
Performance of Trusted Computing in Cloud Infrastructures
with Intel SGX

Anders T. Gjerdrum, Robert Pettersen, Håvard D. Johansen and Dag Johansen
UiT: The Arctic University of Norway, Tromsø, Norway

Keywords: Privacy, Security, Cloud Computing, Trusted Computing, Performance.

Abstract: Sensitive personal data is to an increasing degree hosted on third-party cloud providers. This generates strong
concerns about data security and privacy as the trusted computing base is expanded to include hardware com-
ponents not under the direct supervision of the administrative entity responsible for the data. Fortunately,
major hardware manufacturers now include mechanisms promoting secure remote execution. This paper stud-
ies Intel’s Software Guard eXtensions (SGX), and experimentally quantifies how basic usage of this instruction
set extension will affect how cloud hosted services must be constructed. Our experiments show that correct
partitioning of a service’s functional components will be critical for performance.

1 INTRODUCTION

Sensors and mobile devices record ever more aspects
of our daily lives. This is causing an influx of data
streams that feeds into potentially complex analytical
pipelines hosted remotely by various cloud providers.
Not only are the sheer amounts of data generated
cumbersome to store and analyze at scale; data might
also be accompanied by strict privacy requirements,
as is the case with smart home and health monitoring
devices (Gjerdrum et al., 2016).

Processing of sensitive and personal data in the
cloud requires the design of new Software-as-a-
Service (SaaS) architectures that are able to en-
force rigid privacy and security policies (Johansen
et al., 2015) throughout the entire hardware and soft-
ware stack, including the underlying cloud-provided
Infrastructure-as-a-Service (IaaS) components. Al-
though, commodity hardware mechanisms for trusted
computing have been available for some time (TCG
Published, 2011; Osborn and Challener, 2013), these
are often poised with performance and functional-
ity restrictions. Prior implementations by Intel, like
Trusted Platform Modules (TPM) and Trusted Execu-
tion Technology (TXT), are able to establish trust and
guarantee integrity of software, the latter also support-
ing rudimentary secure code execution.

Software Guard Extentions (SGX) (Anati et al.,
2013) is Intel’s new trusted computing platform that,
together with similar efforts by both ARM and AMD,
is quickly making general trusted computing a com-

modity. Fundamentally, SGX is an instruction set ex-
tension introduced with the Skylake generation of In-
tel’s Core architecture, supporting confidentiality, in-
tegrity and attestation of trusted code running on un-
trusted platforms. SGX is able to counter a multi-
tude of different software and physical attacks by the
construction of secure enclaves consisting of trusted
code and data segments. While SGX should be con-
sidered an iterative technology built on previous ef-
forts, it surpasses previous iterations both in terms of
performance and functionality. SGX is designed to
provide general secure computing facilities allowing
developers to easily port their existing legacy appli-
cations into SGX enabled enclaves. These properties
make SGX an attractive technology for cloud-based
SaaS architectures that handle person sensitive data.

SGX is a proprietary platform and prior knowl-
edge is based on limited documentation describing its
architecture. Furthermore, little is known about the
performance of the primitives provided by the SGX
platform and how to author software utilizing these
primitives while maximizing performance.

In this paper we analyze the performance charac-
teristics of the SGX technology currently available to
better understand how such technologies can be used
to enforce privacy policies in cloud hosted SaaS archi-
tectures. We analyze SGX primitives at a fine-grained
level and provide detailed performance evaluation of
the core mechanisms in SGX. The paper is structured
as follows: Section 2 outlines the relevant parts of the
SGX micro architecture while Section 3 outlines the

668
Gjerdrum, A., Pettersen, R., Johansen, H. and Johansen, D.
Performance of Trusted Computing in Cloud Infrastructures with Intel SGX.
DOI: 10.5220/0006373706960703
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 668-675
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

details of our microbenchmark. Section 4 provides
an informed discussion of our findings and Section 5
detail relevant work before concluding remarks.

2 INTEL SOFTWARE GUARD
EXTENTIONS (SGX)

SGX allows regular application threads to transition
into secure enclaves by issuing the special EENTER
special instructions to a logical processor. Entry is
initiated by performing a controlled jump into the en-
clave code, analogous to how entry into virtual ma-
chine contexts occurs. A process can only enter an en-
clave from ring 3, i.e user level, and threads running
in enclave mode are not allowed to trigger software
interrupts, also prohibiting the use of system calls.
An application which requires access to common Op-
erating System (OS) provided services, like the file
system, must be carefully designed so that its threads
exit enclave mode through application defined inter-
faces before invoking any system calls. Since SGX’s
Trusted Computing Base (TCB) does not include the
underlying OS, all such transitions, parameters, and
responses, must be carefully validated by the applica-
tion designer.

SGX allows multiple threads to execute inside the
same enclave. For each logical processor executing
inside an enclave a Thread Control Structure (TCS)
is needed. These data structures must be provisioned
before enclave startup, and are stored in the Enclave
Page Cache (EPC) main-memory pages set aside for
enclaves. Among other things, the TCS contains the
OENTRY field which is loaded into the instruction
pointer when entering an enclave. Before doing so,
SGX stores the execution context of the untrusted
code into regular memory, by using the XSAVE in-
struction, which then again is restored when exiting
the enclave. Stack pointers are not modified when
entering an enclave, however (Costan and Devadas,
2016) suggests that to avoid the possibility of exploits,
it is expected that each enclave set their stack pointer
to an area fully contained withing EPC memory. Pa-
rameter input to the enclave is marshalled into buffers,
and once the transition is done, enclave code can copy
data directly from untrusted DRAM memory. This is
not part of the native SGX implementation, rather a
convenience provided by the application SDK.

Threads exit enclaves either voluntarily through
synchronous exit instructions, or asynchronously by
service of a hardware interrupt occurring on the af-
fected logical core. Synchronous exits, through the
EEXIT instruction, causes the logical processor to
leave enclave mode. The instruction pointer as well

as the stack pointers are restored to their prior address
before entering the enclave. SGX does not modify
any instructions on enclave exit and so it is the au-
thors’ responsibility to clear them, to avoid leaking
secret information. In the case of an Asynchronous
Enclave Exit (AEX), a hardware interrupt such as a
page fault causes the processor to exit the enclave and
jump down to the kernel in order to service the fault.
Prior to this, SGX saves the execution context into
EPC memory for safekeeping, before clearing it so
that the OS is not able to infer any execution state
from the enclave. When the interrupt handler is done,
SGX restores the execution context and resumes exe-
cution.

2.1 The Enclave Page Cache

Memory used by enclaves is separated at boot time
from regular process DRAM memory into what is
called Processor Reserved Memory (PRM). This con-
tiguous region of memory is divided into 4 kb pages,
collectively referred to as the Enclave Page Cache
(EPC). EPC memory is only accessible inside the en-
clave or via the SGX instruction set. Neither system
software running at protection ring 0 (kernel mode)
or application code at ring 3 (user mode) are able to
access its memory contents directly, and any attempt
to read or write to it is ignored. Furthermore, DMA
access to PRM memory is prohibited by hardware to
guard against malicious peripheral devices attempt-
ing to tap the system bus. The confidentiality of the
enclave is guarded by Intel’s Memory Encryption En-
gine (MEE), which encrypts and decrypts memory at
the CPU package boundary, on the system bus right
after the L3 cache.

Similar to virtual memory, EPC page management
is handled entirely by the OS. However, EPC mem-
ory is not directly accessible to any system mode and
each page assignment is done through SGX instruc-
tions. The OS is responsible for assigning pages to
particular enclaves and evict pages to regular DRAM.
The current generation of SGX hardware only sup-
ports a maximum PRM size of 128 MB, but through
swapping, there are no practical limits to the size
of an enclave. The integrity of pages swapped out
is guaranteed by always checking an auxiliary data
structure also residing in PRM, called the Enclave
Page Cache Map. This datastructure contains the cor-
rect mappings between virtual addresses and Physical
PRM memory, as well as integrity checks for each
page. Each page can only belong to one enclave,
and as a consequence, shared memory between en-
claves is prohibited. They are however able to share
DRAM memory if residing inside the same process’

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

669

address space, and enclave memory is allowed to read
and write to untrusted memory inside that process.
The page eviction instruction also generates a liveness
challenge for each page, storing them in special EPC
pages for later comparison. These precautions guard
against a malicious OS trying to subvert an enclave by
either manipulating the address translation, explicitly
manipulating pages, or serving old pages back to the
enclave (replay attacks).

In order to guard against stale address translations
for executing enclaves, the processor does a coarse-
grained TLB shootdown for pages being evicted.
Page faults targeting a particular enclave will cause
the kernel to issue a Inter Processor Interrupt (IPI)
for all logical cores running inside of the enclaves in
question. This will cause each thread to do an AEX,
as mentioned above, and trap down to the kernel page
fault handler. Moreover, the lowermost 12 bits of the
virtual address at fault, stored in the CR2 registry, is
cleared so that the OS cannot infer any access pattern.
To amortize the cost of interrupting all cores execut-
ing inside a particular enclave for each page eviction,
the SGX implementation supports batching up to 16
page evictions together at a time.

2.2 Enclave Creation

SGX supports multiple mutually distrusting enclaves
on a single machine either within the same process’
address space or in different processes. Enclaves are
created by system software on behalf of an appli-
cation, issuing an ECREATE instruction. This will
cause SGX to allocate a new EPC page for the SGX
Enclave Control Structure (SECS) which stores meta-
data for each enclave. This is used by SGX instruc-
tions to identify enclaves, and among other things
map enclaves to physical EPC pages via the EPCM
structure. Before the enclave is ready for execut-
ing code, each initial code and data segment must be
added to enclave memory via the OS issuing specially
crafted instructions to the SGX implementation for
each page. The same instruction is also used to create
the TCS for each expected thread inside the enclave.
In addition, the OS driver issues updates for enclave
measurements used for software attestation. We re-
fer to the SGX developer manual for a description
of the SGX attestation process. When all pages are
loaded, the enclave is initialized and the enclave re-
ceives a launch token from a special pre-provisioned
enclave entrusted by Intel. At this point, the enclave
is considered fully initialized and no further memory
allocations may happen. Intels revised specifications
for SGX version 2 includes support for expanding en-
claves after initial creation by dynamic paging sup-

port. However, we refrain from further explanation as
hardware supporting these specifications has not been
released at this point.

When an enclave is destroyed, the inverse hap-
pens, as the OS marks each page used by the enclave
as invalid by the EREMOVE instruction. Before free-
ing the page, SGX makes sure that no logical pro-
cessor is executing inside the enclave that owns the
particular page. Finally, the SECS is deallocated if all
pages in the EPCM referring to that particular enclave
are deallocated.

3 EXPERIMENTS

To gain experience in how the next generation cloud-
based SaaS systems should be architected to best take
advantage of the SGX features in modern processors,
we ran a series of micro benchmarks on SGX-enabled
hardware. Our experimental setup consists of a Dell
Optiplex workstation with an Intel Core i5-6500 CPU
@ 3.20 GHz with four logical cores and 2× 8 GB of
DDR3 DIMM DRAM. To avoid inaccuracies caused
by dynamic frequency scaling, Intel Speedstep and
CStates were disabled in all our experiments. To
measure the peak performance of the architecture, we
also altered the PRM size in hardware setup to be the
maximum allowed 128 MB. We run the experiments
on Ubuntu 14.04 using the open source kernel mod-
ule for Intel SGX.1 We instrumented the SGX ker-
nel module to record the operational costs. Based on
our understanding of the system we derived different
benchmarks testing various features of the platform.
Common for all experiments is the observation that
more iterations did not yield a lower deviation. This
may be attributed to noise generated by the rest of the
system. This noise is subtle, but significant since we
are measuring at fine-grained time intervals.

Note that the current iteration of SGX prohibits
use of the RDTSC instruction inside of enclaves, and
as such there are no natively timing facilities avail-
able inside enclaves. A later release reveals that the
updated specifications for SGX version one does sup-
port RDTSC inside enclaves. Hints suggests that this
might be distributable by means of an update to the
microcode architecture. We were, however, unsuc-
cessful in obtaining this update. Time measurements
performed throughout this experiment must therefore
exit the enclave before being captured. As a conse-
quence, we can only measure the total time taken be-
tween entering and exiting an enclave described as the
sequence of events depicted in Figure 1.

1https://github.com/01org/linux-sgx-driver

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

670

t Application Enclave

enclave_ecall()

t0_ocall()

get_time()

enclave_ecall()

t0_ocall()

t1_ocall()

t1_ocall()

Δt

get_time()

Figure 1: Sequence of events involved in measuring time
spent inside enclaves.

3.1 Entry and Exit Costs

In our first experiments, we look at the cost of enter-
ing and leaving an enclave. Understanding this cost
is important as it dictates how SGX enabled SaaS ser-
vices can partition its functionality between enclaved
and non-enclaved execution to minimize TCB size. A
prohibitively large cost of entry would necessitate a
reduction in the number of entry calls, and thus in-
creasing the amount of code and data residing inside
of the enclave, increasing the required TCB. The ex-
treme case being a full library OS that include almost
all the functionality an application requires within the
enclave (Baumann et al., 2014). The Intel Software
Developer Manual2 suggests that the cost of entering
an enclave is also a function of the size of the data
copied into the enclave as a part of the entry. Thus,
if experiments show that the cost of large amounts of
data entering the enclave is prohibitively large, only
data requiring confidentiality should be copied into
the enclave.

 0

 50

 100

 150

 200

 250

 300

 0 65536 131072 196608 262144 327680 393216 458752

T
im

e
 (

m
s)

Buffer Size (byte)

Figure 2: Enclave transition cost as a function of buffer size.

Figure 2 shows the measured cost as a function
of increasing buffer sizes. As shown in the figure,

2https://software.intel.com/en-us/articles/intel-sdm

the cost of transitioning into enclaves increases lin-
early with the buffer size. This experiment only uses
buffers as parameter while transitioning into the en-
clave. To be able to host the buffer inside the enclave,
its heap size must be sufficiently large. The observed
baseline cost with no buffer is the bare transition cost
for entering enclaves. This cost quickly becomes in-
significant as the buffer size increases. This behavior
is expected as this cost includes copying the buffers
into enclave memory on transitions, which invokes
the MEE for memory written to the enclave. To our
surprise, however, we observed that the baseline cost
only increased above 64 kb. One possible explanation
for this is that the pages may already be present in
EPC memory for buffer sizes smaller than 64 kb

For larger buffers the increased cost can also be
attributed to page faults caused by enclave memory
previously evicted to DRAM. This issue is further ex-
plored in the next experiment.

3.2 Paging

Another probable architectural trade-off is the logi-
cal assumption that an increase in TCB would reduce
enclave transitions but requires more PRM. As men-
tioned in Section 1, the PRM is a very limited re-
source in comparison to regular DRAM and the sys-
tem has a total of 128 MB of it. Moreover, any en-
clave is subject to the system software evicting EPC
pages when PRM resources becomes scarce. Any sys-
tem using SGX should factor in the cost of swapping
pages between PRM and regular DRAM. Figure 3 il-
lustrates this cost in enclaves as observed by both the
kernel and the user level enclave.

The y-axis is the discrete cost in nano seconds,
while the x-axis is time elapsed into the experiment.
We instrumented the OS kernel driver to measure the
time taken to evict pages out of EPC into DRAM de-
noted by red dots, as well as the total time spent inside
the page fault handler, shown by the black line.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

la
te

n
cy

 (
n
a
n
o
 s

e
c)

elapsed time

User level memory access
EPC kernel page fault

EPC kernel page eviction event

Figure 3: Paging overhead in nano seconds as a function of
time elapsed while writing sequentially to enclave memory.

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

671

The green line denotes user level instrumentation
measuring the time it takes to write to a particular
address in EPC memory. Similarly to the prior ex-
periment, we are prohibited to make timing measure-
ments inside enclaves. Therefore, the user level mea-
surements include the baseline cost of entry and exit
of an enclave, notably with 4 byte buffers transition-
ing each way.

To induce enclave page faults we set the total en-
clave heap size to 256 MB, which is larger than the to-
tal amount of available EPC memory. Furthermore, to
hit each page we invoke write operations to each ad-
dress within the 4 kb page size sequentially along the
allocated memory space inside the enclave. As men-
tioned in Section 2, the only time enclaves are able
to allocate memory is before the EINIT instruction
is called by issuing EADD. Therefore, all memory
must be allocated before enclave execution begins.
We can clearly see at the beginning of the experiment
an increase in page faults occurring when trying to fit
256 MB of enclave memory into potentially 128 MB
of physical EPC memory.

Correlating the different events happening at user
level and kernel level we observe a strong relation-
ship between eviction events and increase in write
time at user level. One property of the system that
might increase this cost is the fact that evicting pages
causes AEX events for any logical processor execut-
ing within an enclave, as explained in Section 2.

We also observe that the kernel driver is operat-
ing very conservatively in terms of assigning EPC
pages to enclaves by the amount of page faults oc-
curring during execution. Moreover, as mentioned in
Section 2, the 12 lower bits of the virtual page fault
address is cleared by SGX before trapping down to
the page fault handler. Therefore, the driver is not
able to make any assumptions about memory access
patterns inside enclaves. Moreover, as Section 2 ex-
plains, liveness challenge data might also be evicted
of EPC memory, causing a cascade of page loads to
occur from DRAM. It is worth noting that our experi-
ment only uses one thread, and that all page evictions
issuing IPI only interrupt this single thread.

It is clear that high performance applications
might want to tune the OS support for paging to their
needs. If an application can predict a specific ac-
cess pattern, the kernel paging support should adapt
to this. Moreover, by optimizing towards exhaustive
use of the EPC memory, applications running inside
enclaves might be subject to fewer page faults.

Furthermore, initial setup will keep large amounts
of the enclave in memory, which might eliminate the
overhead of paging for some enclaves. This further-
more reduces overhead caused by IPI interrupts trig-

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0 20 40 60 80 100

la
te

n
cy

 (
n
a
n
o
 s

e
c)

Enclaves

4 kb
16 kb
64 kb

256 kb
1 mb
4 mb

Figure 4: Latency as a function of number of enclaves cre-
ated simultaneously, for differing sizes of enclaves

gering AEX from the given enclave. Initially, the cre-
ation of large enclaves trigger memory allocations by
the kernel, and it might be necessary for application
developers to offset this initial cost by previsioning
enclaves.

3.3 Enclave Provisioning

Modern distributed system architectures increasingly
rely on modular programing paradigms and multi-
component software with possibly differing trust do-
mains. Such distributed systems often consist of sev-
eral third-party open source components, both trusted
and not. Moreover, separating both the unit of failure
and trust of such systems is often a good idea.

SGX supports the creation of multiple mutually
distrusting enclaves which can be used in such a mod-
ular design. As mentioned in Section 2 the SGX
programming model allows enclaves to communicate
with the outside using well defined interfaces, which
lends itself to an architecture where trust is compart-
mentalized into separate enclaves. Figure 4 illustrates
the additional cost in terms of provisioning latency
as a function of enclaves created simultaneously, and
we can clearly observe that the added cost in en-
clave creation increases linearly. Through multiple
iterations of this experiment we observe the added
cost by increasing enclave sizes. As demonstrated,
this added cost becomes increasingly significant when
provisioning multiple enclaves exceeding 256 kb in
size. As mentioned in Section 2, enclaves are created
by issuing specially crafted functions for each page of
code and data being allocated inside enclave memory.
It is worth mentioning that we observed a significant
amount of page faults occurring during enclave cre-
ation, and it is reasonable to assume that this is also
contributing to the cost. Furthermore, the observa-
tions made about entry cost for buffer sizes less than
64 kb shown in Figure 2, is further corroborated by
the fact that for enclave sizes less than 64 kb the pro-
visioning costs are nearly identical.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

672

For application software requiring low latency op-
eration it might be necessary to pre-provision en-
claves to offset this cost in latency. However, this
approach might cause additional problems with collo-
cating them in EPC memory if the individual enclaves
are sufficiently large.

4 DISCUSSION

From our experiments in Section 3, we have identified
several important performance idiosyncrasies of SGX
that should be considered when constructing SGX en-
abled cloud services: the cost of entering and exiting
enclaves, the cost of data copying, the cost of provi-
sioning new enclaves and the cost of memory usage.

As mentioned in Section 2, entry and exit proce-
dures do similar amounts of work in terms of cost. As
our experiments show, the most significant cost factor
of transitioning is the buffer size input as argument to
the transition either through entry or exit. In particu-
lar, we observed a steep rise in data copy cost when
buffer sizes are larger than 64 kb. Our recommenda-
tion is therefore that:

Recommendation 1. Applications should partition
its functional components to minimize data copied
across enclave boundries.

One possible component architecture that follows
the guideline of Recommendation 1 would be to co-
locate all functionality into one single enclave, mak-
ing it largely self-sufficient. An example a system fol-
lowing such an approach is Haven (Baumann et al.,
2014), which reduces the interface between trusted
and untrusted code by co-locating a larger part of
the system software stack inside a single enclave by
means of a library OS. The efficiency of this ap-
proach, however, directly contradicts the observation
we made in Section 3.2, where we measured the over-
head associated with enclave memory being paged
in and out to regular DRAM. Because the EPC is a
scarce resource, system software aggressively pages
out enclave memory not being used. However, as our
experiments show, the page fault handler is overea-
ger, and fails to fully utilize EPC memory exhaus-
tively. Because of security concerns, the kernel is not
given the exact faulting address of each enclave page
fault, and therefore does not make any assumptions as
to the memory access patterns. We therefore recom-
mend that:

Recommendation 2. The size of an enclave should
not exceed 64 kb.

Recommendation 3 . Prior knowledge about ap-
plication’s memory consumption and access pattern
should be used to modify the SGX kernel module in
order to reduce memory page eviction.

As our experiment shows, enclave creation is
costly and time consuming. To hide some of this cost,
the underlying OS can pre-provision enclaves when-
ever usage patterns can be predicted. However, once
used, an enclave might be tainted with secret data.
Recycling used enclaves to a common pool can there-
fore potentially leeks secrets from one process to the
next: invalidating the isolation guarantees. We there-
fore recommend that:

Recommendation 4. Application authors that can
accurately predict before-the-fact usage of enclaves
should pre-provision enclaves in a disposable pool of
resources that guarantees no reuse between isolation
domains.

The cost of enclave creation must also factor in
the added baseline cost of metadata structures asso-
ciated with each enclave. Provisioning an enclaves
must at least account for its SECS, one TCS structure
for each logical core executed inside an enclave, and
one SSA for each thread performing AEX. (Costan
and Devadas, 2016) explains that to simplify imple-
mentation, most of these structures are allocated at
the beginning of a EPC page, wholly dedicated to
that instance. Therefore, it is not out of line to con-
sider an enclave with 4 logical cores, having 9 pages
(34 kb) allocated to it, excluding code and data seg-
ments. Applications should consider the added mem-
ory cost of separate enclaves in conjunction with the
relative amount of available EPC. Furthermore, to off-
set the cost of having multiple enclaves, application
authors should consider security separation at a con-
tinuous scale. Some security models might be content
with role based isolation, rather than call for an ex-
plicit isolation of all users individually. We therefore
recommend that:

Recommendation 5 . Application authors should
carefully consider the granularity of isolation re-
quired for their intended use, as a finer granularity
includes the added cost of enclave creation.

At the time of writing, the only available hardware
supporting SGX are the Skylake generation Core
chips with SGX version 1. As our experiments show,
paging has a profound impact on performance, and
a natural follow-up would be to measure the perfor-
mance characteristics of the dynamic paging support
proposed in the SGX V2 specifications. However,

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

673

as mentioned earlier, Intel has yet to release any in-
formation regarding the arrival of SGX V2 enabled
chips. The imminent 8th generation Kaby Lake chips
do not include support, and the earliest likely release
will therefore as part of Cannon Lake in Q4 2017.

SGX supports attestation of software running on
top of untrusted platforms, by using signed hard-
ware measurements to establish trust between parties.
These parties could be either locally with two distinct
enclaves executing on the same hardware, or remotely
by help of Intel’s attestation service. In the future, it
would be interesting, in light of the large cost of en-
clave transition demonstrated above, to examine the
performance characteristics of a secure channel for
communication between enclaves.

5 RELATED WORK

Several previous works quantifies various aspects of
the overhead associated with composite architectures
based on SGX. Haven (Baumann et al., 2014) im-
plements shielded execution of unmodified legacy ap-
plications by inserting a library OS entirely inside of
SGX enclaves. This effort resulted in architectural
changes to the SGX specification to include, among
other things, support for dynamic paging. The proof
of concept implementation of Haven is only evalu-
ated in terms of legacy applications running on top
of the system. Furthermore, Haven was built on a
pre-release emulated version of SGX, and the perfor-
mance evaluation is not directly comparable to real
world applications. Overshadow (Chen et al., 2008)
provide similar capabilities as Haven, but does not
rely on dedicated hardware support.

SCONE (Arnautov et al., 2016) implements sup-
port for secure containers inside of SGX enclaves.
The design of SCONE is driven by experiments on
container designs pertaining to the TCB size inside
enclaves, in which, at the most extreme an entire li-
brary OS is included and at the minimum a stub in-
terface to application libraries. The evaluation of
SCONE is, much like the evaluation of Haven, based
on running legacy applications inside SCONE con-
tainers. While (Arnautov et al., 2016) make the same
conclusions with regards to TCB size versus memory
usage and enclave transition cost as (Baumann et al.,
2014), they do not quantify this cost. Despite this,
SCONE supplies a solution to the entry exit prob-
lem we outline in Section 3, where threads are pinned
inside enclaves, and do not transition to the outside.
Rather, communication happens by means of the en-
clave threads writing to a dedicated queue residing in
regular DRAM memory. This approach is still, how-

ever, vulnerable to theads being evicted from enclaves
by AEX caused by IPI as part of a page fault.

(Costan and Devadas, 2016) describe the archi-
tecture of SGX based on prior art, released developer
manuals, and patents. Furthermore, they conduct a
comprehensive security analysis of SGX, falsifying
some of its guarantees by explaining in detail ex-
ploitable vulnerabilities within the architecture. This
work is mostly orthogonal to our efforts, however,
we base most of our knowledge of SGX from this
treatment on the topic. These prior efforts lead
(Costan et al., 2016) to implement Sanctum, which
implements an alternative hardware architectural
extension providing many of the same properties
as SGX, but targeted towards the Rocket RISC-V
chip architecture. Sanctum evaluates its prototype
by simulated hardware, against an insecure baseline
without the proposed security properties. (McKeen
et al., 2016) introduce dynamic paging support to the
SGX specifications. This prototype hardware were
not available to us.

Ryoan (Hunt et al., 2016) attempts to solve
the same problems outlined in the introduction, by
implementing a distributed sandbox for facilitating
untrusted computation on secret data residing on third
party cloud services. Ryoan proposes a new request
oriented data-model where processing modules are
activated once without persisting data input to them.
Furthermore, by remote attestation, Ryoan is able to
verify the integrity of sandbox instances and protect
execution. By combining sandboxing techniques with
SGX, Ryoan is able to create a shielding construct
supporting mutually distrust between the application
and the infrastructure. Again, Ryoan is benchmarked
against real world applications, and just like other
prior work, does not correctly quantify the exact
overhead attributed to SGX primitives. Furthermore,
large parts of its evaluation is conducted in an
SGX emulator based on QEMU, which have been
retrofitted with delays and TLB flushes based upon
real hardware measurements to better mirror real
SGX performance. These hardware measurements
are present for EENTRY and EEXIT instructions,
however do not attribute the cost of moving argument
data into and out of enclave memory. Moreover,
Ryoan speculate on the cost of SGX V2 paging
support, although strictly based on emulated mea-
surements, and assumptions about physical cost.

ARM TrustZone is a hardware security archi-
tecture that can be incorporated into ARMv7-
A, ARMv8-A and ARMv8-M on-chip sys-
tems (Ngabonziza et al., 2016; Shuja et al.,
2016). Although the underlying hardware design,
features, and interfaces differ substantially to SGX,

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

674

both essentially provide the same key concepts of
hardware isolated execution domains and the ability
to bootstrap attested software stacks into those
enclaves. However, the TrustZone hardware can only
distinguish between two execution domains, and
relies on having a software based trusted execution
environment for any further refinements.

6 CONCLUSION

Online services are increasingly relying on third-party
cloud providers to host sensitive data. This tendency
brings forth strong concerns for the security and pri-
vacy of data owners as cloud providers cannot fully
be trusted to enforce the restrictive usage policies that
often govern such data. Intel SGX provides hardware
support for general trusted computing in commodity
hardware. These extensions to the x86 instruction set
establish trust through remote attestation of code and
data segments provisioned on non-trusted infrastruc-
ture, furthermore guaranteeing the confidentiality and
integrity of these from potentially malicious system
software.

Prior efforts demonstrate the capabilities of SGX
through rigorous systems capable of hosting large
legacy applications securely inside enclaves. These
systems, however, do not quantify the exact cost as-
sociated with using SGX. This paper evaluates the mi-
cro architectural cost of entering and exiting enclaves,
the cost of data copying, the cost of provisioning new
enclaves and the cost of memory usage. From this,
we have derived five recommendations for application
authors wishing to secure their cloud-hosted privacy
sensitive data using SGX.

ACKNOWLEDGMENTS

This work was supported in part by the Norwegian
Research Council project numbers 231687/F20. We
would like to thank the anonymous reviewers for their
useful insights and comments.

REFERENCES

Anati, I., Gueron, S., Johnson, S., and Scarlata, V. (2013).
Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd international work-
shop on hardware and architectural support for secu-
rity and privacy, volume 13.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,
Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D.,
Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza,

R., Pietzuch, P., and Fetzer, C. (2016). Scone: Se-
cure linux containers with intel sgx. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 689–703, GA. USENIX
Association.

Baumann, A., Peinado, M., and Hunt, G. (2014). Shielding
applications from an untrusted cloud with Haven. In
11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’14). USENIX – Ad-
vanced Computing Systems Association.

Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J., and
Ports, D. R. (2008). Overshadow: A virtualization-
based approach to retrofitting protection in commod-
ity operating systems. In Proc. of the 13th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASP-
LOS XIII, pages 2–13, New York, NY, USA. ACM.

Costan, V. and Devadas, S. (2016). Intel sgx explained. In
Cryptology ePrint Archive.

Costan, V., Lebedev, I., and Devadas, S. (2016). Sanctum:
Minimal hardware extensions for strong software iso-
lation. In USENIX Security, volume 16, pages 857–
874.

Gjerdrum, A. T., Johansen, H. D., and Johansen, D. (2016).
Implementing informed consent as information-flow
policies for secure analytics on eHealth data: Princi-
ples and practices. In Proc. of the IEEE Conference
on Connected Health: Applications, Systems and En-
gineering Technologies: The 1st International Work-
shop on Security, Privacy, and Trustworthiness in
Medical Cyber-Physical System, CHASE ’16. IEEE.

Hunt, T., Zhu, Z., Xu, Y., Peter, S., and Witchel, E.
(2016). Ryoan: A distributed sandbox for untrusted
computation on secret data. In Proceedings of the
12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’16, pages 533–549,
Berkeley, CA, USA. USENIX Association.

Johansen, H. D., Birrell, E., Van Renesse, R., Schneider,
F. B., Stenhaug, M., and Johansen, D. (2015). Enforc-
ing privacy policies with meta-code. In Proceedings
of the 6th Asia-Pacific Workshop on Systems, page 16.
ACM.

McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., John-
son, S., Leslie-Hurd, R., and Rozas, C. (2016). Intel R©
software guard extensions (intel R© sgx) support for
dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Sup-
port for Security and Privacy 2016, page 10. ACM.

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and Mar-
tin, S. (2016). Trustzone explained: Architectural fea-
tures and use cases. In Collaboration and Internet
Computing (CIC), 2016 IEEE 2nd International Con-
ference on, pages 445–451. IEEE.

Osborn, J. D. and Challener, D. C. (2013). Trusted platform
module evolution. Johns Hopkins APL Technical Di-
gest, 32(2):536–543.

Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A.,
Khan, S. U., and Zomaya, A. Y. (2016). A survey of
mobile device virtualization: taxonomy and state of
the art. ACM Computing Surveys (CSUR), 49(1):1.

TCG Published (2011). TPM main part 1 design principles.
Specification Version 1.2 Revision 116, Trusted Com-
puting Group.

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

675

