. This paper demonstrates a method to generate optimum ROIs for extracting subtle weather image changes caused by fog and rainfall. It suggests the optimum ROI size and distance interval between ROIs through experiments. Finally, a clustering-based method for extracting weather information is proposed that has different data pattern difference between ROIs as a learning model, which is based on the suggested optimum ROI size and interval.

1 INTRODUCTION

Weather information on dangerous roads such as rainfall on the forward side of the moving car while driving, precipitation and foggy visibility is highly valuable for the safety of drivers. This study suggests that the extracted date pattern data based on image changes is a viable option. Furthermore, applying pattern graphs as a clustering learning model will facilitate the extraction of rainfall amount and foggy visibility to be computed from real-time CCTV images.

The related studies that extracted weather information from CCTV images (Beung Raul Park and Lim, 2007; Beung Raul Park, 2007), or those that measured foggy visibility (Bong-Keun Kim and Lee, 2008) were mainly based on discrimination of the converted values of hue, saturation, and brightness. However, these existing methods do not measure the distance of foggy visibility and precipitation by analyzing the time-series data of CCTV images. Another problem present in the existing method is the reduced accuracy caused by the averaging of the converted values for entire CCTV images, as it selects entire CCTV images as Region Of Interest (ROI).

In order to extract time-series data changes from CCTV images, the problem of configuring the time interval between frames and selecting a target area within an image for change detection should be addressed. The configuration of the time interval for change detection may be determined through a relatively easy experiment, whereas there are various options such as an entire screen, specific ROI, and multiple ROIs for the selection of target detection area. Time-series data pattern appears differently depending on the image characteristics influenced by selection of target regions, in other words, based on whether the target area is the sky, forest, or roads.

This paper suggests a method for identifying ROIs and determining the number of ROIs that demonstrate time-series images changes following weather changes through real data analysis and experiments. In this study, experiments were conducted to find out what the optimal number of ROIs within a specific CCTV images is. By considering different change patterns for each weather condition concerning road area and forest area, the size and number of optimal ROI size and interval were determined in order to discriminate slightly image change patterns.

The image data differences between multiple ROIs result in different pattern graphs that would be used for determining weather information. Pattern graph changes reflecting subtle image changes between multiple ROIs were rendered into a clustering learning model to demonstrate the discrimination of weather information.

This paper consists of the following contents: Chapter 2 introduces related studies. Chapter 3 explains the data used for this study and the data analysis results. Chapter 4 describes the method for selecting multiple ROIs using CCTV images. Chapter 5 suggests the technique for producing weather information through clustering patterns. The Chapter
7 presents the conclusion of this study and future research plan.

2 RELATED STUDIES

Studies on the extraction of road weather information from CCTV images are mainly categorized into two types: the entire image and specific areas of the image depending on ROI selection methods (Jonsson, 2011; Jokela et al., 2009). In the case of selecting the entire image as ROI, the accuracy varies depending on the components of the image such as roads, forest, and sky areas, and their proportion. Consequently, there arises the problem in which the selection of target area has shown deep influence of data pattern changes for example, forest or road. Therefore, this option is not viable for suggesting a detailed method for area selection.

For the extraction of weather information, characteristics such as RGB average, temperature, and humidity information, HSV value, and the amount of edge pixels (Yongdeok Sin and Lee, 2015) from CCTV images were utilized for conversion of the extraction values. In practice, the converted values extracted from still images at specific time points are commonly used. This method is not based on the time-series change patterns of CCTV images that show time-series changes in weather, and thus, it is unable to extract changes in rainfall and foggy visibility.

3 IMAGE TRANSFORMATION METHOD FOR WEATHER DISCRIMINATION

In this paper, real images of 480 x 272 pixels in resolution at 24 fps taken from CCTV data were used. The feasibility of extracting changing weather information was assessed with real data through the adjustment of various image characteristics and parameters.

Various image transformation values were extracted in order to extract useful characteristics appearing on CCTV images according to weather changes. The characteristics of image transformation values were analyzed in road area and forest area in accordance with weather conditions sunny, cloudy, light rain, and heavy rain. The analysis results showed that both the brightness value through HSV color space changes and the amount of edge within ROIs through edge extraction expressed weather changes satisfactorily.

As shown in Figure 1, the brightness value is lower in the sunny condition than in the cloudy condition in the forest area. Higher values were extracted for brightness in the rainy conditions than the cloudy one. However, in the case of roads, no specific pattern was extracted for each weather condition, and the patterns overlapped with one another. In other words, no characteristics of sunny, cloudy, light rain, and heavy rains were demonstrated in the road area. This result shows that using the brightness data from the forest area helps determine the discrimination of different weather changes.

We observe the changes in brightness according to short distance/long distance ROIs, as the results in Figure 2. In the sunny condition, the brightness values barely changed between short distance ROI and long distance ROI. As the weather gradually worsened to cloudy, and further to 5, 10, 15, and 20 mm rainfall, the brightness values between the short distance and long distance ROIs eventually increased. This significant difference in brightness values indicates that long distance areas become blurry and less visible when weather changes occur.
4 METHOD FOR MULTIPLE ROI SELECTIONS

In this chapter, forest area favourable for weather discrimination was identified through image segmentation (Meyer, 1992). Further, a technique for automatically selecting multiple short-distance and long-distance ROIs within given areas is suggested.

In order to identify graph patterns for subtle changes such as a change in rainfall, it is more efficient to select a multiple numbers of ROIs at different distance intervals rather than a single ROI. Therefore, a method was devised for determining the optimum number of and an optimum interval for ROIs.

The straight lines of roads are all parallel in reality, but they come to cross at a single vanishing point on CCTV images through the projective transform. In order to select multiple ROIs along the direction of the roads, a vanishing point was first drawn out of the straight lines of the roads. A segmented line which passes through this vanishing point and overlaps with the forest area was then drawn, which becomes the reference line for multiple ROIs.

Algorithm 1: Producing multiple ROIs.

\begin{algorithm}
\begin{algorithmic}
\State \textbf{Input}: Segment Line SL, Size s
\State \textbf{Output}: multiple ROI $ROIs$
\State \hspace{1em} R_i is a first position of ROI, where i is 1
\State \hspace{1em} Centroid Point (CP) of R_i is represented by CP_i
\While{ROIs are generated}
\State \hspace{1em} CP_{i+1} is a point moved by DI from CP_i on SL
\State \hspace{1em} LTP_{i+1} are $(x$ of $CP_i, size/2, y$ of $CP_i, size/2)$
\State \hspace{1em} RBP_{i+1} are $(x$ of $CP_i + size/2, y$ of $CP_i + size/2)$
\While{choose optimal distance do}
\State \hspace{2em} Move CP_{i+1} to right along segment line
\State \hspace{2em} Compute difference of brightness between R_i and R_{i+1}
\EndWhile
\State \hspace{1em} Choose optimal distance between R_i and R_{i+1}
\State \hspace{1em} $i = i + 1$
\EndWhile
\State \hspace{1em} Return $ROIs$
\end{algorithmic}
\end{algorithm}

Algorithm 1 is to produce multiple ROIs around the roads in the forest area, which are identified through the image segmentation. This algorithm takes segment line, size of ROI for input parameters. Lines 1 and 2 set the initial ROI. Lines 3 through 6 are logics for selecting ROIs after the second one. A square coordinate consists of a left top and right bottom. They are generated with the coordinate of a middle point moved by the ROI interval from the middle point of the previously generated ROI along the segment line in Line 8. In Line 11, we can find out optimal distance between ROIs by comparing difference of brightness. Finally, Line 14 ends the algorithm when the ROIs are generated.

5 METHOD FOR GENERATING WEATHER INFORMATION BY IMAGE DATA PATTERN CLUSTERING BASED ON MULTIPLE ROIs

In this chapter, a difference graph of image transformation data for multiple ROIs is demonstrated. Then, the new algorithm that discriminates weather conditions using the clustering technique is described.
5.1 Selection of Multiple Optimum ROIs from CCTV Images

According to the multiple ROI algorithms from the Chapter 4, the optimum number of ROIs and their size suitable for CCTV images from each region are automatically selected. The results of the experiment suggested 14-20 ROIs to be the optimum number per CCTV image, and the ROI size of 25x25 was most suitable.

5.2 Extraction of Time-series Changes in Image between Multiple ROIs

Time series image data are defined as graph \(g_i = \{v_1, v_2, v_3, ..., v_n\} \), where \(n \) is number of the frame, and \(i \) is an id for identifying ROI on the CCTV image. The component \(v_n \) of graph \(g \) represents the representative brightness value of the \(n \)th frame. Representative brightness can be set to the minimum, maximum, or average brightness value of the pixels of ROI. For example, if the time-series image data of the rainy image in Figure 4 is represented in a graph, it is expressed as \(g_1 = \{198, 201, 204, 195\} \).

![Image transformation pattern graph of time-series image data per ROI.](image)

Figure 4: Image transformation pattern graph of time-series image data per ROI.

Time series transformation image graph is generated in two different forms for analysis. First, a pattern graph is generated for image transformation values at the same region with a regular time interval as in Figure 4. This is clustered to discriminate sunny, cloudy, rainy, and foggy conditions. The clustering results would group the image transformation value patterns, which express the weather changes of the same place at different time frames.

Second, a pattern graph for image transformation values of the configured long distance, mid, and short distance areas is generated with the selected multiple ROIs in a single CCTV image. The graph of difference in image transformation values of the long distance, middle distance, and short distance areas at the same time frame in the same ROI is defined as \(\text{Diff}_\text{Graph}(R1, R2) \). The input parameters \(R1 \) and \(R2 \) of this function represent two different ROIs. Assuming that different graphs are extracted from the CCTV images of a single region, a total of 6 difference graphs are generated. For example, with a total of 4 multiple ROIs \(R1, R2, R3, \) and \(R4 \) in Figure 5, a total of 6 difference graphs as \(\text{Diff}_\text{Graph}(R1, R2), \text{Diff}_\text{Graph}(R2, R3), \text{Diff}_\text{Graph}(R3, R4), \text{Diff}_\text{Graph}(R1, R3), \text{Diff}_\text{Graph}(R2, R4), \) and \(\text{Diff}_\text{Graph}(R1, R4) \) are generated.

5.3 Measuring Similarity between Graphs of each Weather Condition and Producing Weather Information through Hierarchical Clustering Technique

Weather conditions are discriminated by comparing the image transformation pattern graphs of each ROI generated in section 5.2 for multiple ROIs with those clustered per weather condition.

![Example of difference graphs extracted from multiple ROIs pattern graph.](image)

Figure 5: Example of difference graphs extracted from multiple ROIs pattern graph.

In order to perform hierarchical clustering, the similarity between the six generated graphs as \(\text{Diff}_\text{Graph}(R1, R2), \text{Diff}_\text{Graph}(R2, R3), \text{Diff}_\text{Graph}(R3, R4), \text{Diff}_\text{Graph}(R1, R3), \text{Diff}_\text{Graph}(R2, R4), \) and \(\text{Diff}_\text{Graph}(R1, R4) \) should be calculated as shown in Figure 5. The similarity is calculated using the Euclidean distance which is frequently used for calculating shortest distance. The equation is given below.

\[
\text{similarity} = \sum_{i=1}^{n} (v_i \text{ of } \text{Graph}_p, v_i \text{ of } \text{Graph}_k), \quad (1)
\]

here, \(n \) represents the total number of frames. All the six difference graphs similarities with the clusters for past weather conditions were calculated to identify the most similar cluster.

Algorithm 2 describes to produce weather information using the clustering technique based on multiple ROIs. Line 1 through line 3 produce image
transformation graphs for four multiple ROIs from CCTV images. Line 4 to line 6 are stages of extracting difference graphs using the information of the image transformation graphs of the previously generated four multiple ROIs. Line 7 through line 11 compare all the similarities between the difference graph for past weather condition clusters and those of the images used as input data. Line 12 generates clusters for each weather condition using the hierarchical clustering() function. At the final stage of line 13, the past weather condition cluster, which is most similar to the difference graphs of the inputted images, is identified. The corresponding weather condition is returned, and weather information is produced.

Algorithm 2: Production of weather information using the clustering technique based on multiple ROI.

| Input: Historical Difference Graph \(HDG \), Current CCTV video \(cv \), Multiple ROI \(mROI \) |
| Output: Weather Condition \(WC \) |

for each roi \(\in mROI \)
do
	Extract image data from roi in CCTV video
	Then Make graph data \(g \) Add \(g \) to \(G \)
end

for each \(g \in G \)
do
	Calculate difference graph \(\text{Diff}_G \)\((g, g+1) \) Then Insert data into difference graph \(dg \) Add \(dg \) to Difference Graph \(DG \)
end

for each \(dg \in DG \)
do
	for each \(dg' \in HDG \)
do
		result = calculating similarity between \(g \) and \(g' \) Add result to DistanceMatrix
endo
endo

Clusters \(C = \text{hierarchical_clustering(DistanceMatrix)} \)
return (finding weather condition in \(C \))

6 EXPERIMENT

6.1 Comparison of Weather Characteristics by ROI Size

A comparative experiment was performed in this section by varying ROI sizes from CCTV images. The experiment conditions were the interval of ROIs to be set at 150, with the number of ROIs fixed at 4. The brightness value was extracted from each ROI area.

Figure 6: Comparison of brightness value difference according to ROI sizes in precipitation as weather condition.

The X axis of the graph in Figure 6 can be expressed as domain \(D_n \) (\(n \) is a natural number). \(D_n \) represents the distance between two ROIs, and bigger \(n \) values indicate the farther distance between ROIs. There are 4 values on the X axis, namely, D1, D2, D3, and D4, in the graph in Figure 6. The function for calculating Y values corresponding to \(D_n \) is as below:

\[
 f(n) = |BT \text{ of } ROI_{n-1} - BT \text{ of } ROI_n|, \tag{2}
\]

where \(BT \) is brightness. This function is used to calculate the difference between the brightness values of 2 ROIs. Figure 6 shows the experiment results of D1, D2, D3, and D4 with ROI sizes 20x20, 25x25, and 30x30. The ROI size of 25x25 yielded the greatest difference between the brightness values. In order to identify the characteristics of images appearing depending on short distance/long distance ROI of each weather condition, it is most suitable to determine them by applying the ROI size of 25x25.

6.2 Determination of Precipitation using the Generated Multiple ROI Information

In this section, the optimum ROI size and interval obtained through the experiment in 5.1, and 5.2 were applied to the algorithm proposed in Chapter 4. Using the generated multiple ROIs, the level of precipitation was determined through this experiment. The data used for the experiment were categorized into 3 types 20 mm, 15 mm, and 7 mm by screening the CCTV image data for precipitation with the observation measurement.
Figure 7: Changes in brightness values according to precipitation amount.

Figure 7 shows the experiment results of changing brightness values according to precipitation amount. The X axis of the graph indicates multiple ROI values, a total of four regions expressed as R1, R2, R3, and R4. The R4 is the longest distance of ROI. The brightness values increase as the amount of rainfall does in the experiment results. The reason for this is because the background color turns blurry due to rainfall, which subsequently increases the brightness value. In this experiment, the brightness of 20 mm in R1, R2, R3, and R4 was always higher than that of 15 mm and 7 mm. This provides the evidence in that the brightness becomes higher as it rains more.

7 CONCLUSION

This study investigated ways to select multiple ROIs that best demonstrate time-series changes caused by weather changes. It was found that using multiple ROIs is a key success factor for resolving the problem related to producing weather information based on CCTV image data analysis. The results of the experiments show that the ROI property information was most suitable for discriminating weather conditions when it was configured as 25x25 in size and over 150-pixel distance. As the rainfall increased, the brightness of CCTV images changed greatly, and ROIs at farther distances yielded greater changes in brightness value that were affected by precipitation. As for the future application of this method for discriminating weather condition using the multiple ROI selection techniques, it is urgently required to refine the clustering learning model of image transformation difference graph using existing past data with real data references.

ACKNOWLEDGEMENTS

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-4020.

REFERENCES

