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Abstract: Aiming at enhancing the MapReduce-based applications Quality of Service (QoS), many frameworks suggest
a scale-out approach, statically adding new nodes to the cluster. Such frameworks are still expensive to acquire
and does not consider the optimal usage of available resources in a dynamic manner. This paper introduces a
prototype to address with this issue, by extending MapReduce resource manager with dynamic provisioning
and low-cost resources capacity uplift on-demand. We propose an Enhanced Mapreduce Environment (EME),
to support heterogeneous environments by extending Apache Hadoop to an opportunistically containerized en-
vironment, which enhances system throughput by adding underused resources to a local or cloud based cluster.
The main architectural elements of this framework are presented, as well as the requirements, challenges, and
opportunities of a first prototype.

1 INTRODUCTION

In recent years, under the explosive increase of glo-
bal data, there has been an increasing emphasis on
Big Data, business analytics, and “smart” living and
work environments. Despite the success of large-
scale commodity clusters like Apache Hadoop, this
continuous data stacks require computational power
far beyond the capability of the cluster workstati-
ons (Herodotou et al., 2011) in the high season in-
tervals (i.e. when massive amount of jobs are submit-
ted to the cluster). Naı̈ve solutions may propose to
add new computing nodes and scaling-out the tasks to
distributed systems, like in hybrid cloud computing.
Hence, two major concerns need to be addressed.
First, it could be necessary additional investments on
infrastructure (increasing the Total resources Cost of
Ownership (TCO)), or paying to rent cloud instances.
Second, the cost of data movement to and from the
cloud over the Internet, which can be expensive and
time-consuming.

As a comprehensive Big Data analytics plat-
form, Hadoop has become the de-facto technology
for storing and processing data-intensive applicati-
ons (DIA) (Hashem et al., 2015) and large-scale data
analytics. These processes mainly use parallel data
tasks operating, based in the MapReduce (MR) para-
digm (Dean and Ghemawat, 2008). Thus, many fra-

meworks aim at proposing scalable methods to sup-
port existent MR-based applications by enhancing the
throughput using different techniques, while keeping
in mind the QoS and the cost-benefit ratio. For in-
stance, scaling Hadoop capacity horizontally and ver-
tically (scale-up/out techniques), as in (Chen et al.,
2014; Nghiem and Figueira, 2016) or adopting spe-
cial hardware accelerators, as in (Honjo and Oikawa,
2013) and (Chen et al., 2012).

Opportunistic Computing e.g., Enterprise Desktop
Grids (EDG) could provide free compute cycles by
harnessing idle CPUs in what is known as cycle sca-
venging technique (Anderson, 2004), enabling the use
of all available resources within the enterprise. Using
this underused resources to extend the Hadoop cluster
with low-cost, efficient and elastic desktop machines
will improve throughput, making the most of the IT
infrastructure. In exchange, such use would indeed
increase the system complexity, so a powerful schedu-
ler and resource manager would be required. Though,
we argue that using cutting edge technologies like Li-
nux containers can tackle that issue.

In this paper, we present the EME project, short
for Enhanced Mapreduce Environment. EME extends
Hadoop with an adaptive hybrid (dedicated and non-
dedicated) heterogeneous task allocation and provi-
sioning on-demand. Its architecture combines High
Throughput Computing (HTC) and Docker contai-
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ners with large-scale dedicated clusters, leveraging all
available resources. This project aims for a new hy-
brid environment that can elastically tune the resour-
ces participation, optimizing the cluster throughput
without the need to add new and costly machines or
rent external cloud services.

2 BACKGROUND

There have been some proposals going towards mana-
ging, processing and maintaining massive datasets in
what is called data-intensive processing with MapRe-
duce Applications (MRA). This section presents a
brief background on MR programming model and the
Volunteer Computing systems alongside with related
work and our main motivation to start this project.

1. MapReduce model.
Ever since its introduction, MR framework has
grabbed much attention in its ability to cope with
parallel computing applications using a parallel
data approach to process large volumes of data
(terabytes or petabytes in size), which are typi-
cally referred to as Big Data. Apache Hadoop,
the MR open source implementation, was natu-
rally designed to be easily scalable, but it was not
designed to be auto-scale or elastic. Many stu-
dies have proposed a resizable compute capacity
in both local clusters (Ananthanarayanan et al.,
2012) and the cloud (Dahiphale et al., 2014).

2. Volunteer and Opportunistic Computing. Volun-
teer Computing (VC) is a form of network-based
distributed computing, which allows public parti-
cipants to donate their idle workstations and help
to run computationally expensive projects (Dur-
rani and Shamsi, 2014). Opportunistic Com-
puting (OC) is a computer technique that make
use not only of the resources available in the lo-
cal machine or cluster, but can also opportunisti-
cally scale-out on other resources of the environ-
ment, including those on underused desktop com-
puters, in a reliable and secure way (Conti et al.,
2010). Two major characters differ these para-
digms. First, the resource ownership, i.e., VC take
advantage of volunteer resources donated by par-
ticipants while OC make use of untapped internal
resources. Second, geographical topology, where
OC follows an intranet (LAN) topology, while VC
mainly follows Internet protocols (WAN). Corre-
spondingly, HTCondor (Thain et al., 2005) is an
open-source cluster resource manager aimed at
Distributed High Throughput Computing (HTC)
on collections of owned resources (EDG).

2.1 Related Work

Many related studies in the literature classify the per-
formance of MR data intensive computing into de-
dicated and non-dedicated resources. For instance,
MRA++ (Anjos et al., 2015) is a heterogeneous-
dedicated methodology example that proposed a solu-
tion by grouping the machines according to their com-
putational capabilities, calculating the execution time,
and distributing Map task according to these capabi-
lities. This proposal holds some drawbacks. First,
it is not applicable for opportunistic environments,
and volatility of data is ignored. Second, it does not
take into account data placement (locality). Further
examples include homogeneous-non-dedicated met-
hodology (Ji et al., 2013) and heterogeneous-non-
dedicated methodology (Jin et al., 2012). Apache
Myriad (Apache Software, 2017) is a case for multi-
tenant shared services clusters. Myriad is an open
source framework for scaling the YARN cluster into
Mesos, which allows to expand or shrink the capa-
city of the cluster managed by YARN in response to
events, as per configured rules and policies. Though,
it differs from our proposal in that it works only on
dedicated resources, like on a typical Data Center.

Correspondingly, some research using hybrid re-
source architecture has been carried out, where vo-
lunteer computing systems are supplemented by a set
of dedicated nodes to reduce the cost. Such research
includes MOON (Lin et al., 2010), which discussed
the problem of how to allocate a small set of dedica-
ted nodes to volunteer computing systems to offer re-
liable MR services on hybrid resource architectures,
adopting the LATE algorithm (Zaharia et al., 2008).
However, MOON focused on a single job and worked
on homogeneous environments only. Also, their so-
lution needs a third part to manage the resource avai-
lability. By comparison, our study will follow hybrid
resource architecture by adding some dedicated no-
des to non-dedicated cluster in not only heterogene-
ous computing environment but heterogeneous ope-
rating systems as well. This will be achieved by using
Docker based containers, which will allow us to build
and distribute applications on heterogeneous nodes,
thereby clearly differentiating our work from others.

2.2 Motivation

Nowadays, Hadoop resource elasticity and on-
demand provisioning have not yet fully exploited by
the present state-of-the-art MR execution architec-
ture. We note a lack of studies that examine, from
a resource perspective, the effect of resizable com-
pute capacity (i.e., elastic resource provisioning) on

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

710



Figure 1: EME Proposed Framework Architecture.

MR applications performance. However, in this pro-
ject we are committed to design, build and evaluate
a hybrid distributed computing (dedicated and non-
dedicated resources) architecture. We will use hetero-
geneous clusters, with differences in both computing
power and availability (opportunistic computing), to
extend Hadoop’s MR task scheduling in a variety of
environments and operating systems, using containe-
rized based clusters on-demand.

The key challenges we are addressing in our work
can be summarized as the following:

• Defining the Hadoop cluster threshold where re-
sources are stretched to the limit (big data wor-
kloads start queuing).

• Efficiently execute MR operations on non-
dedicated resources (isolated in containers).

• Opportunistically use resources that may be lig-
htly loaded for long periods of time within an en-
terprise

• Elastically provisioning Hadoops Yarn on-
demand with low-cost nodes.

• Enabling the two environments work harmoni-
ously for the benefit of business and academia

• Making this framework automated (auto-scale),
fast and extensible to the prior Hadoop Yarn ar-
chitecture.

3 EME: FRAMEWORK
ARCHITECTURE

Prototyping a distributed application like MR is con-
sidered a hard and time-consuming task. In this
section, we will introduce EMEs design, goals and
architecture overview.

3.1 Design Overview

The proposed framework presented in Figure 1 con-
sists of three major components. First are the users,
EME’s framework targeting a composite (multi-
users/multi-jobs) architecture. Second, a dedicated
environment, i.e., a typical Hadoop cluster that fol-
lows master/slave technique, where Yarn is responsi-
ble for scheduling, monitoring and re-executing fai-
lure tasks on slave machines. Third, a non-dedicated
environment, which could be controlled using VC
middleware like BOINC (Kurochkin and Saevskiy,
2016). However, our approach adopts an elastically
and horizontally scaling (scaling-out) of resources in
a controlled LAN to opportunistically execute MR
tasks on collections of distributed, underused and ow-
ned resources on-demand. So, to manage and allo-
cate the non-dedicated nodes, HTCondor (to create
an EDG within LAN, i.e., an HTCondor pool) can
be used in EME. Thus, the proposed integrated archi-
tecture will reduce the system complexity and avoid
system degeneration due to overloaded Hadoop mas-
ter. Anyway, a lightweight scheduler has to be imple-
mented in HTCondor, which only consider container
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deployment inside the opportunistic pool.

Figure 2: EME architecture layers and abstractions.

Figure 2 presents a layered architecture and ab-
stractions of both environments. For the opportunistic
environment, an operating system-level virtualization
environment (Docker containers) will be implemen-
ted, with HTCondor as its execution engine. This will
provide not only an efficient use of the opportunistic
resources, but also an isolated fault tolerance environ-
ment with high scalability potentials.

With this additional nodes, the throughput will be
significantly improved. So, with a minimal cost of
deployment, EME will improve scalability and opti-
mize idle resources utilization, which would imply, as
another direct impact, a greater return on infrastruc-
ture investments.

3.2 Fault Tolerance

The basic abstraction of Hadoop architecture is di-
rected to cluster and supercomputing paradigms. In
these environments, faults are less harming as most
nodes are reliable and will operate flawlessly for an
extended period. Though, the failure of a node is
still a concern. Some techniques like task replication,
speculative execution of tasks, and heartbeats may li-
mit the threat on most scenarios. However, the en-
terprise grid (non-dedicated) environment may seem
more vulnerable. Accordingly, an advanced techni-
que that supports fault-tolerance, while minimizing its
impact on performance is a must.

In our work, we will concentrate on the enhan-
cement of fault-tolerance on the opportunistic pool.
Keeping in mind that no single point of failure is pre-
dicted at that environment, we propose two approa-
ches for solve this problem. On the one hand, tuning
the heartbeat may enable the NodeManager in the op-
portunistic resources to register dynamically on the
dedicated ResourceManager (see Figure 3). Additio-
nally, the nodes history (availability) will be added as
an additional policy to determine the global resources
availability.

On the other hand, the results obtained in the non-
dedicated environment will be checked using the ma-
jority voting technique (Moca et al., 2011). This will
add two main advantages to this scenario. At first,
majority voting will require a minimum of three con-
tainers task replication to be implemented, which di-
rectly impact the fault tolerance by enhancing the task
failure recovery. Second, leaving the result submis-
sion (the work done flag) until we collect two out of
three results for each work from different workers,
will provide high reliable results.

4 DISCUSSION

Docker provides a systematic way to automate the
faster deployment of variety applications and libraries
inside portable containers (isolated environment in
operating systems kernel). Also, Container as a Ser-
vice (CaaS) is considered as a particular case of IaaS
without the hypervisor layer for better performance.
Hence, EME proposes idle nodes as a viable way to
deploy an opportunistic environment using disposable
containers (deleted after executing the task) for provi-
sioning the Hadoop cluster.

On the other hand, HTCondor will provide a con-
sistent environment that continuously schedules new
containers when it is possible and quickly gives re-
sources back to the user when required. In our pro-
posed architecture, Docker will provide a runtime
service that ensures three aspects. First, isolation
between the MR-tasks and other resources operati-
ons with minimal configuration on the HTCondor
pool. Second, secure containers deployment with lig-
htweight virtualization that runs on near bare-metal
performance. Finally, an extensible interface that co-
pes with Hadoop Yarn, where no rewrite for the MR
applications is required.

As Figure 1 illustrate, the framework can be di-
vided into four main phases that can be classified as
follows:

1. Job submission: The job/jobs are submitted to the
Hadoop master by the users via a job submission
manager. The job manager at the master will place
these jobs into a global job pool (task queue),
where tasks wait to be batched.

2. Task allocation: Yarn manages task allocation,
status monitoring, and reallocation failure tasks at
the dedicated environment. Each dedicated slave
shall run a NodeManager and a DataNode dae-
mon. Yarn will start an ApplicationMaster per
job, which asks the master (ResourceManager) for
resources. The ResourceManager will contact the
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Figure 3: Framework sequence diagram.

NodeManagers, and will provide the required re-
sources in the form of containers. The Applicati-
onMaster will run the jobs in the allocated contai-
ners till the cluster reaches a predefined threshold
where resources are fully utilized, and no more
tasks can be processes.

3. Cluster saturation: Under this circumstance, tasks
start queuing at the job pool. The Yarn decision
maker will use the global ResourceManager and
will ask for an offer from the available (registered)
resources at the opportunistic environment (i.e., in
a pull approach).

4. Opportunistic resources Provisioning: At this
point, the ResourceManager asks a special da-
emon (ContainerLauncher) to start containers
(Docker) at the available opportunistic resources.
These containers will run a NodeManager dae-
mon. The new containers will refresh the Resour-
ceManager offering these resources for the Ap-
plicationMaster, which only exist in the dedicated
environment.

Hence, the container launcher will create several
Docker containers on the idle nodes for executing the
independent task chunks in parallel. The Applicati-
onMaster will run these jobs in the allocated opportu-
nistic containers, and the results will be sent back to
the dedicated cluster via a result manager, which is in
charge of result checking. Figure 3 shows a sequence

diagram that explains the task execution phases in a
sequence action timeline.

5 CONCLUSIONS AND FUTURE
WORK

Over the past decade, Big Data analytics and data-
intensive applications industry witness many enhan-
cements regard large-scale processing. Apache Ha-
doop, with its ecosystem, is the dominant platform
and moving toward becoming a comprehensive OS-
like platform. However, current MapReduce imple-
mentations and resource managers are unable to em-
ploy lightly loaded resources within their control-
led network, which is not yet fully exploited in the
MapReduce state-of-the-art architectures.

To that end, EME project aims at improving data-
intensive computing performance in both local and
cloud-based clusters. EME offers a hybrid resource
architecture (dedicated and non-dedicated) that sup-
ports heterogeneous capabilities by extending Ha-
doops cluster beyond its dedicated nodes, with elastic
and low-cost resources on-demand. In particular, em-
ploying an opportunistically container-based cluster
with auto-scale capabilities. EME will allow to au-
tomatically adapting the cluster size to the resources
demand. This hybrid architecture aims to minimize
the capital expenditure on large private infrastructu-
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res and to reduce operational costs. Additionally, it
improves the MapReduce infrastructure throughput,
performance, and QoS, helping to meet job deadlines.

This paper describes the EME project blueprint,
as well as the ongoing efforts behind it. Our work is
being developed with Hadoop Yarn as the supporting
resource manager, but we believe that the ideas pre-
sented in this research can easily be adapted to other
resource management frameworks, for instance, Apa-
che Mesos and Docker Swarm. As it is usual in the
literature, we will start prototyping EME in a virtuali-
zed cluster and, when proving its usefulness, test it in
a bare-metal environment. Additionally, it is expected
to deploy an enterprise desktop grid, and to develop
an opportunistically, elastic resource allocation sche-
duler to be integrated within its architecture.
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