
Component-wise Application Migration
in Bidimensional Cross-cloud Environments

Jose Carrasco, Francisco Durán and Ernesto Pimentel
University of Málaga, Málaga, Spain

Keywords: Cloud Applications, Migration, Cross-cloud, Trans-cloud, Brooklyn, Standards, TOSCA.

Abstract: We propose an algorithm for the migration of cloud applications’ components between different providers,
possibly changing their service level between IaaS and PaaS. Our solution relies on three of the key ingre-
dients of the trans-cloud approach: a unified API, agnostic topology descriptions, and mechanisms for the
independent specification of providers. We show how our approach allows us to overcome some of the current
interoperability and portability issues of cloud environments to propose a solution for migration, present an
implementation of our proposed solution, and illustrate it with a case study and experimental results.

1 INTRODUCTION

In recent years, Cloud Computing (Armbrust et al.,
2010) has experienced a growth in the demand of
its services (Youseff et al., 2008). As an answer
to this demand, vendors have developed their own
cloud solutions, offering similar resources through
their own APIs, defining their own non-functional re-
quirements, quality of service (QoS) specifications,
service level agreements (SLA), and add-ons. This
heterogeneity has derived into many interoperability
and portability restrictions, and provokes situations
where cloud developers are often locked-in specific
services from cloud providers.

Recent advances in the management of the con-
nections between components deployed using dif-
ferent technologies and vendors (Kritikos and Plex-
ousakis, 2015; Paraiso et al., 2012; Grozev and
Buyya, 2014) have solved most of the interoperabil-
ity issues. We have witnessed the development of
deployment platforms with the ability to distribute
modules of applications using services from different
providers, with the goal of using the better alterna-
tive for each of the individual components and for the
operation of our applications. The last step in this
direction is the possibility of deploying applications
combining services from IaaS and PaaS levels, possi-
bly by different vendors in trans-cloud environments
(Carrasco et al., 2016). The selection of the vendor
or service level to deploy an application from among
the multitude of cloud offerings is indeed a challenge
(see, e.g., (Androcec et al., 2015; Moustafa et al.,

2016; Brogi et al., 2014)). The decision is indeed
non-trivial, and the context and required knowledge
may change while applications are running.

Once an application is running, its management
requires mechanisms to ensure that the chosen cloud
providers are delivering the promised computing re-
sources (Qu et al., 2015; Zheng et al., 2014). For
example, developers may decide today to use a PaaS
provider for a particular module because it is more
cost effective, or because it requires less manage-
ment effort, but tomorrow they may decide to move
some component to IaaS level because their needs or
business model may require more control over vir-
tual machines (VM), e.g., for a better integration with
their enterprise’s infrastructure, or because they need
to increase the security level of their services. Un-
fortunately, moving an application’s component be-
tween different providers is problematic, and it is
more difficult between different abstraction levels,
since changes in these decisions require some devel-
opment efforts (Petcu, 2011; Di Martino, 2014), in
order to adapt the components to new service require-
ments and their integration with other application’s
components, running in other providers.

A migration process requires the orchestration of
the entire cloud environment where the application
is running, to accomplish the correct movement of
components. This process is even more complicated
if the current cloud interoperability and portability
problems are taken into account. As a result, migra-
tion in the cloud opens a lot of new key issues re-
lated to cloud resources and applications’ components

Carrasco, J., Durán, F. and Pimentel, E.
Component-wise Application Migration in Bidimensional Cross-cloud Environments.
DOI: 10.5220/0006372302870297
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 259-269
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259



control. In fact, migration is still an unresolved topic
which has been widespread studied by both academia
and industry (see, e.g., (Jamshidi et al., 2013a; Zhao
and Zhou, 2014)). There have been several propos-
als for what is usually called live migration of cloud
application’s components (Binz et al., 2011; Durán
and Salaün, 2016; Boyer et al., 2013), where compo-
nents of an application, which are already running in
some providers, are moved to different vendors or lo-
cations. However, these proposals present significant
restrictions, mainly due to the portability of the com-
ponents between different vendors, but also to their
interoperability, which forces to provide ad-hoc solu-
tions. Furthermore, these solutions are limited to one
specific service level (cf. (Durán and Salaün, 2016;
Boyer et al., 2013; Zeginis et al., 2013)).

Migration of individual components or entire ap-
plications may indeed be unavoidable over time, be-
cause of changes in the offered services, prices, secu-
rity policies, or simply because a provider just stops
providing its services. Once developers can take ad-
vantage of the features of different kinds of services,
they will be interested as well in optimizing the cloud
resources usage and improve their applications’ per-
formance. We propose an orchestration algorithm
to reach migration of a component between different
providers in an agnostic way, what means that it is
not bound to any service level, either IaaS or PaaS,
of any particular provider. This allows developers to
deal with vendor lock-in issues, facilitating the adap-
tation of the running applications according to their
own needs, by moving just the necessary application’s
components to another services, independently of the
target abstraction level, IaaS or PaaS.

In order to ensure the agnosticity of our proposal,
the algorithm is built over trans-cloud (or bidimen-
sional cross-cloud) concepts (Carrasco et al., 2016).
Specifically, (Carrasco et al., 2016) uses the TOSCA
standard to model agnostic applications’ topologies,
which do not use any specifics of the target providers
over which they will be deployed. The information
related to the cloud service level, IaaS or PaaS, is
added by means of a mechanism independent of the
topology description: policies. The trans-cloud en-
vironment processes these specifications and uses an
homogeneization API, which unifies IaaS and PaaS
services of different vendors, to orchestrate the de-
ployment of the application over the required cloud
services.

Our migration algorithm relies on the trans-cloud
infrastructure for the management of each applica-
tion module and the interaction with the used cloud
services, to stop, restart or move the necessary com-
ponents independently of the service level, IaaS or

PaaS, the cloud technology or any other dependen-
cies. In order to preserve the architecture consistency
and avoid unexpected situations during the migration,
a certain strategy has to be applied while the compo-
nents are being operated.

The rest of this paper is structured as follows. Pre-
liminaries about trans-cloud deployment and its cur-
rent implementation are presented in Section 2. The
proposed migration algorithm is described in Sec-
tion 3. Details on the implementation of the algorithm
are presented in Section 4, together with some experi-
mental results. In Section 5, we compare our proposal
to other related work. Finally, Section 6 conclude the
paper and presents some plans for future work.

2 AN OVERVIEW OF
TRANS-CLOUD

In this section we provide an overview of trans-cloud
and its main capabilities. These concepts are illus-
trated with a running case study, which will be later
used to show the use of the our proposal in Section 3
and to evaluate it in Section 4.

2.1 The Softcare Case Study

Softcare is an application for the social inclusion of
elderly people and for the management of their medi-
cal problems. The application was developed by Atos
Spain in the context of the SeaClouds project (Brogi
et al., 2015). Softcare is a cloud-based clinical, edu-
cational, and social application, based on state-of-the-
art technology.

As depicted in Figure 1, the application is com-
posed of seven modules: four web modules over
respective Tomcat servers, namely SoftwareDash-
board, SoftwareWS, Multimedia, and Forum (note the
Tomcat icons), and three MySQL databases, namely
SoftcareDB, MultimediaDB, and ForumDB (note the
database icons). The Softcare Dashboard compo-
nent provides the main graphical user interface, which
depends on the Forum, Multimedia and SoftcareWS
modules. Forum adds a forum service to the web plat-
form, Multimedia is responsible for managing the of-
fered multimedia content, and SoftcareWS contains
the application’s business logic. The databases Fo-
rumDB, MultimediaDB and SoftcareDB store, respec-
tively, the forum’s messages, the multimedia content,
and the rest of the application’s data.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

260



Figure 1: Brooklyn-TOSCA Softcare’s topology.

2.2 Trans-Cloud Concepts

The main goal of the trans-cloud management is to
allow developers to deploy their applications by us-
ing available services and resources offered by differ-
ent providers, at IaaS or PaaS levels, accordingly each
applications needs and preferences.

Trans-cloud reduces significantly the portability
and interoperability related issues, liberating devel-
opers from the usual infrastructure limitations while
defining their applications. The approach relies on
three main ideas:

Agnostic Topology Description. The knowledge
about applications’ components, configurations, in-
terrelations, etc. is specified using agnostic descrip-
tions, without details about cloud providers.

Target Services Specification. Target providers
are specified independently of topologies, which al-
lows maintaining agnostic and reusable topology de-
scriptions. It provides a key flexibility to define what
services, IaaS or PaaS, will be used to deploy each
specific component.

Unified API. Trans-cloud defines an homo-
geneization API where IaaS and PaaS services man-
agement is unified under a common interface. This
API mitigates the cloud heterogeneity and provides a
vendor general solution, without depending on tools,
frameworks or technologies to manage IaaS and PaaS
services. Then, once a topology has been defined and
the target providers have been specified, the API uses
different mechanisms, clients, drivers, etc., to operate
with the selected services, IaaS or PaaS, to carry out
the application deployment.

These concepts are not just useful for enabling a
unified cloud management, they provides an essential
basis for carrying out the migration of components:
Target locations can be added in a later phase to an
application description, and the underlying API is in
charge of the management of the necessary resources
(using drivers for the cloud technologies and connec-
tors).

Figure 2: Trans-cloud approach.

2.3 A Trans-Cloud Implementation

The trans-cloud tool presented in (Carrasco et al.,
2016) is based on the TOSCA standard1 for the de-
scription of agnostic topologies. Specifically, it builds
on the Brooklyn-TOSCA open project for enabling an
independent specification of the used services, and on
the Apache Brooklyn project to provide a common
API for the unified management of IaaS and PaaS ser-
vices. Figure 2 shows an overview of the proposal in
(Carrasco et al., 2016).

The open-source Apache Brooklyn project is a
multi-cloud application management platform for the
management of the provisioning and deployment of
cloud applications. It provides a common API that
enables cross-computing features through a unified
API. Although the current official release of Brooklyn
only handles IaaS services, as can be seen in Figure 2,
Brooklyn’s API was extended in (Carrasco et al.,
2016) with new mechanisms for the management of
PaaS services. Behind its current API, we have al-
located the behavior to describe PaaS providers and
mechanisms to control application components on
them. Our extension to provide support for PaaS ser-
vices builds on the genericity and flexibility of Brook-
lyns API, which has the independency between appli-
cation descriptions and cloud services used in their
operation as one of its goals. Initially, CloudFoundry-
based platforms, like Pivotal Web Services, IBM
Bluemix, etc., were integrated, to prototype the PaaS
support, and to allow components to be deployed us-
ing both IaaS and PaaS.

Brooklyn-TOSCA is an open project with the goal
of extending Brooklyn with the capability of deploy-
ing and managing applications and cloud resources
through TOSCA concepts. Brooklyn-TOSCA pro-
motes an initiative to build agnostic TOSCA topolo-
gies by means of expressing the target services using
TOSCA policies.

Listing 1 shows Softcare’s TOSCA YAML topol-
ogy schema, where just some elements are described

1 TOSCA (Topology and Orchestration Specification for
Cloud Applications) is an OASIS standard for the descrip-
tion of cloud applications, the corresponding services and
their relationships.

Component-wise Application Migration in Bidimensional Cross-cloud Environments

261



to illustrate the agnostic-based application descrip-
tion. As we can see in lines 29–37, this definition fol-
lows the Brooklyn-TOSCA initiative that allows tar-
get cloud services to be specified by means of poli-
cies (brooklyn.location). In this case, we can see how
two groups have been defined to be deployed on IaaS,
specifically on AWS (Ireland’s cluster) and SoftLayer
(London’s cluster). This mechanism allows the sepa-
ration between topology description and the providers
specification. In fact, if we decided to re-deploy the
application, but using different providers, we would
just need to change the corresponding locations, with-
out modifying the original topology, as we can see in
Listing 2, where Pivotal (PaaS) is used to deploy some
of the components.

As we will see in the following section, the trans-
cloud approach provides a set of useful basic mecha-
nisms to build an agnostic algorithm to reach the mi-
gration of application’s component.

3 MIGRATION ALGORITHM

In this section, we present our algorithm for the ag-
nostic reconfiguration of cloud applications’ compo-
nents. It effectively connects the components as re-
quired, stopping, starting, releasing and provisioning
necessary cloud resources and respecting the func-
tional dependencies.

3.1 Description of the Algorithm

Before presenting the algorithm itself in Section 3.2,
we provide in this section some insights into how the
algorithm works on our case study. Specifically, we
describe its operation step by step by looking at how
the Forum component of the Softcare case study can
be migrated.

Let us assume that the Softcare application has
been described and deployed following the trans-
cloud approach. That is, there is an agnostic descrip-
tion of it and its components, e.g., using TOSCA, as in
Section 2. In that description, the only reference to the
concrete locations on which the components were to
be deployed, or even whether they were using IaaS or
PaaS services, were given as policies in the specifica-
tion of the groups of the components. The trans-cloud
infrastructure is in charge of hiding the management
of the application’s components and the vendors and
the abstraction levels. In fact, this infrastructure does
not only manage the module to be deployed or mi-
grated, but also the related cloud resources. It identi-
fies interdependencies between components and is in
charge of handling them, both in the deployment

1 tosca definitions version:
tosca simple yaml 1 0 0 wd03

2 ...
3 topology template:
4 node templates:
5 SoftcareDashboard:
6 type: org.apache.brooklyn.entity.webapp.

tomcat.TomcatServer
7 ...
8 requirements:
9 − endpoint configuration:

10 node: SoftcareWS
11 ...
12 − endpoint configuration:
13 node: Forum
14 ...
15 − endpoint configuration:
16 node: Multimedia
17 ...
18 SoftcareWS:
19 type: org.apache.brooklyn.entity.webapp.

tomcat.TomcatServer
20 ...
21 requirements:
22 − endpoint configuration:
23 node: SoftcareDB
24 ...
25 SoftcareDB:
26 type: org.apache.brooklyn.entity.database.

mysql.MySqlNode
27 ...
28 ...
29 groups:
30 add compute locations:
31 members: [SoftcareDB, ForumDB,

MultimediaDB, Forum]
32 policies:
33 − brooklyn.location: aws−ec2:eu−west−1
34 add web locations:
35 members: [SoftcareDashboard, SoftcareWS,

Multimedia]
36 policies:
37 − brooklyn.location: softlayer:lon02

Code 1: Softcare’s TOSCA description.

and the migration process, ensuring the integrity of
the topology.

Given the deployment plan used for the Softcare
application in Section 2.3, let us assume that the Fo-
rum component is running in AWS EC2 (IaaS). Now,
assume we want to move it to Pivotal Web Services
(PaaS). The sequence of steps followed by the migra-
tion process are depicted in the diagram in Figure 3.
The diagram shows a Migration Orchestrator element
that receives a migration request to move the Forum
component to Pivotal Web Services, and is in charge
of controlling the migration process.

Once the migration request is received, the migra-
tion orchestrator stops all elements that have func-
tional dependencies with the Forum component—

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

262



1 ...
2 groups:
3 add compute locations:
4 members: [SoftcareDB, ForumDB,

MultimediaDB, Forum]
5 policies:
6 − brooklyn.location: aws−ec2:eu−west−1
7 add web locations:
8 members: [SoftcareDashboard, SoftcareWS,

Multimedia]
9 policies:

10 − brooklyn.location: pivotal−ws

Code 2: Adding new locations to web modules.

Figure 3: Forum migration process.

Forum’s parents—to avoid scenarios where a com-
ponent is working without some of its dependencies.
Finding all parents of a module might be a complex
and expensive task, since functionalities are defined
as connections which are configured and stablished
using different mechanisms, for example, environ-
ment variables, configuration files, etc. However, in
the trans-cloud approach, there is a complete descrip-
tion of the application’s topology, where all the rela-
tions and dependencies are specified.

Since each of the components of an application
may be running on services of different providers, ei-
ther IaaS or PaaS, an operation on them will be de-
pendent on its specific case. For example, to stop
a server that is running on a VM in IaaS, probably
a specific command should be executed on the VM
using ssh, or, if the piece of software is running on
a PaaS environment, a concrete REST web service
of the platforms API should be called to stop the
piece of software. However, thanks to its unified API,
which hides the cloud heterogeneity, the trans-cloud
approach greatly simplifies the management of differ-
ent cloud services.

Once all parents have been stopped, the next step
is stopping the component that has to be migrated, the

Forum component in this case (Step 2 in Figure 3).
However, only stopping the component is not enough,
since the resources that are being used by the Forum
component in AWS will not be used again once the
component is moved to its new location, and there-
fore it is also necessary to release all the associated
resources. Again, the trans-cloud capabilities allows
our algorithm to be designed without worrying about
the risks of managing different providers, since it al-
lows us to stop the application component and release
the associated cloud resources independently of the
vendor or the abstraction.

Once the component is stopped, and the cloud re-
sources have been released, a new instance of the Fo-
rum component is started in the new location (Step
3). Once more, the trans-cloud mechanisms are key
to accomplish this task in a very straightforward way.
The agnostic topology of the application contains all
the information about the structure of the applica-
tion, which is used, together with the information on
the target providers, by the unified API, to deploy
the component: The description of any component
(Forum) is provided by the original topology, and the
new target location (Pivotal Web Service) is given as
an argument of the operation.

With the component started in its new location,
it is still necessary to re-establish the connections of
its functional dependencies to maintain the structural
integrity of the application (Step 4). In our exam-
ple, once the Forum component in running in Pivotal,
it is necessary to re-establish its connection with the
ForumDB component. The trans-cloud environment
is able to analyze the application topology, find the
necessary relations for the newly migrated component
and re-establish the connections with the other com-
ponents in the topology independently of the cloud
environments where the components are running. For
our example, since Pivotal offers PaaS services, con-
nections between components are modeled using en-
vironment variables.

The last step consist in restarting all application’s
elements stopped in Step 1. The trans-cloud mecha-
nisms makes the restarting of the necessary compo-
nents and the re-establishment of their connections
(Steps 5 and 6) straightforward. The topology of the
application is analized and the parents of the Forum
component (Dashboard) are restarted. The new Fo-
rum component’s endpoint, which is provided now by
Pivotal Web Services, is used to re-establish the con-
nection.

Component-wise Application Migration in Bidimensional Cross-cloud Environments

263



3.2 Algorithm Specification

As we have seen in the previous section, the trans-
cloud approach provides the necessary ingredients
for the definition of an agnostic migration algorithm,
where the diversity of the cloud and the complex man-
agement of applications’ components is delegated to
the different mechanisms provided by the trans-cloud
infrastructure.

Our migration algorithm is specified in Algo-
rithm 1. It is completely agnostic, it is just a process
orchestrator. Given an application, the component to
be migrated, and the target location for such com-
ponent, the migration orchestrator defines an opera-
tional plan for the migration process, delegating the
management of each concrete application’s compo-
nent and bound cloud resource to trans-cloud mech-
anisms.

Algorithm 1: Migration Algorithm.

Input: a : application
Input: c : component to migrate
Input: l : new location for the component
1: procedure MIGRATE(a, c, l)
2: for parent: parents(a,c) do
3: STOPPARENTS(a,parent)
4: stopAndReleaseResources(a,c)
5: start(a,c, l)
6: for child : children(a,c) do
7: restablishRelations(a,c,child)
8: for parent: parents(a,c) do
9: RESTARTPARENTS(a,parent)

10: procedure STOPPARENTS(a, c)
11: for parent: parents(a,c) do
12: STOPPARENTS(a,parent)
13: stop(a,c)
14: procedure RESTARTPARENTS(a, c)
15: restart(a,c)
16: for child : children(a,c) do
17: reestablishRelations(a,c,child)
18: for parent: parents(a,c) do
19: RESTARTPARENTS(a,parent)

The operation MIGRATE(a,c, l) receives as input
the application to operate on a, the component to be
migrated c, and the target location l. Before migrat-
ing a component, it is necessary to stop all its input
dependencies (lines 2-3). STOPPARENTS (lines 10-
13) is a recursive procedure that stops all the ances-
tors of a given component following a top-down strat-
egy, that is, it stops a component once all its parents
have been previously stopped. The stop(a,c) opera-
tion (line 15), provided by the trans-cloud infrastruc-
ture, stops an application’s component.

Once all parents have been stopped, the compo-
nent to be migrated is stopped and all bound resources

are released using the stopAndReleaseResources(a,c)
operation provided by the trans-cloud infrastructure
(line 4). Then, the target component is started in its
new location and all its connections are re-established
(lines 6–8). Thanks to the trans-cloud operations
start(a,c, l) and reestablishRelations(a,c,child), the
new component can be deployed and started in its lo-
cation, hiding the complexity of managing the differ-
ent services, and inspecting the application’s topology
to find and manage the relations in order to accom-
plish the reconnection between the target component
and its children.

Finally, all components that were stopped in pre-
vious steps have to be restarted (lines 9–10). Again,
a recursive function, RESTARTPARENTS(a,parent)
(lines 17–22), which follows a bottom-up strategy to
avoid unexpected behaviors and wrong results, is in
charge of re-starting all the stopped ancestors. This
procedure ensures that all dependencies of a compo-
nent are available before restarting it, and thus con-
cluding the migration process.

4 THE TOOL IN PRACTICE

We explain in this section how our migration algo-
rithm has been integrated into our trans-cloud infras-
tructure as an effector of cloud entities. We evaluate
it by focusing in two aspects: the effort required for
moving one element to a new location and the times
taken by the execution of two different migration sce-
narios.

4.1 Algorithm Implementation

As explained in Section 3.2, our migration algorithm
is treated like an autonomous element inside the trans-
cloud approach. More specifically, Algorithm 1 has
been developed and integrated as a new part of the
customized Brooklyn described in Section 2.3. In
this way, the algorithm can be accessed as part of
the other available trans-cloud mechanisms, to man-
age providers and cloud resources, to operate indi-
vidually with application components and carrying
out operations like stopping, starting, restarting, etc.
The trans-cloud extended Brooklyn tool, its docu-
mentation and examples is available in github from
https://goo.gl/DzXcXr.

To be able to provide support for the manage-
ment of connections and dependencies, key for the
migration algorithm, our trans-cloud infrastructure
had to be extended to enable explicit management of
the functional relations of application’s components.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

264



Brooklyn, as well as the customized Brooklyn pre-
sented in Section 2.3, have a limited support on the
management of relations. They read the TOSCA re-
lationships specified in the topology of applications
and configure components, for example, using envi-
ronment variables, or configuration files, to establish
the connection between them. However, the explicit
knowledge about the relations is not shared with the
trans-cloud API, which means that it does not of-
fer the operations to identify, and manage the rela-
tions and functional dependencies between applica-
tion’s component, e.g., for re-establishment the con-
nections, to find all component which depend of an-
other (parents), or retrieve all the dependencies of one
of them (children), which are required to develop the
proposed algorithm.

In our extended implementation of Brook-
lyn, when TOSCA relationships are processed by
Brooklyn-TOSCA to configure the component’s re-
lations, this information is added to the trans-cloud
API. For that, we have added new mechanisms, based
on the official Brooklyn API, to enable the manage-
ment of relationships and to implement operations to
find the parents and children of any component.

One of the key issues we have to solve when
implementing the support for functional dependen-
cies was the handling of Brooklyn’s composition rela-
tions. Composition relations are used, for example, to
model the relation between a cluster and the servers
it controls. For composition relations, a component is
in charge of the management of its sub-components.
Thus, for example, if an operation, like stopping or
starting, is applied to a cluster, it has to apply the same
operation (stop or start) to all its children, in order to
maintain the consistence of the topology. Then, com-
posed elements, like clusters or elastic components
can be understood and managed as a bundle, which
represent a set of sub-components. Fortunately, the
bundle behavior is perfectly compatible with our al-
gorithm, since, if an operation must be carried out on
a bundle, this one will ensure that the same operation
is applied to all its sub-components. For example,
if the migration algorithm requires to stop a cluster,
this cluster itself ensures that all the servers, which
compose it, will also be stopped. This maintains the
topology integrity during the process, and ensures that
the algorithm orchestration is delivered to all applica-
tion’s components.

4.2 On the Effort for Migration

Whereas the migration from on-premise applica-
tions to the cloud has been studied by many re-
searchers (Jamshidi et al., 2013b), not much work has

been published on changes in target providers for mi-
gration. Besides, although there is no consensus in the
literature on how to measure alternative deployments,
the one used in (Kolb et al., 2015) is, to the best of our
knowledge, possibly the most interesting so far. They
use their proposal to compare and analyze the feasi-
bility of the migration of an application using seven
different vendors in terms of portability and effort.
For an application composed of modules similar to
those used in our case study, in the analysis in (Kolb
et al., 2015), the deployment steps needed for a given
set of PaaS providers are very different. Although
these steps are semantically similar among vendors,
they are carried out by proprietary tools, which do
not permit them to be carried out in a standardized
way. Their experiments showed that, on average, a
migration may require an effort of 17 actions with a
maximum spread of 14 and a standard deviation of
5. A low number of steps is usually offset by a com-
plex configuration of the initial code repository, and it
makes the initial deployment of an application a non-
elementary task.

Despite the differences in effort between the dif-
ferent alternatives shown in (Kolb et al., 2015), this
effort is reduced to 1 when the proposed algorithm
uses bidimensional cross-cloud approach to orches-
trate the migration and interact with the different
providers. This is true in our case also, not only
for migrations between the same kind of abstraction
livels, such as PaaS, but for any combination of IaaS
and PaaS vendors used for each of our application’s
modules, since the knowledge to interact with a spe-
cific provider and to handle application topologies,
like relations, is encapsulated inside the customized
Brooklyn. So, this allows the effort required for the
migration of an application component to be only 1.
Thus, the benefit is obvious. We only need an ini-
tial effort to specify the topology of our application in
TOSCA, and bidimensional-based algorithm allows
any application’s component to be migrated between
different providers, which is comparable with—even
simpler than—the effort needed to do the orchestrate
the migration process by hand.

4.3 Deployment Times

A second important issue to be illustrated is as regards
the quantitative level. Comparing the performance or
reliability of providers or abstraction levels is not the
goal of this work, it would require a more exhaus-
tive analysis. However, our experiments show that
we have not lost performance or reliability by using
a trans-cloud deployment.

We have carried out experiments with two differ-

Component-wise Application Migration in Bidimensional Cross-cloud Environments

265



(a) Aws-to-Pivotal

(b) Pivotal-to-Aws

Figure 4: Forum migration process.

ent scenarios. Starting with the Softcare application
deployed with the trans-cloud approach using differ-
ent services, then the Forum component is migrated
between different providers:

Aws-to-Pivotal Forum is moved from AWS EC2 to
Pivotal Web Services.

Pivotal-to-Aws Forum is moved from Pivotal Web
Services to AWS EC2.

Each of these two migration scenarios has been
executed 10 times using our trans-cloud-based mi-
gration algorithm. The tool was instrumentalized to
gather information at each sub-task of the process for
each module. Specifically, and following the pro-
cess explained in Section 3.2, we identify in both
cases tasks Dashboard.stop, Forum.stop, Forum.start,
Dashboard.restart, and gather the times at which they
were completed (all time amounts are in seconds).

Charts in Figure 4a and 4b show box plots for
the migration times in scenarios Aws-to-Pivotal and
Pivotal-to-Aws, respectively. Both of them show sim-
ilar times for the Dashboard component stopping, but
we can see clear delays in the stopping and releas-

ing of the Forum component (Forum.stop). This de-
lay is explained by the different character of the kind
of the cloud resources used, since releasing of cloud
resources on IaaS (AWS EC2) (Figure 4a) is more ex-
pensive than releasing of PaaS services (Figure 4b).

The event Forum.start represents the re-
deployment of the Forum component in its new
location and the reconnection of its dependencies.
In Figure 4a the time values for Forum.start present
smaller values and smaller data dispersion than in
Figure 4b. The reason for this is that when the
Forum component is deployed on IaaS (AWS EC2), it
requires provisioning and configuring a new VM, and
then executing the necessary commands to deploying
the component, etc. The process is much simpler in
PaaS.

Finally, the Dashboard component is restarted.
Although the component is running on AWS EC2 in
both cases, Dashboard.restart shows a greater delay
in Figure 4b due to the accumulated dispersion in pre-
vious steps. The restart operation is in charge of re-
connecting its dependencies.

5 RELATED WORK

There is some research on the study of the portabil-
ity and interoperability issues in cloud computing, but
not much specific on component migration. Indeed,
depending on what kind of services are involved and
how they are managed, we identify in the literature
different ways to understand the term migration (see,
e.g., (Jamshidi et al., 2013a; Zhao and Zhou, 2014)):
migration of legacy apps, VM migration, and the mi-
gration of app components.

The most common form of migration is the migra-
tion of legacy applications to the cloud, where an en-
tire application has to be moved to cloud environment
in order to take advantage of cloud features (Arm-
brust et al., 2010), such as elasticity and scalability,
payments strategies, or on-demand provisioning of
services. Several studies are focused on the adapta-
tion (Andrikopoulos et al., 2013) and the predictive
cloud selections (Brogi et al., 2014; Qu et al., 2015;
Vu and Asal, 2012) for the efficient and robust deploy-
ment of legacy systems on cloud environments (Cai
et al., 2016; Papazoglou et al., 2007).

The second use of the term migration is in the con-
text of the management of virtualized resources on
IaaS contexts, like virtual machine migration (Clark
et al., 2005). VM migration enables the movement
from an online server to a new location, allowing
an efficient usage and allocation of resources on-
demand, ensuring the accomplishment of SLAs and

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

266



minimizing costs. Some proposals have tried to mit-
igate these issues by providing algorithms (Kashyap
et al., 2014; Zhang et al., 2014; Lu et al., 2015), and
new metrics (Deshpande et al., 2014) for the evalua-
tion, optimization and scheduling of VM migration.

Finally, as a natural evolution of the previous mi-
gration scenarios, we identify a more abstract migra-
tion process, the live migration of cloud application’s
components. In this context, different algorithms for
the robust movement of components among clouds
are proposed (Durán and Salaün, 2016; Boyer et al.,
2013). These solutions are limited to one specific
service level. For instance, the approach presented
in (Durán and Salaün, 2016) focuses on IaaS, whereas
Cloud4SOA is devoted to the management of PaaS
environments.

Federated multi-clouds (Paraiso et al., 2012) de-
fines a PaaS federated platform to manage applica-
tions on IaaS and PaaS providers. It uses an OASIS
standard, the Service Component Arquitecture, en-
abling the management over IaaS and PaaS levels of
different providers. They also offer a standard-based
unified provider-management, and allow the descrip-
tion of application architectures. However, they do
not offer a robust unified modeling mechanism to
represent the knowledge about applications, which
makes the addressing of migration and elasticity more
difficult.

Some research projects and initiatives, like
jClouds, COAPS (Sellami et al., 2013) or Nucle-
ous (Kolb and Röck, 2016) have developed generic
APIs to manage services of different providers and
their own models to represent application components
and cloud services, in order to address the vendor
lock-in problem and facilitate the migration of com-
ponents. These approaches focus on the simplifica-
tion of concrete abstraction levels, e.g., jClouds uni-
fies IaaS services, and COAPS is centered on PaaS.
We provide a level-agnostic solution by using trans-
cloud’s homogeneization mechanisms.

Projects like Roboconf (Pham et al., 2015) and
SCALES (Ranabahu et al., 2015) provide frameworks
for distributed application orchestration to define ap-
plications and the target providers to manage applica-
tions in multi-cloud platforms. Like us, both of them
provide a generic and extensible DSL-based infras-
tructure where IaaS and PaaS providers can be inte-
grated. Unfortunately, to deploy an application, in
these solutions developers must provide a number of
additional elements, to specify the steps necessary to
manage the application over the target providers. Ap-
plication descriptions and target services are very in-
terdependent, which makes it very difficult to modify
the target providers without affecting the application

models. Like all above-mentioned approaches, they
offer some early mechanisms to facilitate the migra-
tion of applications, but they do not formalize any al-
gorithm to orchestrate and automatize this process.

6 CONCLUSIONS

We have presented an agnostic algorithm to orches-
trate the migration process for application’s stateless
component. Since it is based on trans-cloud concepts,
the algorithm is vendor, technology and service-level
neutral.

The proposed algorithm takes advantage of these
capabilities, simplifying the management of the dif-
ferent cloud providers solutions, reducing the porta-
bility and interoperability issues related to vendor
lock-in. In fact, the algorithm is totally agnostic, and
it can be applied to any stateless application compo-
nent, either it is using IaaS or PaaS services to run.
The migration process is fully automated, the only re-
quired external intervention to carry out the migration
is just a migration request to initialize the process, in-
dicating the component which has to be migrated and
the target location. Indeed, it would be treated like an
autonomous element, because it cannot need be inte-
grated in the application modeling or its management
lifecycle. It can be described as a self-governing or-
chestrator, whether facilitate the implementation and
its integration in a trans-cloud system.

The current algorithm is intended for the migra-
tion of a single component of an application. We
will in the near future work on the migration of sev-
eral components of the same application, maybe all of
them, in parallel. Moreover, we plan to study the pos-
sibility of using flexibility and scalability mechanisms
for the support of autoscaling techniques to improve
the reconfiguration skills of the presented work.

ACKNOWLEDGEMENTS

We are grateful to our partners in the SeaClouds
project, and in particular to our colleagues Alex
Heneveld, Andrea Turli, and the rest of Cloud-
soft, and Francesco D’Andria and Roi Sucasas
from Atos Spain. This work has been partially
supported by MINECO/FEDER projects TIN2014-
52034-R and TIN2015-67083-R, and Universidad de
Málaga, Campus de Excelencia Internacional An-
dalucı́a Tech.

Component-wise Application Migration in Bidimensional Cross-cloud Environments

267



REFERENCES

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to adapt applications for the cloud envi-
ronment. Computing, 95(6):493–535.

Androcec, D., Vrcek, N., and Kungas, P. (2015). Service-
level interoperability issues of platform as a service. In
World Congress on Services (SERVICES), pages 349–
356.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

Binz, T., Leymann, F., and Schumm, D. (2011). Cmotion: A
framework for migration of applications into and be-
tween clouds. In Intl. Conf. on Service-Oriented Com-
puting and Applications (SOCA), pages 1–4. IEEE.

Boyer, F., Gruber, O., and Pous, D. (2013). Robust recon-
figurations of component assemblies. In Intl. Conf. on
Software Engineering (ICSE), pages 13–22.

Brogi, A., Carrasco, J., Cubo, J., Nitto, E. D., Durán, F.,
Fazzolari, M., Ibrahim, A., Pimentel, E., Soldani, J.,
Wang, P., and D’Andria, F. (2015). Adaptive man-
agement of applications across multiple clouds: The
SeaClouds approach. CLEI Electron. J., 18(1).

Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J.,
Pimentel, E., and D’Andria, F. (2014). SeaClouds: a
European project on seamless management of multi-
cloud applications. ACM SIGSOFT Sw. Eng. Notes,
39(1):1–4.

Cai, Z., Li, X., and Gupta, J. N. (2016). Heuristics for pro-
visioning services to workflows in XaaS clouds. IEEE
Trans. on Services Computing, 9(2):250–263.

Carrasco, J., Cubo, J., Durán, F., and Pimentel, E. (2016).
Bidimensional cross-cloud management with TOSCA
and brooklyn. In 9th IEEE International Conference
on Cloud Computing (CLOUD), pages 951–955.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
migration of virtual machines. In Conf. on Net-
worked Systems Design & Implementation (NSDI),
pages 273–286.

Deshpande, U., You, Y., Chan, D., Bila, N., and Gopalan,
K. (2014). Fast server deprovisioning through scatter-
gather live migration of virtual machines. In Intl.
Conf. on Cloud Computing (CLOUD), pages 376–
383. IEEE.

Di Martino, B. (2014). Applications portability and services
interoperability among multiple clouds. IEEE Trans.
on Cloud Computing, 1(1):74–77.

Durán, F. and Salaün, G. (2016). Robust and reliable re-
configuration of cloud applications. J. of Systems and
Software, 122:524–537.

Grozev, N. and Buyya, R. (2014). Inter-cloud architec-
tures and application brokering: taxonomy and survey.
Softw., Pract. Exper., 44(3):369–390.

Jamshidi, P., Ahmad, A., and Pahl, C. (2013a). Cloud mi-
gration research: a systematic review. IEEE Trans. on
Cloud Computing, 1(2):142–157.

Jamshidi, P., Ahmad, A., and Pahl, C. (2013b). Cloud mi-
gration research: A systematic review. IEEE Trans.
on Cloud Computing, 1(2).

Kashyap, S., Dhillon, J. S., and Purini, S. (2014). Rlc-a
reliable approach to fast and efficient live migration
of virtual machines in the clouds. In Intl. Conf. on
Cloud Computing (CLOUD), pages 360–367. IEEE.

Kolb, S., Lenhard, J., and Wirtz, G. (2015). Application
migration effort in the cloud. In Intl. Conf. on Cloud
Computing (CLOUD), pages 41–48.

Kolb, S. and Röck, C. (2016). Unified cloud application
management. In World Congress on Services Com-
puting (SERVICES), pages 1–8.

Kritikos, K. and Plexousakis, D. (2015). Multi-cloud ap-
plication design through cloud service composition.
In Intl. Conf. on Cloud Computing (CLOUD), pages
686–693.

Lu, H., Xu, C., Cheng, C., Kompella, R., and Xu, D. (2015).
vhaul: Towards optimal scheduling of live multi-vm
migration for multi-tier applications. In Intl. Conf. on
Cloud Computing (CLOUD), pages 453–460.

Moustafa, A., Zhang, M., and Bai, Q. (2016). Trustwor-
thy stigmergic service composition and adaptation in
decentralized environments. IEEE Trans. on Services
Computing, 9(2):317–329.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann,
F. (2007). Service-oriented computing: State of the
art and research challenges. Computer, 40(11).

Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., and Sein-
turier, L. (2012). A federated multi-cloud PaaS in-
frastructure. In Intl. Conf. on Cloud Computing
(CLOUD), pages 392–399.

Petcu, D. (2011). Portability and interoperability between
clouds: challenges and case study. In Towards a
Service-Based Internet, pages 62–74.

Pham, L. M., Tchana, A., Donsez, D., De Palma, N., Zur-
czak, V., and Gibello, P.-Y. (2015). Roboconf: a
hybrid cloud orchestrator to deploy complex applica-
tions. In Intl. Conf. on Cloud Computing (CLOUD),
pages 365–372.

Qu, L., Wang, Y., Orgun, M. A., Liu, L., Liu, H., and
Bouguettaya, A. (2015). CCCloud: Context-aware
and credible cloud service selection based on sub-
jective assessment and objective assessment. IEEE
Trans. on Services Computing, 8(3):369–383.

Ranabahu, A., Maximilien, E. M., Sheth, A., and
Thirunarayan, K. (2015). Application portability in
Cloud Computing: An abstraction-driven perspective.
IEEE Trans. on Services Computing, 8(6):945–957.

Sellami, M., Yangui, S., Mohamed, M., and Tata, S. (2013).
PaaS-independent provisioning and management of
applications in the cloud. In Intl. Conf. on Cloud Com-
puting (CLOUD), pages 693–700.

Vu, Q. H. and Asal, R. (2012). Legacy application migra-
tion to the cloud: Practicability and methodology. In
World Congress on Services (SERVICES), pages 270–
277. IEEE.

Youseff, L., Butrico, M., and Silva, D. D. (2008). Toward
a unified ontology of cloud computing. In IEEE Grid

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

268



Computing Environments Workshop (GCE), pages 1–
10.

Zeginis, D., D’Andria, F., Bocconi, S., Cruz, J. G., Martin,
O. C., Gouvas, P., Ledakis, G., and Tarabanis, K. A.
(2013). A user-centric multi-paas application manage-
ment solution for hybrid multi-cloud scenarios. Scal-
able Computing: Pract. and Exp., 14(1).

Zhang, W., Lam, K. T., and Wang, C. L. (2014). Adap-
tive live vm migration over a wan: Modeling and
implementation. In Intl. Conf. on Cloud Computing
(CLOUD), pages 368–375. IEEE.

Zhao, J.-F. and Zhou, J.-T. (2014). Strategies and methods
for cloud migration. Intl. J. of Automation and Com-
puting, 11(2):143–152.

Zheng, Z., Zhang, Y., and Lyu, M. R. (2014). Investigat-
ing QoS of real-world web services. IEEE Trans. on
Services Computing, 7(1):32–39.

Component-wise Application Migration in Bidimensional Cross-cloud Environments

269


