
Enriching Frame-based Structured Representations for

Requirements using Case Frames
An Approach Towards Handling Incompleteness in Informal Requirements

Akanksha Mishra1 and Richa Sharma2
1Indraprastha Institute of Information Technology, Delhi, India

2BML Munjal University, Gurgaon, India

Keywords: Requirements Engineering, Incompleteness, Quality Attributes, Requirements, Case Frames, FrameNet.

Abstract: Requirements gathered during early phase of requirements engineering are informal and vague. These

informal requirements are analyzed with the goal of detecting three major problems in requirements –

ambiguity, inconsistency, and incompleteness in order to arrive at correct and formal set of requirements.

These problems are quite intertwined, with one problem leading to another. Incompleteness in requirements,

however, is considered to be a principal reason for poor quality of requirements, and is the most difficult

issue to address. There are multiple views around defining and detecting incompleteness in requirements. In

this paper, we present an approach towards handling incompleteness in informal requirements considering

individual requirements statement expressed in natural language as an atomic requirement. Our approach is

based on enriching frame-based structured representation using FrameNet database that, in turn, can prove

useful in identifying potential missing information from requirements. We also report our observations from

the evaluation study conducted with a case study.

1 INTRODUCTION

Requirements Engineering (RE) is the most crucial

and critical phase in software development as rest of

the successive phases depend on the quality of

requirements gathered and analysed during RE.

Though there is no precise criterion for defining

good quality of requirements but an abundant work

in context of requirements quality (Saavedra et al.,

2015; Firesmith, 2003; Zowghi and Gervasi, 2002;

Fabbrini et al., 2001) identifies completeness,

consistency, verifiability, non-ambiguity, and

traceability as some of the important indicators of

good quality of software requirements.

Completeness of requirements is relatively hard

to address among other indicators of requirements

quality. There are various differing propositions

(Kuchta, J., 2016, Génova et al., 2013,

ISO/IEC/IEEE International Standard, 2011; Pohl,

2013; Firesmith, 2005, Durán et al., 2001) on the

definition and measurement of completeness of

requirements. However, there is an agreement on

two points: (a) we cannot achieve absolutely

complete requirements (Carson and Shell, 2001); (b)

completeness of requirements is related to other

indicators of requirements quality (Saavedra et al.,

2015). Ambiguity in requirements statements, for

instance, could possibly be there because of

incompleteness in the gathered requirements.

Similar such interference of requirements

completeness exists with consistency and

correctness of requirements. This leads to

concluding that addressing completeness can help

addressing other quality indicators of requirements

though absolute completeness cannot be achieved in

requirements specifications.

The challenge in addressing the completeness

concern with informal requirements gathered during

early phases of RE lies in understanding what

completeness of requirements mean, and how to

ensure that completeness is achieved. These

challenges are the motivating factors behind our

work presented in this paper. We study

completeness concern in requirements with respect

to atomic (individual) requirements statement. Our

approach makes use of frame-based structured

representation (Bhatia et al., 2013, Sharma, 2016) of

the requirements statement under study, and checks

for related (possibly missing) information by

314
Mishra, A. and Sharma, R.
Enriching Frame-based Structured Representations for Requirements using Case Frames - An Approach Towards Handling Incompleteness in Informal Requirements.
DOI: 10.5220/0006379103140319
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 314-319
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

looking up for relevant frame for a key concept from

the requirements statement in the FrameNet (Atkins

et al., 1988; Fillmore et al., 2003) database.

The rest of the paper is organized as: section 2

briefly discusses related work towards handling

incompleteness concern in requirements. In section

3, we present background of the concepts used in

our approach followed by the proposed approach

and case studies conducted to verify the feasibility

of our proposed approach in section 4. Section 5

finally presents conclusion and future work.

2 RELATED WORK

As introduced in section 1, completeness in

requirements is acknowledged as an important

criterion for establishing high quality of

requirements. However, completeness attribute of

requirements quality has been interpreted differently

by different authors (Kuchta, J., 2016, Génova et al.,

2013, ISO/IEC/IEEE International Standard, 2011;

Pohl, 2013; Firesmith, 2005, Durán et al., 2001,

Boehm, 1984) in their work. Davis (1993) too has

pointed out that it is difficult to precisely define

completeness of requirements.

As per IEEE standard 29148:2011

(ISO/IEC/IEEE International Standard, 2011), a

requirements specification document is said to be

complete if: (i) the stated requirement or a set of

requirements need no further amplification; (ii) the

stated requirement is measurable, and it sufficiently

describes the capability and characteristics to meet

the stakeholder's need, and (iii) there is no TBx (To

Be Defined/Specified/Resolved) item in the

specification document. However, identifying

whether a requirement statement or a set of

requirements need further amplification remains a

practical challenge. Boehm (1984) has earlier

discussed the completeness is terms of: (i) internal

completeness, and (ii) external completeness. Here,

internal completeness emphasizes that no

information in the document should be left unstated

or to be determined. External completeness states

that there should be no missing information. But, it

is difficult to find ‘missing information’ without the

knowledge or idea that something is ‘missing’ in the

requirement statement or set of requirements.

Durán et al. (2001), in their work on XML-based

approach for automated verification of software

requirements, emphasize page numbering and the

presence of referenced material as the defining

criteria for completeness of requirements. Their

viewpoint on requirements completeness is primarily

driven by their solution approach for requirements

verifiability. Génova et al. (2013) and Pohl (2013)

share similar views on completeness concern that all

relevant requirements must be specified. Firesmith

(2005) defines completeness in terms of

requirements models, namely – context models, data

models, decision models, formal models, state

models, and use case models. Kutcha (2016) has

proposed metrics for Software Requirements

Specifications (SRS) in terms of formal model of

requirements, missing semantic elements, and

missing references.

Most of the earlier works (Zowghi and Gervasi,

2002; Sutcliffe and Maiden, 2002) in the direction of

addressing completeness concern in requirements

recommend the domain knowledge as an assistive

tool for uncovering ‘missing information’ from

requirements. However, domain knowledge is often

not available in the form of clear and well-structured

documents that can be referred to. The absence of

domain knowledge indicates the need for some other

source of knowledge that can assist in detecting if

there is some missing information from the

requirements.

Our contribution lies in detecting the presence of

‘missing information’, i.e. external completeness as

indicated by Boehm (1984), using the existing

knowledge base of FrameNet. Our approach strives

to find missing semantic elements as proposed by

Kutcha (2016). The key concept to be searched for

in FrameNet database is selected from the frame-

based structured representation of the requirements

statement under study. We present our proposed

approach in detail in section 4. The background

concepts used in our proposed approach are

discussed in the following section.

3 BACKGROUND

In this section, we present background concepts that

we have used in our proposed approach towards

enriching requirements statements expressed in

Natural Language (NL) using additional knowledge

components/concepts (frame elements) from

FrameNet lexical database. Our contribution lies in

finding lexical units from the requirements statement

that act as reference pointers for evoking frame(s)

from FrameNet. The lexical units are extracted by

converting NL requirements statement to its

corresponding frame-based structured representation

(Bhatia et al., 2013; Sharma, 2016). Following sub-

section presents a brief overview of these structured

representations.

Enriching Frame-based Structured Representations for Requirements using Case Frames - An Approach Towards Handling Incompleteness
in Informal Requirements

315

3.1 Frame-based Structured
Representation of Requirements

Frame-based structured representation (FBSR) of

requirements, proposed by Bhatia et al. (2013) and

refined in the work of Sharma (2016), is a structured

representation of NL requirements statement in the

form of frames (Minsky, 1981). These frames store

information elements from the requirements

statement as key-value pairs, where each key

represents syntactic units present in the statement.

The authors have proposed seven different types

of frame structures based on the Grammatical

Knowledge Pattern (Marshman et al., 2002) present

in the NL requirements statement, namely: (a)

Active Vice frame, (b) Passive Voice frame, (c)

Conjunction frame, (d) Preposition frame, (e)

Precondition frame, (f) Marker frame, and (g)

Relative Clause frame. These frame-based structured

representations of NL requirements statement

capture the semantics of the statement in the form of

union of the above-mentioned frame structures. The

advantage of using FBSR form of NL requirements

is that the process of generating FBSR does take

care of anaphora ambiguity and coordination

ambiguity (Sharma, 2016).

Let us consider a sample requirements statement,

RS1, to show how FBSR of NL requirements

captures the semantic of NL requirements statement

in the form of frame keys:

RS1: If a person is not a member of library then the

person cannot borrow the book.

Table 1 below illustrates the FBSR of RS1,

which is a union of three types of frames identified

for RS1:

Table 1: Frame Structure – RS1.

FRAME KEY VALUES

Active Voice

Actor person

Action borrow

Neg Action Not

Object Book

Marker

Marker if

Actor person

Actor Modifier member

Neg Actor Mod not

Action -

Preposition

Preposition Of

Preposition Object library

Governing Object member

The frame-based structured representation of NL

requirements statements can be used for automated

reasoning, refining, and reusing the knowledge of

requirements statement stored in its corresponding

FBSR. We have used FBSR representations of NL

requirements, in our study, for refining them after

deriving additional related and relevant knowledge

from FrameNet. We present a brief overview of

FrameNet in the following sub-section.

3.2 FrameNet

FrameNet is a lexical database of words or phrases

in NL to describe how words or phrases are used in

NL statement through annotated examples (Fillmore

et al., 2003). FrameNet is based on the theory of

meaning - Frame Semantics, which is a conceptual

structure describing the meaning of a word in an NL

statement in terms of frame elements like entities

participating in an event, type of event, location of

event etc. Frame Elements (FE) are the keys

representing semantic roles for words in an NL

statement. A frame is composed of core FEs and

non-core FEs. Another constituting element of

FrameNet is a Lexical Unit (LU) that is responsible

for evoking a frame. One frame can be evoked by

multiple LUs. Let us consider a sample statement to

understand how knowledge in that statement is

organized as FEs and LUs in FrameNet:

S2: The chairman of the company only has the

authority to approve a claim.

Authority frame from FrameNet, evoked by LU,

‘authority’ best describes the statement S2 in terms

of core FEs of authority frame – agent and theme;

and non-core FEs – descriptor, domain, and source

as indicated below:

Agent - The chairman of the company

Domain - claim

FrameNet lexical database contains over 1200

semantic frames, 13,000 lexical units and 202,000

example statements. FrameNet organizes its frames

in terms of relationships among frames. These

relationships indicate inheritance relation, preceding

frame, perspectivize_in frame, causative, uses, and

inchoative associations between frames in

FrameNet.

4 PROPOSED APPROACH

In this section, we present our proposed approach

towards enriching NL requirements statements using

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

316

additional knowledge components (frame elements)

from FrameNet lexical database. The requirements

statement can possibly be grammatically,

syntactically, and semantically correct. But, it is still

possible that this statement does not reflect complete

view of the real-world knowledge around it. Our

contribution lies in bringing forward additional

concepts (not present in the requirements statement)

related to the concepts present in the statement under

study. Such identified additional concepts can assist

analysts in finding potentially missing information

in the requirement.

4.1 Enriching NL Requirements using

Framenet

In this sub-section, we present our approach to

evoke frame(s) from FrameNet database while

referring to FBSR of an NL requirements statement

under study. As discussed in section 3.1, FBSR is a

union of two or more frames. Each of these frames is

referred to while evoking frames from FrameNet.

The FEs from the evoked frame, in turn, assist in

enriching NL requirements

Figure 1 presents our algorithm for finding new

related and relevant concepts for an NL

requirements statement. We refer to FBSR

generation algorithm (Sharma, 2016) to identify

concepts or lexical units present in the input

requirements statement. The algorithm presented in

Figure 1 requires manual intervention in the step

3(d) when questions need to be articulated for the

newly identified concepts. Requirements analysts

can present the formulated questions to domain

experts for enriching the requirements.

Let us consider RS1 as example to understand

how algorithm presented in Figure 1 helps in

refining RS1:

RS1: If a person is not a member of library then the

person cannot borrow the book.

LUs present in corresponding FBSR of RS1 after

dropping duplicates include - person, borrow, book,

member, library. Referring to FrameNet library, we

found that there are no corresponding frames for

LUs – person, book, and library. However, for the

concepts – borrow and member, following

respective frames are evoked:

Figure 1: Algorithm for finding new concepts from

FrameNet database.

1. Borrowing Frame – This frame has three

core FEs, namely – borrower, lender and

theme. There are six non-core FEs for this

frame – duration, manner, means of

transfer, place, purpose, and time. This

frame inherits from ‘Receiving’ frame and

has perspective on relationship with

‘Temporary Transfer scenario’ frame. The

non-core FEs in this frame, thus, include

relevant aspects around lending,

transferring and receiving acts.

Analysts need to check which FE is present

in RS1 and which FE is missing with

reference to FEs from membership frame.

RS1 has all the three core FEs present – the

borrower (person/member), lender (library),

and theme (book). However, non-core FEs

are potential candidates of missing

information from RS1. Analyst can enrich

RS1 by seeking information from domain

expert around non-core FEs as:

Input: NL requirements statement,

RSin

Output: New related concepts identified

1. FBSR (RSin)

2. List of LU = value of these frame keys
from each frame - ‘actor’, ‘object’,
modifiers of ‘actor’, ‘object’, and
‘action’. Ignore ‘neg’ key and the
frame-identifying key like marker,
preposition etc.

3. For each LUi in the list of LU:

(a) Search for LUi in FrameNet

database against lemmatised LU in
FrameNet to evoke its
corresponding frame.

(b) If no frame exists in FrameNet for
LUi , report ‘No Frame found’,

(c) If duplicate (LUi), continue in the
loop.

(d) If a frame is found for LUi, then
extract core FEs and non-core FEs
for that frame. Formulate
questions around the extracted FEs
to help analyst uncover any
potentially missing information.

Enriching Frame-based Structured Representations for Requirements using Case Frames - An Approach Towards Handling Incompleteness
in Informal Requirements

317

(a) What is the duration for which member

can borrow the book?

(b) What is the means of transfer, i.e. how

to identify the notion of ‘borrowing’

with reference to theme – ‘book’?

(c) What is the purpose of borrowing?

Does it need to be stored?

(d) What is the time of borrowing? Does it

need to be stored with the details of

borrowing?

Responses to these questions will help

analyst in refining the informal

requirements gathered during early phases

of RE, and enriching these requirements

with newly acquired knowledge from

domain experts. In the absence of domain

knowledge or any other body of

knowledge, it is difficult and challenging to

find any missing information when there is

no clue as to what should be asked to gather

more information.

2. Membership Frame – This frame has two

core FEs – group and member (person

belonging to the group) and four non-core

FEs – manner, place, standing and time.

This frame inherits from ‘Be subset of’

frame, and is used by two frames –

‘Exclude member’ and ‘Member of

military’. Following similar approach as for

borrowing frame, it is found that RS1 has

core FEs information incorporated within

its corresponding NL statement. Further, it

can be enriched by getting information

around these non-core FEs - standing and

time.

The above example considered for RS1 indicates

that even though FrameNet does not correspond to

domain knowledge of library management but it is

capable of providing useful pointers for adding more

information to RS1. Encouraged by this observation,

we have carried out our study on event-processing

case study (Sharma, 2016) to check the applicability

and viability of our solution approach towards

handling incompleteness in requirements. We

present observations from the case studies to

evaluate our approach in the following section.

4.2 Case Study

The case study (Sharma, 2016) that we have used to

carry out evaluation and viability study of our

proposed approach for enriching the informal

requirements is as stated below:

Event-processing Scenario: An event, announced on

a security, has an event type. The customer who

holds the security can get benefits of the event.
System should permit creating events online. System

should be able to process file XXX received from

ZZZ server to create events in batch. The event

details should be displayed in a list. The number of

events displayed on one page should be

configurable. The customer can get benefits on the

event as cash, stock or both. The GUI should allow

customer to opt for one or more of these benefits. If

the customer opts benefits as cash, then cash is

distributed to the customer for the event announced

on security held by the customer. If the client opts

stock as benefit for the event announced on security

held by the customer, then stock is distributed. If the

client opts benefit as both for the event announced

on security held by the customer, then both are

distributed. However, base country of security and

the country of the customer may influence the

benefits distributed to the customer. The customer

can view his entitlement after selecting an event and

clicking on the entitlement button.

For this scenario, 32 unique LUs are identified to

which algorithm presented in Figure 1 is applied to

evoke relevant frames in FrameNet. For these 32

LUs, only 8 corresponding frames were found and

evoked, i,e. 25% matching LUs between the

scenario and the FrameNet database. These eight

LUs are: event, create, get, hold, type, system,

process, and receive.

The fact that FrameNet database is meant for

generally used concepts in news, discourses, and it

does not extend to any business or technical domain

can be attributed to fewer overlaps between LUs

collected from scenario and the FrameNet’s LUs.

Nevertheless, the FEs present in the frames served as

guiding pointers to further enrich event-processing

scenario. For instance, ‘getting’ frame corresponding

to ‘get’ LU added value by assisting in collecting

details for these FEs – means, result, and time.

Our study on sample statements from library

management scenario and the case study on event-

processing scenario indicate that though FrameNet

might not be of help to find most of the missing

issues but in the absence of domain knowledge or

reference documentation, it can serve as a guiding

tool to find a considerable number of missing

elements in the gathered informal requirements. Our

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

318

study currently processes FEs from the evoked

frame only, and does not make reference to other

related frames (inheritance, uses, used_by,

perspective_on etc.). Secondly, we are not

considering synonyms in our current

implementation. We intend to work on these two

lines in future and improve our solution approach.

5 CONCLUSIONS

In this paper, we have presented an approach to

enrich and refine informal requirements gathered

during early RE with the objective of addressing

incompleteness concern in these requirements. The

presented study is only a preliminary investigation

of the proposed approach. There are challenges with

the proposed approach as frames in FrameNet

lexical database correspond to generic concepts

whereas software requirements pertain to a specific

business domain covering technical aspects. The

preliminary study, however, reveals sufficiently

encouraging observations to further refine the

proposed approach to handle incompleteness

problem in the informal requirements. In future, we

plan to extend our algorithm to other related frames

while invoking a frame for an LU. Secondly, we

need to work with synonyms, and conduct more

rigorous case-studies for validating our proposed

approach. We believe that as FrameNet database is

increasing, our approach will yield in better results

though the same needs to be supported by a number

of case-studies.

REFERENCES

Saavedra, R, Ballejos, L & Ale, M 2015, Quality

Properties Evaluation for Software Requirements

Specifications: An Exploratory Analysis. Proceedings

of WER’13, 16th edition of Workshop on Requirements

Engineering, Uruguay.

Firesmith, DG 2003, ‘Specifying Good Requirements’,

Journal of Object Technology, vol 2, no. 4, July-

August 2003, pp. 77-87.

Zowghi, D & Gervasi, V 2002. The Three Cs of

Requirements: Consistency, Completeness, and

Correctness. Proceedings of 8th International

Workshop on Requirements Engineering: Foundation

for Software Quality, Germany.

Fabbrini, F, Fusani, M, Gnesi, S & Lami, G 2001. An

Automatic Quality Evaluation for Natural Language

Requirements. Proceedings of 7th International

Workshop on Requirements Engineering: Foundation

for Software Quality, Switzerland.

Kuchta, J 2016. Completeness and Consistency of the

System Requirement Specification. Proceedings of

Federated Conference on Computer Science and

Information Systems, pp. 265-269, Poland.

Génova, G, Fuentes, JM, Llorens, J, Hurtado, O &

Moreno, V 2013, ‘A Framework to Measure and

Improve the Quality of Textual Requirements’,

Requirements Engineering, vol. 18, no. 1, pp. 25-41.

Bhatia, J, Sharma, R, Biswas, KK & Ghaisas, S 2013,

Using Grammatical Knowledge Patterns for

structuring requirements specifications. Proceedings

of 3rd IEEE International Workshop on Requirements

Patterns (RePa’2013), in conjunction with 21st IEEE

International Requirements Engineering Conference

(RE’13), pp. 31-34, July 2013.

Sharma, R 2016, ‘A semi-automated approach to support

logical formalism for Requirements Analysis and

Evolution’ PhD Thesis, School of Information

Technology, IIT Delhi, India.

Atkins, BTS, Klavens, J & Levin, B 1988, ‘Anatomy of a

verb entry: from linguistic theory to lexicographic

practice’, International Journal of Lexicography, vol.

1, no. 2, pp.: 84–126.

Fillmore, CJ, Johnson CR & Petruck, MRL 2003,

‘Background to FrameNet’, International Journal of

Lexicography, vol. 16, no. 3, pp. 235–250.

ISO/IEC/IEEE International Standard 2011, Systems and

software engineering -- Life cycle processes --

Requirements engineering. ISO/IEC/IEEE

29148:2011(E), doi:

10.1109/IEEESTD.2011.6146379.

Pohl, K 2010, Requirements Engineering: Fundamentals,

Principles, and Techniques, Springer-Verlag Berlin

Heidelberg.

Firesmith, D 2005. ‘Are Your Requirements Complete?’,

Journal of Object Technology, vol. 4, no. 1, pp. 27-43.

Durán, A, Bernárdez, B, Ruiz, A & Toro, M 2001. An

XML–based Approach for the Automatic Verification

of Software Requirements Specifications. Proceedings

of 4th Workshop on Requirements Engineering, pp.

181-194.

Carson, RS & Shell, T 2001. Requirements completeness:

Absolute or relative? comments on ‘system function

implementation and behavioural modelling[syst eng 4

(2001), 58-75]’, Systems Engineering, vol. 4, no. 3,

pp. 230–231.

Boehm, BW 1984. ‘Verifying and validating software

requirements and design specifications’, IEEE

Software, vol. 1, no. 1, pp. 75-88.

Davis, AM 1993. Software Requirements: Analysis and

Specification. Prentice Hall, second edition.

Sutcliffe, A & Maiden, N 2002. ‘The domain theory for

requirements engineering’, IEEE Transactions on

Software Engineering, vol. 24, no. 3, pp. 174-196.

Minsky, M 1981, A Framework for Representing

Knowledge, J. Haugeland, Ed., Mind Design, MIT

Press.

Marshman, E, Morgan, T & Meyer, I 2002, ‘French

patterns for expressing concept relations’,

Terminology, vol. 8, no. 1.

Enriching Frame-based Structured Representations for Requirements using Case Frames - An Approach Towards Handling Incompleteness
in Informal Requirements

319

