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Abstract: Analysis is an essential part in the Enterprise Architecture Management lifecycle. An in-depth consideration of
the architecture obtains its strengths and weaknesses. This provides a sound foundation for the future evolution
of the architecture as well as for decision-making regarding new projects. Current literature provides a large
number of different analysis approaches, targeting different goals and utilizing different techniques. To provide
a common interface to analysis activities we studied the corresponding literature in previous research. Based
on these results we develop a language for the definition of EA analyses as well as an execution environment
for their evaluation. To cope with the high variety of meta models in the EA domain, the framework provides
a uniform and tool independent access to analysis activities. Additionally it can be used to provide an EA
analysis library, where the architect is able to select predefined analyses according to his specific requirements.

1 INTRODUCTION

Today’s IT landscapes in organization are typically
the product of evolved structures extended with ad-
ditional parts through merger and acquisitions. Since
IT was not always seen as critical factor their manage-
ment and alignment was partially unattended. This
faces organization with the problem of a high com-
plexity and heterogeneity when regarding their IT
support. Enterprise Architecture Management (EAM)
provides means for organization to capture the essen-
tial business and IT elements as well as the dependen-
cies between them. This provides a clear understand-
ing of the structure and enables an organization-wide
optimization of the architecture (Lankhorst, 2013).

Therefore Enterprise Architecture (EA) models
are used within a plethora of different application
scenarios. Among those are IT business alignment,
project portfolio planning, business process optimiza-
tion, sourcing decision and IT service management.
To utilize the EA models in these contexts the con-
tained data has to be analyzed, summarized and in-
terpreted with suitable analysis techniques (Bucher
et al., 2006). For example during project portfo-
lio planning, analyses support the decision about ap-
proval or rejection of a project proposal. They are
used to calculate effects and evaluate the quality of the
future architecture. Another application scenario for
analysis techniques is the provisioning of a dashboard

with performance indicators to support management
decisions (Frank et al., 2009).

Summarized, EA analyses are means to utilize the
established EA models. They increase the under-
standing of the architecture and provide aggregated
information to the management, e.g. through a dash-
board. Through an evaluation of the current and tar-
get architecture as well as potential change scenarios,
they support decision-making and architecture evolu-
tion (Sasa and Krisper, 2011).

To cover the various application fields a plethora
of different EA analysis approaches can be found in
literature. The approaches fulfill various different
goals and use a wide selection of techniques to reach
them (Rauscher et al., 2017). Each approach typically
serves a specific use case and incorporates a specific
implementation. Their adaption to other use cases or
their use within different EA models is a complex task
and made reuse difficult. To take advantage of the ex-
isting EA analysis approaches a unified approach to
EA analysis is important (Naranjo et al., 2014; Buckl
et al., 2009; Johnson et al., 2007). Such an approach
could also ease the development of a common analy-
sis catalog as proposed by (Lantow et al., 2016).

The broad application field of EA analyses as well
as the specifics of EA models lead to several chal-
lenges. First, EA models are large and complex mod-
els that are created by using different, often discon-
nected modeling languages (Naranjo et al., 2015).
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There exist several frameworks each providing a meta
model proposal but no common standard for EA mod-
els. Typically the organization chooses a specific
framework and additionally makes further adaptions.
Second, the EA models of an organization are often
not fully specified, i.e. an analysis technique has to
deal with incomplete models.

In previous research we analyzed current EA liter-
ature and identified different analysis types and cate-
gories (functional and technical) with their character-
istics (Rauscher et al., 2017). Additional in (Langer-
meier et al., 2014b) we presented an approach for the
execution of EA analyses based on a generic EA meta
model. In the following we combine both results to
define a framework for the generic EA analysis defi-
nition and execution. Therefore we developed an EA
analysis definition language (Arla) that allows the ar-
chitect to define and customize analyses like perfor-
mance indicators or views, while abstracting from the
technical details. For evaluation the Arla analysis def-
inition is interpreted as executable rules. In order to
support a broad spectrum of EA analysis we use a
combination of SPARQL, a query language for triple
stores, and a data-flow based approach for their exe-
cution.

In the next section we present the foundations
about EA analysis as well as the results of our pre-
vious work. In section 3 the developed language is
presented followed by the execution mechanism in
section 4. The evaluation is presented in section 5.
Therefore we determined the coverage degree of Arla
by analyzing the EA literature with respect to their
feasibility in Arla. Additionally examples of Arla def-
initions are presented in section 3, which were exe-
cuted on different EA models for evaluation purposes.

2 EA ANALYSIS

Enterprise architecture models support the architec-
ture process only in a visual and qualitative way
(Franke et al., 2009). Analysis techniques provide
means to quantify models, predict future behavior and
compare different alternatives. They make use of the
contained information in order to support the plan-
ning process. The EA cycle encompasses the phases
document, analyze, plan, act and control (Niemann,
2006). Thus they are an essential part in the overall
EAM process. Examples for analysis procedures are
coverage analysis, analysis of the interfaces, hetero-
geneity analysis, analysis of complexity, conformity,
costs and benefits (Niemann, 2006). To receive more
expressive analyses the combination of several tech-
niques and analysis methods is proposed (Naranjo

et al., 2015).
The analysis activities during EAM are unforesee-

able, since they are not known in detail at the be-
ginning (Naranjo et al., 2015). Changing business
or IT requirements as well as strategic changes trig-
ger changes in the analysis necessities. For example
a new strategy will lead to new goals for business
and IT. Goals are often monitored using KPIs, thus,
changing the goals requires an adaption of the KPIs.
Additionally generated analysis results provide new
information, which influences the future proceeding.
For example if a severe impact is calculated for a tech-
nology change, the architect wants to analyze the im-
pact in detail.

Jonkers and Iacob propose a differentiation be-
tween design and analysis (Jonkers and Iacob, 2009).
The design space of EA is modeled using languages
like UML, business process modeling language like
BPMN or architectural description languages like
ArchiMate. For the analysis space they propose a
special-purpose language that enables the later anal-
ysis. Our approach focuses on the analysis space. We
deal with the analysis of the model data of an enter-
prise architecture, i.e. how can the data be analyzed
and how can the analysis procedure be defined and
executed. This includes the decomposition in smaller
model parts and the evaluation of those. The result of
an evaluation is either a model part, the reduction of
the architecture or an architecture part to an attribute
or quantitative value or the extensions of an architec-
ture or architecture part with calculated attributes or
quantitative values. The visualization of the result is
basically covered in our approach in order to make
the results verifiable. Further research discusses the
topic of visualization and visual analysis in detail e.g.
(Naranjo et al., 2015)

In previous work we analyzed the current lit-
erature about enterprise architecture analysis. In
(Rauscher, 2013) we identified 105 analysis ap-
proaches, which are roughly grouped in 40 anal-
ysis types. The groups are created based on the
scope of the respective analyses. The goals and re-
alization methods summarized in one type can dif-
fer. Examples of analysis types are ‘Analysis of Ser-
vice Response Time’ (e.g. (Närman et al., 2014)),
‘Change Impact Analysis’ (e.g. (Sunkle et al.,
2013)) and ‘Performance and Workload Analysis’
(e.g.(Lankhorst, 2013)). Based on this work we pro-
pose a two-dimensional categorization of EA analy-
ses in (Rauscher et al., 2017) in order to derive typ-
ical characteristics of EA analyses and requirements
for their execution. Each analysis approach was as-
signed to one technical category and at least one func-
tional category. A technical category summarizes ap-
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proaches utilizing a similar method with similar steps
regardless of the addressed goal and subject. In con-
trast a functional category summarizes approaches ad-
dressing the same objectives and goals. Since an ap-
proach can fulfill different goals, there are several ap-
proaches with more than one functional category. For
example the cost analysis of (Niemann, 2006) is as-
signed to the technical category KPI and the func-
tional category Financial. Whereas the quality analy-
sis of (Närman et al., 2008) is assigned to the techni-
cal category Bayesian Networks and to the functional
categories System, Attribute, Quality and Data.

We identified 10 functional categories: System,
Attribute, Dependencies, Quality, Design, Effects,
Requirements, Financial, Data and Business Objects.
The technical dimension concluded with 17 cate-
gories: Bayesian Networks, Business Entities, Proba-
bilistic Relational Models, Social Network, Analytic
Hierarchy Process, Time Evaluation, Tree, KPI, Com-
parison, Views, Lifecycle, Ontology, Extended Influ-
ence Diagrams, Weak Points, Matrices, Design and
Structural. The assignment of the analyses to the cat-
egories is described in detail in (Rauscher et al., 2017)
and (Rauscher, 2015). About 30% of the analysis ap-
proaches are assigned to a technical category describ-
ing probabilistic approaches. Further important tech-
niques are the calculation of measures and KPIs to
address the architecture quality and attributes as well
as the definition of views on the architecture. Addi-
tionally the functional category Dependencies is often
used. The technical realization for analyses address-
ing dependencies varies widely.

Current approaches that try to cover different anal-
ysis types are rare. The majority of the approaches
are isolated ones that cannot be related to each other.
A uniform interface to the different EA analyses is
missing. Further challenges that are given only little
attention are recursive analysis definitions. Cyclic de-
pendencies in the models as well as incomplete mod-
els are sparsely considered. Only a few approaches
(e.g. (Kurpjuweit and Aier, 2009)) deal with the in-
direct relationships in EA models. (Sunkle et al.,
2013) addresses EA analysis using ontologies. A
lot of approaches utilize probabilistic techniques (e.g.
(Närman et al., 2008; Franke et al., 2009)). But
none of these approaches is able to cover the vari-
ous different goals that are addressed by EA analyses.
(Naranjo et al., 2014) propose the PRIMROSe frame-
work for visual analysis of EA models. This is a graph
based, modular approach to compose predefined anal-
ysis function and create sound visualizations by utiliz-
ing selectors and decorators. The architect can define
the analysis chains, although the scope of the analysis
functions is restricted to those that are prespecified.

Customization is possible through the defining of a
composition chain.

Current EA modeling tools provide extensive
analysis support. Limitations are caused by to the
modeling approach, the supported meta models and
the technical analysis capabilities (Naranjo et al.,
2015). Such capabilities can for example only in-
clude conformity checks or the generation of prede-
fined views. Some EA tools provide also a possibility
to query the model either by providing a DSL or by
integrating for example a SQL interface. EA tools
provide currently two major approaches to enterprise
architecture analysis: Either they are shipped with
a predefined and static meta model (e.g. iteraplan,
leanIX). Upon their meta model these tools typically
provide several analysis techniques out of the box. In
the other case the meta model of the tool can be cus-
tomized to the organization needs (e.g. planningIT).
In this case the analysis functions of a tool typically
have also be adapted, which is associated with a high
effort.

3 ARCHITECTURE ANALYSIS
LANGUAGE

The Architecture Analysis Language (Arla) provides
a universal interface for the definition and execution
of analyses. Thereby Arla abstracts from technical
details. The architect defines only ”what” he is in-
terested in, how this information is retrieved is gen-
erated from the Arla analysis definition. This execu-
tion process is described in section 4. The language
supports the specification of analyses for a concrete
EA model, but also the definition of templates us-
ing placeholder variables for EA stereotypes. In order
to apply a template on a concrete EA model, the de-
clared variables have to be mapped to existing stereo-
types. A re-definition of the analysis is not necessary.

Another concept to ease the re-use of analyses
and support template definition is node and edge
classes. Those classes are used to abstract from EA
specific stereotypes during analysis definition. Based
on a review of EA frameworks we classified relation-
ship types according to their semantics. We identi-
fied five classes of relationship types: Provide, Con-
sumedBy, LocalizedAt, StructuralDependentOf and
BehavioralDependentOf. These edge classes are suc-
cessfully used in previous work for change impact
analysis (Langermeier et al., 2014a) in order to ab-
stract form the concrete EA meta model. Additionally
we adapted this concept to the element types. Thereby
we identified three types, that are used in all com-
mon EA meta models: Process, Application and In-
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frastructureElement. The mapping between the EA
specific stereotypes and the respective classes has to
be defined once. The concluding type declarations are
generated automatically during model import while
the original stereotype name is also kept. For example
the relationship types realizes and access from Archi-
Mate can be mapped to the edge class provide. In
DoDaF the relationship types provide and performs
can be mapped to this class. If the classes are insuf-
ficient for an analysis definition, it is always possible
to use also stereotypes expressions.

3.1 Analysis Definition

An analysis or template definition is composed of a
general part and an analysis specific part. The general
part comprises attributes like the name, the analysis
type, the result type and a description. The analysis
specific part enables the definition of configuration in-
formation, necessary for the analysis execution. The
language is designed in a modular way, i.e. complex
analyses are defined through the composition of sim-
pler ones. Supported analyses in the language are:

• Metric Definition: Calculates a metric for each
element or a metric for the whole architecture

• Scope Definition: Defines a part of the model

• Path Analysis: Calculates available paths be-
tween two elements according to defined require-
ments

• Change Impact Analysis: Calculates the impact
of a change in one element

• Composed Analysis: Enables the composition of
analyses

Figure 1: Arla template definition.

The specification of an analysis respectively tem-
plate is exemplary shown for the change impact tem-
plate (see figure 1). Each template definition starts
with the signal word Template. A specific analysis
starts with the signal word Analysis respectively. This
is followed by the name of the analysis and a descrip-
tion. Afterwards the name of the result attributes (at
least one) are specified, here it is one attribute named
changestatus. Followed by the signal word as the
analysis type (here Element) and the result type (here

Attribute) are defined. Afterwards the analysis config-
uration has to be chosen. The configuration proposi-
tions are filtered according to the chosen analysis and
result type. We choose the change impact configura-
tion, which is followed by an identifier for later refer-
ence purposes. Then the analysis or template specific
part is followed.

In this case stereotypes are mapped to the re-
spective effect types to define the change semantic.
E.g. the last line defines that an outgoing aggrega-
tion edge has the change semantic of a weak effect.
Thereby edgeType: aggregation is only a place-
holder variable. For understand-ability reasons it is
recommended to give meaningful names to those vari-
ables, although every term is possible. In order to ex-
ecute the analysis on a specific EA model, the vari-
able has to be mapped to a concrete stereotype of the
model in a AdaptedAnalysis.

3.2 Language Overview

Figure 2 gives a simplified overview of the analysis
language and its elements. Due to readability reasons
not all concepts of the language are visualized. Arla
consists of three packages. The Base Package (in the
figure at the bottom and blue) defines those parts that
are used by both analysis types, the specific and the
generic ones. The Specific Package (in the left and
yellow) defines constructs for a concrete analysis def-
inition whereas the Generic Package (on the right and
green) defines the constructs for template definition.

The common attributes of an analysis are summa-
rized in the concept Analysis Header. This includes
the name, the description and the declaration of the
result attributes. The Base Package also defines enu-
meration types like AnalysisType, ResultType, Node-
Class and EdgeClass and a generic construct for ref-
erencing EA stereotypes. The AnalysisType defines
whether the analysis should be calculated once for
the whole architecture (Aggregate) or for each ele-
ment (Element). The ResultType defines the kind of
result. Possible results are Metric, Attribute, Boolean,
Modelelement, Modelelementset and Pathset. The re-
sult type and the analysis type are attributes of all
analyses. Since they can have predefined values for
some analysis types, they are specified in the concrete
analysis definition. Additionally the configuration for
each analysis type is defined in the base package. This
includes calculation rules for metrics, conditions for a
node set, rules for analysis composition, the definition
of a scope, the configuration of paths, the configura-
tion of a change impact and the definition of a perfor-
mance analysis.

The Specific Package and the Generic Package
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Figure 2: Simplified Arla Overview.

have a very similar structure. Each package has a rule
for the main analysis specification. This rule includes
a header and a body with the analysis respective tem-
plate definition. The analysis or template definition
rule is specific for every analysis type.

ArlaSpecific.xtext

77 SpecificElementMetric:
78 analysisTyp=Element 
79 resultTyp=Metric
80 'defined with calculation rule:' definition = 

ElementMetricDefinition
81 ;
82
83 SpecificAggregatedMetric:
84 analysisTyp=Aggregate 
85 resultTyp=Metric
86 'defined with calculation rule:' definition = 

AggregateMetricDefinition
87 ;
88
89 SpecificComposedAnalysis:
90 analysisTyp=AnalysisTyp 
91 resultTyp=ResultTyp
92 'defined with composition rule:' definition=CompositionRule
93 ;
94
95 SpecificNodeSetAnalysis:
96 analysisTyp=Aggregate
97 resultTyp=Modelelementset
98 'defined with set definition:' definition = NodeSetCondition
99 ;

100
101 CustomQuery:
102 analysisTyp=AnalysisTyp
103 resultTyp = ResultTyp
104 'defined with SPARQL Query' definition=STRING
105 ;
106
107 ChangeImpactAnalysis:
108 analysisTyp=Element
109 resultTyp=Attribute
110 'defined with change impact configuration' '{' 
111 definition = ChangeImpactConfiguration 
112 '}' 
113 ;
114
115 SpecificPathAnalysis:
116 analysisTyp=Aggregate
117 resultTyp=Pathset
118 'defined with path configuration' '{' 

Page 3

Figure 3: Rule for change impact analysis.

Figure 3 shows exemplary the analysis definition
rule for the change impact analysis. First, the re-
sult type and the analysis type are defined. For the
change impact analysis these values are fix, since a
change impact analysis calculates the change value
for each element. The analysis type is Element and
the result type is Attribute. The respective analysis
configuration is defined as reference to the rule in the
Base Package. This ChangeImpactConfiguration rule
is presented in figure 4. There are three different pos-
sibilities for a change impact configuration. One of
them, the configuration using stereotypes is presented
in detail. Thereby stereotypes are mapped to the re-
spective effect types of change. A functional descrip-
tion of the change impact analysis can be found in
(Langermeier et al., 2014a).

One exceptionality of the Specific Package is the
AdaptedAnalysis. This analysis type is used to exe-
cute predefined templates on a specific EA model and
has therefore no pendant in the Generic Package. Like

other analyses, the definition starts with the selection
of the result type and the analysis type. Afterwards
the analysis configuration from the utilized template
is referenced. A mapping of the stereotype variables
to concrete stereotypes of the EA model follows this.

3.3 Example Application

We already presented the definition of a change im-
pact analysis above. To further illustrate the usage
of Arla, we present the realization of two additional
analyses in the following. As representative of the
technical category KPI we choose a KPI from the
EAM KPI catalog (Matthes et al., 2011). The defini-
tion of the Business application technology standards
compliance in Arla is shown in figure 5. The KPI
calculates the compliance degree of business applica-
tions to technology standards. Therefore the business
applications that comply to a technology standard are
divided by the total number of business applications.
This KPI can be used to reduce operating costs and
security breaches as well as increase the homogene-
ity. The template in the figure includes the descrip-
tion, the name of the result attribute as well as the
calculation rule named complianceDegree. Executing
the analysis results in a single number indicating the
compliance degree.

Despite metrics the concept of Views is another
important analysis approach. Views provide the ar-
chitect with an excerpt of the architecture according
to his current needs. The analysis approaches in this
category often do not provide enough details for a
concrete analysis specification and execution. There-
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ArlaBase.xtext

196 EdgeReference:
197 EdgeTypeReference | EdgeClassReference
198 ;
199
200 EdgeTypeReference:
201 'edge:' name = STRING
202 ;
203
204 PropertyReference:
205 'property:' name = STRING
206 ;
207
208 TypeReference:
209 StereotypeReference | ClassReference
210 ;
211
212 ClassReference:
213 EdgeClassReference | NodeClassReference
214 ;
215
216 NodeClassReference:
217 'nodeClass:' className=NodeClass
218 ;
219
220 enum NodeClass:
221 Process | Application | InfrastructureElement
222 ;
223
224 EdgeClassReference:
225 'edgeClass:' className=EdgeClass
226 ;
227
228 StereotypeReference:
229 NodeTypeReference | EdgeTypeReference | PropertyReference 
230 ;
231
232
233 ChangeImpactConfiguration:
234 ChangeImpactConfigurationByStereotpe | ChangeImpactConfigurationByEdgeClasses | StaticChangeImpactConfiguration
235 ;
236
237 ChangeImpactConfigurationByStereotpe : {ChangeImpactConfigurationByStereotpe} 
238 ('WeakEffect In' '(' incomingWeakStereotypes +=EdgeTypeReference ( ',' incomingWeakStereotypes+=EdgeTypeReference)* ')')? 
239 ('MediumEffect In' '(' incomingMediumStereotypes +=EdgeTypeReference ( ',' incomingMediumStereotypes+=EdgeTypeReference)* ')')? 
240 ('StrongEffect In' '(' incomingStrongStereotypes +=EdgeTypeReference ( ',' incomingStrongStereotypes+=EdgeTypeReference)* ')')? 
241 ('WeakEffect Out' '(' outgoingWeakStereotypes +=EdgeTypeReference ( ',' outgoingWeakStereotypes+=EdgeTypeReference)* ')')? 
242 ('MediumEffect Out' '(' outgoingMediumStereotypes +=EdgeTypeReference ( ',' outgoingMediumStereotypes+=EdgeTypeReference)* ')')? 
243 ('StrongEffect Out' '(' outgoingStrongStereotypes +=EdgeTypeReference ( ',' outgoingStrongStereotypes+=EdgeTypeReference)* ')')?
244 ;
245
246 StaticChangeImpactConfiguration: {StaticChangeImpactConfiguration}
247 'static'
248 ;
249
250 ChangeImpactConfigurationByEdgeClasses:'{'
251 'ModelEdge' 'in:' defaultEdgeIncoming=ChangePropagation  'out:' defaultEdgeOutgoing=ChangePropagation
252 (impactDefintion+=ImpactDefinition)* '}'
253 ;
254
255 ImpactDefinition:
256 class=EdgeClass 'in:' edgeIncoming=ChangePropagation 'out:' edgeOutgoing=ChangePropagation
257 ;
258
259 enum ChangePropagation:
260 no_effect | strong_effect | weak_effect | no_effect_exceptOne

Page 4

Figure 4: Change impact configuration rule.

MidWagen.garla

propertyType:"changestatus" with value "extension" AND having 
property

propertyType:"changestatus" with value "modification" AND 
having property

propertyType:"changestatus" with value "deletion"
}

Template ImpactScope {
"Scope definition"
Result Attributes scope
as Aggregate Modelelementset
defined with composition rule myComposition := 

apply ChangeImpactScope on ChangeImpact
}

Template BusinessApplicationTechnologyStandardsCompliance {
"Measurement of the compliance degree of business 
applications to technology standards."
Result Attributes ratio
as Aggregate Metric
defined with calculation rule complianceDegree := 

(COUNT( nodeType:"Business Application" AND 
having relation to (nodeType:"Technology Standard")))

/
(COUNT( nodeType:"Business Application"));

}

Template BusinessDomainCoverageOfTargetArchitecture {
"A measure of how completely the target architecture has been 

drawn 
up for the business (process) domains."
Result Attributes ratio
as Aggregate Metric
defined with calculation rule coverage := 

(COUNT( nodeType:"Business domain" AND 
having relation to (nodeType:"Target architecture")))

/
(COUNT( nodeType:"Business domain"));

}

Page 3

Figure 5: Example KPI definition.

fore we employ the viewpoint definitions included
in the ArchiMate specification although they are not
categorized as analysis. Therein we chose the Ap-
plication Structure Viewpoint to illustrate the defini-
tion of views in Arla (The Open Group, 2012). This
view contains elements with the type Application in-
terface, Application component, Application collab-
oration and Data object as well as dependencies be-
tween them with the types aggregation, composition,
used by, access and specialization (see figure 6).

Figure 6: ArchiMate Application Structure Viewpoint (The
Open Group, 2012).

Views are defined in Arla as Scope Analysis.
There are two different possibilities: The first one is
the definition of a node set using conditions and re-
strictions of node types. This possibility is shown in
figure 7. The rule restricts the architecture to elements
having one of the four given types.MidWagen.garla

Template ApplicationStructureViewpoint {
"The Application Structure viewpoint shows the structure of 
one or more applications or components. This viewpoint is 
useful in designing or understanding the main structure of 
applications or components and the associated data"
Result Attributes viewset
as Aggregate Modelelementset
defined with set definition viewpointDefinition := 

nodeType:"Application component"  OR 
nodeType:"Application interface" OR 
nodeType: "Data object" OR
nodeType: "Application collaboration"

}

Template ApplicationStructureViewpoint2{
"Application structure viewpoint for one application"
Result Attributes viewset2
as Aggregate Modelelementset
defined with scope configuration applicationStructure {

ApplicationStructureViewpointEdges  {
ModelEdge in: None out: None
BehavioralDependentOf in: None out: None
ConsumedBy in: Single out: None 
LocalizedAt in: None out: None 
Provide in: None out: Single 
StructuralDependentOf in: Transitive out: Transitive
}

}
}

Template CombinedView {
"Description"
Result Attributes set
as Aggregate Modelelementset
defined with composition rule composition := combine 

ApplicationStructureViewpoint and ApplicationStructureViewpoint2 with
operation INTERSECTION

}

Page 4

Figure 7: Viewpoint definition using node conditions and
restrictions.

In the second possibility conditions about the
edges are specified (see figure 8). Thereby for each
edge class it is specified, whether the edges should be
considered one time (single), in a transitive way or
not at all. This analysis is executed for a specific ar-
chitecture element, for example a concrete application
component. The elements for the view are then calcu-
lated according to the given scope configuration. I.e.
in this case all direct and indirect nested components
are added to result model part according to the transi-
tive definition of the structural dependency class. Ad-
ditionally all provided interfaces and data objects of
these components as well as the used components are
added.

MidWagen.garla

Template ApplicationStructureViewpoint {
"The Application Structure viewpoint shows the structure of 
one or more applications or components. This viewpoint is 
useful in designing or understanding the main structure of 
applications or components and the associated data"
Result Attributes viewset
as Aggregate Modelelementset
defined with set definition viewpointDefinition := 

nodeType:"Application component"  OR 
nodeType:"Application interface" OR 
nodeType: "Data object" OR
nodeType: "Application collaboration"

}

Template ApplicationStructureViewpoint2{
"Application structure viewpoint for one application"
Result Attributes viewset2
as Aggregate Modelelementset
defined with scope configuration applicationStructure {

ApplicationStructureViewpointEdges  {
ModelEdge in: None out: None
BehavioralDependentOf in: None out: None
ConsumedBy in: Single out: None 
LocalizedAt in: None out: None 
Provide in: None out: Single 
StructuralDependentOf in: Transitive out: Transitive
}

}
}

Template CombinedView {
"Description"
Result Attributes set
as Aggregate Modelelementset
defined with composition rule composition := combine 

ApplicationStructureViewpoint and ApplicationStructureViewpoint2 with
operation INTERSECTION

}

Page 4

Figure 8: Viewpoint definition with conditions for edge
classes.

The intersection of both view definitions provides
the ArchiMate Application Structure Viewpoint. The
resulting architecture part contains only the given el-
ement and edge stereotypes as well as is restricted to
the perspective of one element.

4 ANALYSIS EXECUTION
PLATFORM

The execution environment consists of three main
components. Figure 9 gives an overview of the struc-
ture. The analysis definition language Arla was al-
ready described in the previous section. The Executor
is the essential component of the execution platform.
It provides the interfaces to the analysis language and
the model storage as well as contains the logic to con-
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vert Arla into evaluable constructs. Therefore it has
interfaces to the evaluation technologies. We choose
SPARQL for structural requests and Data-flow Anal-
ysis (DFA) for behavioral requests and recursive defi-
nitions. SPARQL is a graph-based query language for
RDF. The Data-flow Analysis formalism is a power-
ful method originating from the area of compiler con-
struction that allows computing context-sensitive in-
formation based on declarative specifications. Since
flow analysis relies on the principle of information
propagation rather than fixed navigation statements,
it is possible to anticipate a wide array of changes and
adaptions to the underlying modeling language (Saad
and Bauer, 2013; Saad and Bauer, 2011).

Figure 9: Execution architecture.

The model data is stored in a RDF Triple Store.
For the data import we currently developed two
adapters: An adapter for the modeling tool Innova-
tor and an adapter for CSV files, which is exemplary
used for loading models of the open source EA tool
Archi. Further adapters for other tools can easily be
added. The model storage and analysis execution is
described in detail in the following sections.

4.1 Model Storage

The analysis platform utilizes a generic data schema
for the storage of EA models, the Generic Meta
Model (GMM). This meta model represents an EA
model as a stereotyped graph with nodes and edges.
Each element in the EA model is either a ModelNode
or a ModelEdge. ModelEdges represent the relation-
ships between ModelNodes. Both, nodes and edges,
can have one or more ModelProperty representing at-
tributes of them like a strategic impact. All three types
have a relation to the respective stereotype. Possi-
ble stereotypes for ModelNodes are Process or Ap-
plication. Example for ModelEdges are used by or
provides. A stereotype is represented as MetaMod-
elNode respectively MetaModelEdgeConnection and
MetaModelProperty. A ModelEdge can be further
specialized as LocalizedAt, Realize, UsedBy, Behav-
ioralDependentOf or StructuralDependentOf. These
subclasses of ModelEdge are used to categorize the
individual stereotypes in an EA model and ease the
reuse of analysis definitions. They are equivalent to
the concept of EdgeClasses in Arla. For ModelNodes

currently supported stereotype categories are Process,
Application and Infrastructure Component (accord-
ingly to the concept of NodeClasses in Arla). Further
details about the GMM can be found in previous work
(Langermeier et al., 2014b).

Figure 10: Example for the instantiation of the generic meta
model (Langermeier et al., 2014b).

In order to run analyses on an EA Model, it has
to be transformed into a GMM model. Due to the
universality of GMM, this is possible for most of
the EA models. Figure 10 shows the instantiation
of the generic meta model. The example shows the
provisioning of the business service Reservation by
phone by the business process Booking a car. For
an import we capture the syntax of the serialized EA
model using an ANTLR1 grammar. From this gram-
mar ANTLR generates a parser that enables the cre-
ation and walk through of the parse tree. We utilize
this parser to create an EMF model using the GMM
scheme. This EMF model is then persisted in RDF
using the Framework EMFTriple2. The whole model
loading process is illustrated in figure 11.

Figure 11: Model loading.

EMFTriple is a framework that provides a RDF
binding for EMF. Therewith we were able to persist
our EMF models in RDF instead of XMI. The frame-
work provides also interfaces to RDF data stores. We

1http://www.antlr.org
2https://github.com/ghillairet/emftriple
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choose the Triple Store from Apache Jena, the TDB3,
as data store. This component allows the storage and
querying of RDF data via the Jena API.

4.2 Analysis Execution Process

In order to execute an analysis from an Arla file, the
first step is to parse the analysis definition. We used
the Xtext language infrastructure4 for this task. De-
spite a model parser Xtext also provides a text editor
with syntax highlighting and auto completion. Pars-
ing an Arla file finally provides us an EMF model of
the analysis definition. In a second the step the uti-
lized template definition are processed. Each template
is transformed into a specific Arla definition using
Text2Text Transformation. Thereby only those analy-
ses are transformed that are referenced in an Adapted-
Analysis. Afterwards all required analysis definitions
are available and processable. The following evalua-
tion process is illustrated in figure 12.

Figure 12: Workflow analysis execution.

In the case of an composite analysis or a metric
the analysis definition is composed in its components
in a first step. According to the chosen analysis con-
figuration the evaluation is done through the creation
and execution of a SPARQL query or through trigger-
ing a predefined data-flow analysis. Typically, before
executing a DFA several parameters have to be set in
a configuration file. The evaluation details of the dif-
ferent analysis types is described in the following:

• Element or Aggregate Metric: Decomposition
in its components and evaluation of the atomic ex-
pressions. Expressions questioning a set of nodes
or edges are evaluated through the creation and
execution of SPARQL, a result reference triggers
the execution of the referenced analysis, a SUM
respectively COUNT triggers the execution of the
contained expression for each addressed element
and merges the results.

• Node Set Condition: Creation of a SPARQL
query to retrieve the requested node set.

• Scope: Generate the configuration file and trigger
the DFA.

3http://jena.apache.org/documentation/tdb/index.html
4http://www.eclipse.org/Xtext/

• Change Impact Adapt the configuration param-
eters, generate configuration file and trigger the
DFA.

• Path Analysis Adapt configuration and trigger
the DFA.

• Adapted Analysis Execute the respective gener-
ated specific analysis.

• Composed Analysis Three different composition
possibilities: Successive execution, result combi-
nation and within a calculation rule.

• DFA, e.g. Performance Analysis Triggers the ex-
ecution of the respective static DFA (e.g. perfor-
mance analysis)

• Custom Query Executes the explicit specified
SPARQL query in the analysis definition
The successive execution is defined as: Apply

Analysis2 on Analysis1. This composition rule is real-
ized while executing analysis 1 (A1) first. The result
of A1 is written back into the model. Then analysis
2 (A2) is executed on this new model. The result of
analysis 2 is the final result. This execution process is
illustrated in figure 13a.

Figure 13: Arla composition rules.

In figure 13b the possibility of result combination
is presented. Thereby the two analyses A1 and A2
can be executed independently from each other. The
retrieved results, R1 and R2, are combined afterwards
to create the final result R. Therefore different com-
bination possibilities exist: In the default mode the
results are combined according to the union seman-
tics. It is only possible to combine results of the same
type. Additionally converting the path set into a node
set allows the combination with a node set. The com-
bination of a element result and a aggregated result
is only possible, if the single element results can be
summarized to one result, i.e. union for sets. Addi-
tionally node set results can be composed using the
operators intersection and difference. The op-
erators are implemented according to set theory. Also
in this case a path result is transformed into a node set
result and element result are aggregated to one set.

At least analyses can be composed using a calcu-
lation rule. Therefore references to result attributes of
other analyses can be used within a calculation rule.
At execution time the first analysis is evaluated and
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within this process the second analysis execution is
triggered. The process is illustrated in figure 13c.

The analysis composition is an important mean to
deal with incomplete models. Before executing a spe-
cific analysis, the model can be restricted to the rel-
evant part of the architecture that is sufficiently de-
scribed. For example performance parameters are not
available for all servers. Before executing a perfor-
mance analysis, those servers with their dependencies
can be excluded.

If it is not possible to implement an analysis in
Arla, for example a recursive definition in a metric,
the language provides an adapter to DFA. Instead of
defining the execution rules for an analysis, the loca-
tion of the DFA configuration and the executed strat-
egy is defined. Based on this information the prede-
fined DFA is executed and the results are processed.
Additionally it is also possible to define a new anal-
ysis type in Arla. In this case the user does not have
to deal with the concrete DFA configuration path and
strategy name. Currently this is realized for the per-
formance analysis of (Jonkers and Iacob, 2009). Due
to the recursive definition it was not possible to re-
alize the analysis solely in Arla. Therefore we im-
plemented it as data-flow analysis (see previous work
(Langermeier et al., 2014b)) and defined an analysis
type PerformanceAnalysis in Arla. A further possibil-
ity to extend the scope of Arla is the explicit definition
of SPARQL queries in an analysis definition. There-
fore deep knowledge of the RDF graph is required,
but it provides access to the full expressive power of
SPARQL.

The final result of an analysis execution is visual-
ized using Graphviz. Depending on the result types
different options exist for the visualization: Node
sets are visualized as the respective part of the whole
model. Analyses concluding in attribute values can
be visualized using colors or using text annotations
in the model. Numeric results are visualized as an-
notations in the model. Path results are visualized as
several model excerpts, each representing one path.

5 EVALUATION

For evaluation purposes we specified an analysis for
each Arla analysis type and executed them within
three use cases. These are a small, fictional model
describing a car rental station (also used in (Langer-
meier et al., 2014a)), the EA model of a medium-
sized software product house and the EA model of
a medium-sized manufacturing company. In section
3 we already presented the template definitions for a
change impact analysis, an KPI calculation and a view

definition. The definition were executed in the three
use case by adapting them to the specific EA mod-
els. Figure 14 shows the adapted analysis definition
to calculate the application structure viewpoint for the
manufacturing use case.

specific2.sarla

Model "http://archimodel"
TripleStore "/Users/Melanie/UnA/EclipseMarsWSKopie/ARCHITECTURE-
ANALYSIS-TRIPLESTORE/TripleStore/ArchiModel"
Analysis_Package myAnalysis 
"Description"

StartCongif {
apply Deletion on  "Accounting 

Service" ["ef0e6465-4644-3fba-55b2-86dcc778e9e7"]
calculate scope for ("Car 

management" ["6f5e3313-8a0e-1207-8a29-8a8d8d0716db"])
source elements for paths ("Car management" ["dab3f36c-f7dd-

ef1e-7ab2-4359f6160ccb"]) 
target elements for paths ("Car Management" ["7b68e4c0-7b46-a008-

e4f0-31f199cb569e"])
max hops 10

}

Analysis ApplicationStructureViewpoint4CarRental {
"Adaption of the Application Structure Viewpoint 
 to the manufacturing case"
Result Attributes viewpoint
as Aggregate Modelelementset
adapt viewpointDefinition { 

map "Application collaboration" 
to node:"ApplicationFunction" ["ApplicationFunction"]

map "Application component" to nodeClass:Application
map "Application interface" 

to node:"ApplicationService" ["ApplicationService"]
map "Data object" 

to node:"BusinessObject" ["BusinessObject"]
}

}

Page 1

Figure 14: Adapted analysis definition to calculate the ap-
plication structure viewpoint.

Additionally we also executed a path analysis and
the performance analysis on these use cases. Figure
15 shows the result of the realizing paths analysis ap-
plied to the process Take back car in the rental car
model. The full model can be found in (Langermeier
et al., 2014a). The result visualize two paths that rep-
resent two different IT realizations of the process. In
this case the difference between the two paths is not
on the application layer but in the infrastructure layer.
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Figure 15: Realizing paths for process Take back car.

We were able to execute all specified analysis def-
initions in the three different use cases. If the EA
models contain the required information, for exam-
ple if applications comply to a technology standard,
we retrieve meaningful results. The templates could
be executed in all use cases after the definition of the
corresponding Adapted Analysis.

Additionally we evaluated the language and its
execution possibilities through an examination of
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the current work in EA analysis. Thereby anal-
ysis approaches relying on expert interviews (e.g.
(Della Bordella et al., 2011; Plessius et al., 2012) or
approaches addressing the method EAM like maturity
analyses (e.g. (Aier et al., 2011)) are not considered in
our evaluation. According to these constraints the ap-
proaches summarized by the following analysis types
are not included in the evaluation: Business Entity
Analysis, Design Analysis, Run-time Analysis, In-
tentional Analysis, Maturity Analysis and Sensitivity
Analysis. For the remaining approaches, we decided
whether they can be completely described and evalu-
ated in Arla (i.e. they are covered by Arla), partially
described and evaluated with Arla or whether Arla
does not cover them. For example a partial coverage
is given for approaches considering dates. Currently
Arla does not comprise special expressions for evalu-
ating time spans or point of times. Indirectly it is pos-
sible by utilizing other expression types. Some anal-
yses in the technical category PRM (Närman et al.,
2014) are also only partially covered. The probabilis-
tic aspects of these analyses, which are implemented
in a Monte Carlo fashion, cannot be reproduced with
Arla. By replacing the probability distributions with
single values, the analyses can be defined and eval-
uated. An analysis approach is also declared as par-
tially covered, if it is necessary to specify new DFA
implementations or create custom SPARQL queries
for its realization.

We aggregated the results of our evaluation using
the analysis types as well as the technical and func-
tional categorization. We refer to the types and cate-
gories instead of the single approaches, since it is not
obvious to decide whether a following publication of
an approach is a new one or an extension to an exist-
ing one. Hence, referring to the concrete approaches
would provide a biased view on the coverage of Arla.

From the 33 analysis types 21 are covered by Arla
and additional 7 types are at least partially covered. A
total of 6 analysis types are not covered, that is 18%.
We say that Arla covers an analysis type, if there ex-
ists at least one analysis approach that is assigned to
this analysis type and is covered by Arla. If Arla cov-
ers none of the approaches but there is at least one ap-
proach that is partially covered, then the analysis type
is partially covered. Otherwise Arla does not cover
the analysis type.

To further evaluate the coverage of Arla we ana-
lyzed the results for the technical (figure 16) and func-
tional (figure 17) categorization of the approaches.
Most of the technical categories are covered or par-
tially covered by Arla. Only the categories containing
probabilistic approaches are not covered. These are
Bayesian Networks, Probabilistic Relational Model

and Extended Influence Diagrams.

Figure 16: Coverage technical categories.

Concluding, the functional category System is not
covered by Arla, since the approaches of this category
are all assigned to one of these three technical cate-
gories. For all other categories there exist approaches
that are covered or at least partially covered (Data) by
Arla.

Figure 17: Coverage functional categories.

The overall coverage of Arla regarding existing
EA analyses is quite high. The major weakness is
the missing support for probabilistic approaches, all
other categories are covered by Arla. The implemen-
tation within the case studies shows the applicability
of the language. The template mechanism in order
to enable reuse and predefined analyses supported the
analysis execution within the case studies very well.
Currently we made no usability tests with architects
regarding the ease of use. From our experiences in
the case studies we identified several improvements
for Arla. If possible, they are already implemented.
For example a direct support of dates and date expres-
sion is planned for Arla in future work.

For executing the analyses we utilize a combina-
tion of SPARQL and data flow based analysis. Both
approaches are successfully applied in large appli-
cation scenarios and thus provide a scalable techni-
cal foundation for our analysis execution. The graph
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based query language SPARQL provides features to
answer structural questions and extract model parts.
DFA is perfectly qualified to answer behavioral ques-
tions, execute recursive analysis definitions and deal
with cyclic dependencies. It enables a forward and
also backward traversing of the model. Combining
both techniques enables the execution of complex
analyses and provides means to deal with an incom-
plete model.

The GMM enables a tool and EA meta model
independent execution environment for the analyses.
The adaption process for a specific EA initiative is
kept as simple as possible: The concept of edge
classes and node classes provides a mechanism to de-
fine generic analyses and execute them with small ef-
fort on a specific model. Only during import defini-
tion the mapping of stereotype to the classes has to be
made once. Additionally, if more detailed semantics
about the nodes an edges are required, the analysis
templates can use stereotype variables. These vari-
ables have to be mapped to concrete EA model stereo-
types before execution. Finally the language Arla ab-
stracts from all the technical details. The concrete ex-
ecution procedures are generated form the Arla defi-
nition at runtime.

6 CONCLUSION

In this paper we presented a language for the defi-
nition of Enterprise Architecture analyses as well as
an execution environment for their evaluation. The
language (Arla) provides a universal interface to EA
analyses since it abstracts from the technical details of
the execution. Thereby Arla overcomes current weak-
nesses of EA analyses like the isolation of existing ap-
proaches or the difficulties in order to adapt them to a
specific EA initiative. We integrated different kinds
of EA analysis regarding their goals and addressed
topics as well a regarding their technical execution.
Additionally Arla contains a composition mechanism,
which enables the definition of complex analyses by
reusing simpler ones. The language with its execution
environment provides a foundation for an EA analy-
sis library. Through the possibility of template defini-
tion as well as the independence from the meta model,
generic analyses can be defined and easily adapted in
a specific context. Thereby architects can profit from
reuse and experiences from other projects.

The utilization of SPARQL and DFA for analysis
execution enables the high coverage of Arla regard-
ing the technical and functional analysis categories.
The combination of both techniques in one frame-
work provides means to deal with incomplete models

as well as facilitate a high expressiveness and variabil-
ity for analysis definitions. The presented language
Arla abstracts from all those technical details and pro-
vides the architect a simple interface to analysis activ-
ities.

In future work the scope of Arla will be further
extended. Since probabilistic analyses are currently
not directly supported, we will elaborate ways to inte-
grate them. Additionally the change impact analysis
can be generalized in order to support universal ”if-
then” analyses based on attributes. Such an analysis
type can be used to define failure impact analyses or
availability analyses. Another point is the integration
of feasibility analyses before the analysis execution.
This provides an automatic way to deal with incom-
plete models and supports the architect in the interpre-
tation of results. Finally we will make use of further
RDF features like reasoning in order to deal with in-
direct relationships.
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