
Model Driven Cloud Orchestration by Combining TOSCA and OCCI

Fabian Glaser, Johannes Erbel and Jens Grabowski
University of Goettingen, Institute of Computer Science, Germany

Keywords: Cloud Computing, Open Cloud Computing Interface, Topology and Orchestration Specification for Cloud
Applications, Metamodelling.

Abstract: To tackle the problem of a cloud-provider lock-in, several standards have emerged in the recent years which
aim to provide a unified interface to cloud resources. The Open Cloud Computing Interface (OCCI) thereby
focuses on the standardization of a common API for Infrastructure-as-a-Service (IaaS) providers and the
Topology and Orchestration Specification for Cloud Applications (TOSCA) focuses on the standardization of a
template language to enable the proper definition of the topology of cloud applications and their orchestrations
on top of an IaaS cloud. TOSCA thereby does not define how the application topologies are created on the
cloud. Therefore, it is worthwhile to analyse the conceptual similarities between the two approaches and
the possibilities to integrate both. In this paper, we provide an overview of the similarities between the two
standardization approaches. Furthermore, we define a concept of a fully model driven cloud orchestrator based
on the two standards.

1 INTRODUCTION

With the rise of cloud computing, a multitude of pro-
prietary cloud APIs became available that made it
hard for cloud costumers to switch between differ-
ent cloud providers. To tackle the problem of this
cloud-provider lock-in, consortia have been formed
to develop common standards for interfacing cloud
resources. The Open Cloud Computing Interface
(OCCI) (Nyrén et al., 2016b), developed by the Open
Grid Forum (OGF)1,2, thereby aims to provide a stan-
dardized managing interface, enabling the customer
to manage cloud resources. It has been initially pub-
lished in 2010 and several open-source implementa-
tions have been developed since then supporting all
major open-source cloud middleware frameworks, in-
cluding OpenStack3, OpenNebula4 and CloudStack5.

At a higher level of abstraction, the Organiza-
tion for the Advancement of Structured Information
Standards (OASIS)6 is developing the Topology and
Orchestration Specification for Cloud Applications
(TOSCA)(OASIS, 2013), a template format that aims

1https://www.ogf.org/ogf/doku.php/start
2All URLs have been last retrieved on 01/31/2017.
3http://www.openstack.org
4http://opennebula.org
5https://cloudstack.apache.org
6https://www.oasis-open.org/

to standardize the definition of application topolo-
gies for cloud orchestration. As such, it enables
the customer to define the topology of the cloud ap-
plication in a reusable manner and to deploy it on
TOSCA compliant IaaS clouds. TOSCA has been
initially published in 2013 and many major indus-
trial cloud-providers plan supporting it. In contrast to
OCCI, TOSCA does not define how the topology are
programmatically created on the cloud infrastructure
and leaves the implementation to the cloud provider.
While the approaches of TOSCA and OCCI are differ-
ent, both define a model for cloud resources. The goal
of this work is to identify the conceptual similarities
and differences between the two models and provide a
mapping between them where possible. Such a map-
ping is the first step for building a fully model driven
cloud-provider agnostic cloud orchestrator that lever-
ages both TOSCA and OCCI for portable application
and infrastructure provisioning and deployment. The
remainder of this paper is structured as follows. First
we briefly introduce the models of TOSCA and OCCI
in Section 2. Then we provide a conceptual compar-
ison and a mapping between the two models in Sec-
tion 3, followed by the discussion of the model driven
cloud orchestrator in Section 4. A feasibility study is
discussed in Section 5. We introduce related work in
Section 6. Finally, we draw our conclusions and give
an outlook on future work in Section 7.

644
Glaser, F., Erbel, J. and Grabowski, J.
Model Driven Cloud Orchestration by Combining TOSCA and OCCI.
DOI: 10.5220/0006372706720678
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 644-650
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BACKGROUND

Both TOSCA and OCCI define languages for mod-
elling cloud resources. Since they hence provide a
model for modelling they can be seen as metamod-
els (OMG, 2014). We introduce these metamodels in
the following.

2.1 TOSCA

According to the specification (OASIS, 2013),
TOSCA is “a language to describe service compo-
nents and their relationships using a service topol-
ogy, and it provides for describing the management
procedures that create or modify services using or-
chestration processes.” Therefore, it is able to de-
scribe both the service structure as well as the pro-
cesses that can be executed on this structure. As the
time of this writing, two versions of TOSCA exist.
The first is based on XML (OASIS, 2013), and the
second is based on YAML (OASIS, 2016). While
for TOSCA XML a XML Schema Definition (XSD)
schema exists, the TOSCA YAML version lacks of
a formal metamodel. A simplified metamodel of
TOSCA is depicted in Figure 1. A ServiceTemplate
captures the structure and the life cycle operations
of the application. It consists of a TopologyTemplate
and a Plan. Plans define how the cloud application
is managed and deployed. TopologyTemplates con-
tain EntityTemplates, which are NodeTemplates that
define e.g., the virtual machines or application com-
ponents, RelationshipTemplates that encode the rela-
tionships between the NodeTemplates, e.g., that a cer-
tain application component is deployed on a certain
virtual machine, or GroupTemplates7 that allow to de-
fine groups of NodeTemplates, which e.g. should be
scaled together. Additionally, TOSCA defines the En-
tityTemplates Capability and Requirement. Capabili-
ties are used to define that a NodeTemplate has a cer-
tain ability, e.g., providing a container for running ap-
plications, and Requirements are used to define that
a certain NodeTemplate requires a certain Capabil-
ity of another NodeTemplate. All EntityTemplates
can have Properties, e.g., an IP address for a virtual
machine, and a certain type that references an Enti-
tyType. The EntityType defines the allowed Proper-
ties through PropertyDefintions, and have Interfaces,
which define the Operations that can be executed on
an instances implementing the type, e.g., the termina-
tion of a certain application component, or the restart
of a virtual machine. Operations have Parameters that

7GroupTemplates and GroupTypes are currently part of
the TOSCA YAML rendering, but not part of the TOSCA
XML specification.

define their input and output. In addition to parame-
ters for operations, TOSCA also allows to define input
parameters for Plans.
Besides this abstract metamodel, the TOSCA YAML
specification defines normative types that should be
supported by each TOSCA conformant cloud orches-
trator. These normative types include e.g., base types
for cloud services and virtual machines. More details
on the model elements can be found in (OASIS, 2013)
and (OASIS, 2016).

2.2 OCCI

According to the OGF, “OCCI is a Protocol and API
for all kinds of Management tasks. OCCI was orig-
inally initiated to create a remote management API
for IaaS model based services, allowing for the de-
velopment of interoperable tools for common tasks
including deployment, autonomic scaling and moni-
toring.”8. The OCCI specification comprises several
parts. The OCCI Core Model (Nyrén et al., 2016b)
defines a model for cloud resources and their depen-
dencies. OCCI extensions define extensions of the
core model to be used for a specific domain. Several
extensions are already standardized, e.g., the OCCI
Infrastructure Extension (Metsch et al., 2016), which
defines compute, network and storage resources for
IaaS clouds, and the OCCI Infrastructure Extension
for the Platform-as-a-Service (PaaS) domain, that de-
fines additional resources for the PaaS Service level.
OCCI Renderings define how the OCCI Core Model
can be interacted with, e.g., the OCCI HTTP Protocol
(Nyrén et al., 2016a) that defines how OCCI resources
can be managed over the HTTP protocol.

The OGF does not provide a formal metamodel
for OCCI. This gap has been recently addressed by
Merle et al. (Merle et al., 2015) and we adopt their
metamodel in scope of this work. Figure 2 depicts
the OCCI Core Model. The OCCI Core Model is
composed of eight elements. The Category is the
base type for all other classes and provides the neces-
sary identification mechanisms. Categories have At-
tributes that are used to define the properties of a cer-
tain class, e.g., the IP address of a virtual machine.
Three classes are derived from Category: Kind, Ac-
tion, Mixin. Kind defines the type of a cloud entity,
e.g., a compute resource and Mixins define how an
entity can be extended. Both have Actions that de-
fine which actions can be executed on an entity. The
cloud entities themselves are modelled by the class
Entity, which provides the base class for cloud Re-
sources, e.g., virtual machines, and Links that define
how the resources are connected.

8http://occi-wg.org/

Model Driven Cloud Orchestration by Combining TOSCA and OCCI

645



ServiceTemplate

TopologyTemplate Plan

EntityTemplate

- name: S tring [0..1]

Properties

- element: S tring [1..*]
- value: S tring [1..*]

NodeTemplate RelationshipTemplate

EntityType

- name: S tring

PropertiesDefinition

- element: S tring [0..*]
- type: S tring [0..*]

NodeType RelationshipType

In terface

- name: S tring

Operation

- name: S tring

Parameter

- name: S tring
- type: S tring

GroupTypeGroupTemplate

CapabilitiyTypeRequirement RequirementTypeCapability

+derivedFrom
0..1

+targetE lement
0..1

+type 1

+properties

0..1

+validMember

0 ..*

+operations

1 ..*

+entityTemplates 0 ..*

+inputParameter

0 ..*

+interfaces 0 ..*

+plan

0 ..*

+sourceElement

0..1

+validSource

0..1
+member

0 ..*

+inputParameter

0 ..*

+validTarget
0..1

+topologyTemplate

1

+outputParameter
0 ..*

+propertiesDefinition

0..1

Figure 1: Metamodel of TOSCA (adapted from (Bergmayr et al., 2016)).

Figure 2: Metamodel of OCCI Core (Nyrén et al., 2016b).

In addition to the Core model, the OGF provides
extensions, which define the resources for a certain
cloud service level. For example, the OCCI Infras-
tructure Extension (Metsch et al., 2016) defines the
Resources for IaaS. It provides the definitions of the
Resources Compute, Network and Storage, and the
links that can be established between them, namely
StorageLink, which connects a compute resource to
a storage resource and NetworkInterface and IPNet-
workInterface which connect a compute resource to a
network resource.

3 MAPPING TOSCA TO OCCI

While both standards define a metamodel for cloud
resources, their focus is different. The focus of OCCI
is to provide a standardized API and it does not de-
fine concepts to address reusability, composability,
and scalability. Instances of the OCCI metamodel are
not meant to be stored persistently and to be reused

later on as it is the goal of TOSCA. TOSCA on the
other side does not define how the defined topology is
deployed by means of API calls to the cloud provider
as it is done with the OCCI HTTP rendering. Hence,
both approaches have their strengths and weaknesses
and it is worthwhile to investigate how to integrate
them.

Several concepts of TOSCA do not have a one-
to-one correspondence in OCCI. These are the con-
cepts for composability, namely the definition of Ca-
pabilities and Requirements, the concepts to achieve
scalability, namely Groups, Policies, and Parameters
and the concepts to achieve reusability, which are
ServiceTemplates and TopologyTemplates. These are
missing due to the different focus of OCCI. Nev-
ertheless, the mapping of most concepts is possible
and is summarized in Table 1. EntityTypes are used
to define reusable elements in TOSCA. They have
PropertyDefinitions assigned, that allow to define the
properties that a certain EntityType is allowed to have.
This matches the purpose of OCCI Categories and
their Attributes. Additionally, EntityTypes have Inter-
faces that define the allowed operations. This matches
the Kinds and Actions in OCCI respectively. Hence,
we can map all elements that inherit from Entity-
Types, namely NodeTypes, RelationshipTypes, and
GroupTypes to OCCI Kinds. Their Operations be-
come Actions in OCCI and their Properties become
Attributes. For the definition of provisionable ele-
ments, TOSCA uses the concept of EntityTemplates,
namely NodeTemplates, RelationshipTemplates and
GroupTemplates. NodeTemplates get be transformed
into Resources and RelationshipTemplates can be
transformed in Links. Their is no one-to-one cor-
respondents for GroupTypes and GroupTemplates in

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

646



Table 1: Mapping of TOSCA elements to OCCI elements.

TOSCA element OCCI element
EntityType Kind
Capability/Requirement Mixin
Operation Action
Property Attribute
NodeTemplate Resource
RelationshipTemplate Link

OCCI. Nevertheless, EntityTemplates that form a
group in TOSCA can be transformed into a num-
ber of Resources and Links in OCCI. Capabilities
and Requirements are used to extend a certain Enti-
tyTemplate with certain functionality. This concept
can modelled by using OCCI Mixins and the impli-
cated RelationshipTemplates can be modelled by us-
ing Links. Based on this mapping we define the con-
cept of a fully model driven cloud orchestrator in the
next Section.

4 MODEL DRIVEN CLOUD
ORCHESTRATION

Both OCCI and TOSCA are actively developed and
have a vibrant research and user community. Hence,
they are still subject to change. By adopting a model
driven approach for a cloud orchestrator implementa-
tion, it is easier to cope with these changes, since most
of the code can be generated from formal metamod-
els and model transformations can be easily adapted
accordingly. For the proliferation of the standards,
it is important that open-source implementations are
provided. Currently, three open-source implementa-
tions of TOSCA are available, which provide both
the modelling of TOSCA templates and the orches-
trated launch of the defined infrastructure: Cloud
Application Management Framework (CAMF) (Loul-
loudes et al., 2015) and OpenTOSCA (Binz et al.,
2013) are provided from academia, while Cloudify9

is developed in the industry. OCCI support is im-
plemented for all major open-source cloud platforms,
and with OCCIWare10 efforts exist to provide an in-
tegrated Integrated Development Environment (IDE)
for the modelling and orchestration of cloud resources
with help of the OCCI metamodel. However, the ap-
proaches listed above are neither fully model driven
nor do they combine both standards. Therefore,
we propose a fully model driven cloud orchestra-
tor to provide a playground for future extensions on

9http://getcloudify.org
10http://www.occiware.org/

Workflow 
Metamodel

Deployment 
Workflow

TOSCA Model

TOSCA 
Metamodel

Instance of Instance of

OCCI Model

OCCI 
Metamodel

Instance of

M2M

Synchronisation

Modeling
Provisioning and 

Deployment
Runtime

Provisioning 

IaaS Cloud

M2M

Figure 3: Model driven orchestration with TOSCA and
OCCI.

TOSCA and OCCI. A conceptual overview is de-
picted in Figure 3.

In the modelling step, cloud resources are mod-
elled according to the TOSCA metamodel. A Model-
to-Model (M2M) transformation is used to generate
a OCCI-compliant resource model from the TOSCA
model. From this model, a deployment and provision-
ing workflow is generated (see e.g., (Breitenbücher
et al., 2014) or (Lushpenko et al., 2015) for automatic
deployment and provisioning workflow generation).
The deployment and provisioning workflow then uti-
lizes the information stored in the OCCI model to
initiate the correspondent API calls over the OCCI
HTTP rendering to provision the defined resources in
the IaaS cloud. We will exemplify this workflow in
the next Section.

5 FEASIBILITY STUDY

To evaluate the feasibility of the conceptual mapping
and the orchestration workflow introduced above, we
use a small TOSCA topology example and will go
through the different transformation steps. Since,
the current OCCI implementations do not support the
PaaS layer yet, we restrict the discussion to the IaaS
layer. However, the approach is valid for all service
layers, since the same metamodel is used.

5.1 Setup

We implemented the M2M transformation using
the Eclipse Modeling Framework (EMF)11 and the
Eclipse Epsilon Transformation Language (ETL)12.
As a TOSCA metamodel, we used the XSD provided
by the standard and utilized the OCCI metamodel pro-
vided by (Merle et al., 2015). We used this model
transformator to transform the initial TOSCA topol-
ogy to an OCCI resource model.
In practice, the Resources, Kinds and Mixins that can
be utilized in the OCCI model depend on the specific

11https://www.eclipse.org/modeling/emf/
12http://www.eclipse.org/epsilon/doc/etl/

Model Driven Cloud Orchestration by Combining TOSCA and OCCI

647



IaaS cloud management framework. Our test setup
is based on OpenStack13 and the OCCI implementa-
tion OpenStack OCCI Interface (OOI)14. We used
the Java OCCI library jocci-api15 to implement an
OCCI model extractor that is able to extract the avail-
able Resources, Kinds and Mixins from our Open-
Stack deployment and serialize it to a model artefact
which conforms to the utilized OCCI metamodel. The
model transformator links to these available Mixins
and Kinds during the transformation of the TOSCA
model.

5.2 Example TOSCA Topology

The logical structure of the TOSCA model is de-
picted on the right hand side in Figure 4. We use
the graphical notation used in the standard (OASIS,
2016) to depict the TOSCA topology. The Properties
of the NodeTemplates are omitted here for brevity.
The topology consists of two virtual machines vm1
and vm2, which are connected to the network network
via port1 and port2 respectively. In addition, vm1
is attached to an external block-storage device vol-
ume. The virtual machines, the ports, the volume and
the network are modelled as TOSCA NodeTemplates.
The connections between them are modelled with Re-
lationshipTemplates. The virtual machines have the
Capabilities OperatingSystem, which models the op-
erating system to be used, and Container, which mod-
els the technical specification of the virtual machine,
e.g., the number of compute cores, and RAM. To be
able to attach the block-storage volume to vm1, the
NodeTemplate volume has the Capability Attachment.
To be able to bind the ports to the virtual machines
and link them to the network, the ports have the Ca-
pabilities Linkable and Bindable. Finally, the corre-
sponding Requirements are modelled for the Node-
Templates to be able to establish the relationships.
All NodeTemplates, RelationshipTemplates, and Ca-
pabilities use TOSCA normative EntityTypes as they
are defined in the TOSCA YAML specification. An
overview of the utilized types is given in the second
column of Table 2.

5.3 Corresponding OCCI Model

The results after transforming the example into an
OCCI model are shown on the left hand side of Fig-
ure 4 in an UML object diagram. The NodeTemplates
vm1 and vm2 are transformed into Resources with the
OCCI Kind Compute. The NodeTemplate volume is

13https://www.openstack.org/
14https://github.com/openstack/ooi
15https://github.com/Misenko/jOCCI-api

Table 2: Mapping of TOSCA Types to OCCI Elements.
Element TOSCA Type OCCI Element
vm1, vm2 tosca.nodes.Compute Compute
network tosca.nodes.network.Network Network + IPNetwork
volume tosca.nodes.BlockStorage Storage
port1, port2 tosca.nodes.network.Port -
OperatingSystem tosca.capabilities.OperatingSystem Mixin (OpenStack specific)
Container tosca.capabilities.Container Mixin (OpenStack specific)
Linkable tosca.capabilities.network.Linkable -
Bindable tosca.capabilities.network.Bindable -
Attachment tosca.capabilities.Attachment -
LinksTo tosca.relationships.network.LinksTo NetworkInterface + IPNetworkInterface
BindsTo tosca.relationships.network.BindsTo NetworkInterface + IPNetworkInterface
AttachesTo tosca.relationships.AttachesTo StorageLink

transformed into a Resource with the Kind Storage,
and the NodeTemplate network is transformed into a
Resource with the Kind Network. In the OCCI Infras-
tructure model, there is no corresponding element to
the NodeType Port, and the corresponding informa-
tion is stored in the Links with the OCCI Kind Net-
workInterface which connects the virtual machines to
the network. These Links are additionally associated
with the Mixin ipnetworkinterface to allow to setup
specific IP addresses. The attachment of the block-
storage to vm1 is transformed into a Link of the OCCI
Kind StorageLink. The Capabilities OperatingSystem
and Container are transformed into references to the
cloud-provide specific Mixins to model images with a
certain operating system, and certain virtual machine
types respectively. The Resource network is associ-
ated to the Mixin ipnetwork to allow the IP specific
configuration of the network. An overview of the
mapped OCCI Kinds and Mixins is given in the third
column of Table 2.

5.4 Provisioning Order With the OCCI
HTTP Protocol

Figure 5 shows the provisioning plan for the example.
Each action in the diagram corresponds to a single
call to the OCCI server. The Resources vm1, vm2,
network and volume can be provisioned in parallel.
Links can be created, when the two corresponding Re-
sources are ready.

5.5 Findings

The generated model is fully conformant with the
OCCI metamodel defined by (Merle et al., 2015).
We saw that most of the utilized TOSCA normative
Types have a one-to-one correspondence with OCCI
elements. In case of the many-to-one relationship of
the ports in the example, we implemented a post-
processing in the transformation step. In this step,
we replaced the created port Resource and the corre-
sponding Links with a single Link connecting the vir-
tual machines to the Network. Such a post-processing
step might be necessary also for other TOSCA nor-
mative types. There are also some cases where there

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

648



BindsToBindsTo

Compute

vm1

Capabilities

BlockStorage

volume

Capabilities
Attachment

Network

network

Bindable

Container

OperatingSystem

Requirements
Attachment

Port

port1

Requirements

Bindable

Linkable

Port

port2

Requirements

Bindable

Linkable

Compute

vm2

Capabilities

Bindable

Container

OperatingSystem

Capabilities

Linkable

LinksToLinksTo

AttachesTo

vm1: Compute vm2: Compute

flavor1: Mixin flavor2: Mixinimage1: Mixin image2: Mixin

vm1linksToNetwork: NetworkInterface

vm2linksToNetwork: NetworkInterface

vm1linksToVolume: StorageLink

volume: Storage

network: Network

ipnetworkinterface: Mixin

ipnetwork: Mixin

TOSCA OCCI

Figure 4: Transformation of an example TOSCA topology to OCCI.

provision volume

provision vm1

provision network

provision vm2

attach volume to 
vm1

link vm1 to network

link vm2 to network

Figure 5: Example Provisioning Plan.

is a one-to-many relationship, and one TOSCA ele-
ment might correspond to several elements in OCCI,
e.g. when a GroupTemplate is used to control the
scaling of several other NodeTemplate. Current IaaS
middlewares impose certain restrictions on what can
be provisioned, such that the Capabilities defined in
the TOSCA model need to be mapped to the available
Mixins. Such a map would need to be provided for
each IaaS infrastructure. Overall, the results of this
initial feasibility study are promising and it showed
that TOSCA and OCCI can be used complementary
for model driven cloud orchestration.

6 RELATED WORK

Besides TOSCA, several other orchestration template
formats exist, which have been developed by differ-
ent cloud providers or communities, e.g., OpenStacks
Heat Orchestration Template Language16 and the
Amazons CloudFormation template format17. They
are not considered in this paper, since our focus is
on interoperability of standards. Merle et al. (Merle
et al., 2015) defined a metamodel for OCCI with help
of EMF to provide a common basis for the genera-
tion and conformance testing of OCCI tools. This
metamodel is used by (Paraiso et al., 2016) to model
the deployment of applications with help of con-

16https://wiki.openstack.org/wiki/Heat
17https://aws.amazon.com/cloudformation/

tainers. Both works have been published in scope
of the OCCIWare18 project, that aims to provide a
fully integrated IDE to support the whole cloud ap-
plication management life cycle on multiple clouds
based on OCCI. Interoperability with TOSCA is
not considered. With the Eclipse Incubation Project
CAMF (Loulloudes et al., 2015), Loulloudes et al.
attempt to build a whole IDE to manage cloud ap-
plications with the help of TOSCA. In the scope
of the project different adapters have been developed
to deploy the defined TOSCA topology on multi-
ple clouds. However, no model driven mapping and
interaction with OCCI is provided. Regarding the
modelling of cloud applications, several extensions
to UML have been developed to capture cloud appli-
cation specifics, e.g., (Bergmayr et al., 2014), (Ka-
mali et al., 2014), (Guillén et al., 2013). In addition,
Bergmayr et al. (Bergmayr et al., 2016) show how
to convert refined UML models to TOSCA templates.
Their approach is also based on an Ecore metamodel
generated from the TOSCA XSD. These works con-
sider the modelling of cloud applications, but do not
take the mapping to certain API calls into account.
Ferry et al. (Ferry et al., 2014) define a models at run-
time approach for the management of cloud applica-
tions. Their approach is based on a modelling lan-
guage called CloudML and is not based on standards.

7 CONCLUSIONS AND
OUTLOOK

In the paper, we presented an approach to combine
TOSCA and OCCI for model and standard driven
cloud orchestration. We defined an initial mapping
between the metamodel elements of TOSCA and
OCCI and explained how we will adopt this map-
ping for a model driven cloud orchestrator based on

18https://www.occiware.org/

Model Driven Cloud Orchestration by Combining TOSCA and OCCI

649



the two standards. By adopting a model driven ap-
proach, it becomes easier to incorporate changes to
both evolving standards and to provide a playground
for new concepts. We will continue with the evalua-
tion of the mapping between TOSCA normative types
and OCCI elements. Furthermore, we will use this ap-
proach to support the adaptation of models at runtime
to keep the model of the infrastructure and the appli-
cation deployment consistent with its actual state in
the Cloud. This will also allow us to react to chang-
ing workloads.

ACKNOWLEDGEMENTS

We thank the Simulationswissenschaftliches Zentrum
Clausthal-Göttingen (SWZ) for financial support.

REFERENCES

Bergmayr, A., Breitenbücher, U., Kopp, O., Wimmer, M.,
Kappel, G., and Leymann, F. (2016). From Archi-
tecture Modeling to Application Provisioning for the
Cloud by Combining UML and TOSCA. In 6th In-
ternational Conference on Cloud Computing and Ser-
vices Science (CLOSER).

Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., and
Kappel, G. (2014). UML-based Cloud Application
Modeling with Libraries, Profiles, and Templates. In
3rd International Workshop on Model-Driven Engi-
neering on and for the Cloud (CloudMDE), pages 56–
65.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Ley-
mann, F., Nowak, A., and Wagner, S. (2013).
OpenTOSCA–a runtime for TOSCA-based cloud ap-
plications. In Service-Oriented Computing, pages
692–695. Springer.

Breitenbücher, U., Binz, T., Kepes, K., Kopp, O., Leymann,
F., and Wettinger, J. (2014). Combining Declarative
and Imperative Cloud Application Provisioning Based
on TOSCA. In IC2E, pages 87–96. IEEE Computer
Society.

Ferry, N., Brataas, G., Rossini, A., Chauvel, F., and Sol-
berg, A. (2014). Towards Bridging the Gap Between
Scalability and Elasticity. In 4th International Con-
ference on Cloud Computing and Services Science
(CLOSER), pages 746–751.

Guillén, J., Miranda, J., Murillo, J. M., and Canal, C.
(2013). A UML Profile for Modeling Multicloud Ap-
plications. In Service-Oriented and Cloud Computing,
pages 180–187. Springer.

Kamali, A., Mohammadi, S., and Barforoush, A. A. (2014).
UCC: UML profile to cloud computing modeling: Us-
ing stereotypes and tag values. In 7th International
Symposium on Telecommunications (IST), pages 689–
694. IEEE.

Loulloudes, N., Sofokleous, C., Trihinas, D., Dikaiakos,
M. D., and Pallis, G. (2015). Enabling Interop-
erable Cloud Application Management through an
Open Source Ecosystem. IEEE Internet Computing,
19(3):54–59.

Lushpenko, M., Ferry, N., Song, H., Chauvel, F., and Sol-
berg, A. (2015). Using adaptation plans to control the
behavior at runtime. In Bencomo, N., Götz, S., and
Song, H., editors, CEUR Workshop Proceedings, vol-
ume 1474. CEUR.

Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., and Tata,
S. (2015). A Precise Metamodel for Open Cloud
Computing Interface. In 8th IEEE International Con-
ference on Cloud Computing (CLOUD), pages 852–
859. IEEE.

Metsch, T., Edmonds, A., and Parák, B. (2016). Open Cloud
Computing Interface - Infrastructure. [Available on-
line: http://ogf.org/documents/GFD.224.pdf].

Nyrén, R., Edmonds, A., Metsch, T., and Parák, B.
(2016a). Open Cloud Computing Interface - HTTP
Protocol. [Available online: http://ogf.org/
documents/GFD.223.pdf].

Nyrén, R., Edmonds, A., Papaspyrou, A., Metsch, T., and
Parák, B. (2016b). Open Cloud Computing Inter-
face - Core. [Available online: http://ogf.org/
documents/GFD.221.pdf].

OASIS (2013). Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) 1.0.
[Available online: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html].

OASIS (2016). TOSCA Simple Profile in YAML Version
1.0. [Available online: http://docs.oasis-open.
org/tosca/TOSCA-Simple-Profile-YAML/v1.0/
TOSCA-Simple-Profile-YAML-v1.0.html].

OMG (2014). MDA Guide rev. 2.0. OMG Document
ormsc/2014-06-01 [Available Online: http://www.
omg.org/cgi-bin/doc?ormsc/14-06-01.pdf].

Paraiso, F., Challita, S., Al-Dhuraibi, Y., and Merle, P.
(2016). Model-Driven Management of Docker Con-
tainers. In 9th IEEE International Conference on
Cloud Computing (CLOUD), San Francisco, United
States.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

650


