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Abstract: The multitude of cloud providers and technologies diminish the interoperability and portability of applications
by offering diverse and heterogeneous functionalities, APIs, and data models. Although there are integration
technologies that provide uniform interfaces that wrap proprietary APIs, the differences regarding the services
offered by providers, their functionality, and their management features are still major issues that impede
portability. In this paper, we tackle these issues by introducing the SePaDe System, which is a pluggable de-
ployment framework that abstracts from proprietary services, APIs, and data models in a new way: The system
builds upon reusable archive templates that contain (i) a deployment model for a certain kind of application
and (ii) all deployment and management logic required to provide defined functionalities and management fea-
tures. Thus, by selecting appropriate templates, an application can be deployed on any infrastructure providing
the specified features. We validate the practical feasibility of the approach by a prototypical implementation
that is based on the TOSCA standard and present several case studies to evaluate its relevance.

1 INTRODUCTION

With the general acceptance of Cloud Computing,
problems related to availability of IT resources seem
to be diminished (Zhang et al., 2010). In Cloud Com-
puting, accessing compute, network, and storage ca-
pabilities can be categorized according to the NIST
(Mell and Grance, 2011) service models Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (laaS): SaaS deliv-
ers complete software applications from within the
cloud, while PaaS allows users to deploy their own
applications on already available, scalable, and con-
figurable hosting environments. IaaS allows a user to
instantiate and access virtual resources, such as vir-
tual machines and disks, which can be used to host the
users’ applications. While SaaS has the lowest man-
agement complexity, the complexity increases further
from PaaS to IaaS as more and more management
must be done by the user himself. For example, a user
does not have to manage the scalability of an SaaS
solution as this is done by the cloud provider’s infras-
tructure, whereas he has to explicitly specify scaling
rules when an application is hosted on an IaaS offer-
ing. Thus, depending on the users’ requirements, he
can select the most appropriate service model.
Howeyver, the multitude of vendors and their of-
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ferings diminish the interoperability and portability of
applications with diverse and heterogeneous function-
ality, APIs, and data models. Although there are inte-
gration technologies that try to solve these issues on
the PaaS and IaaS layer by abstracting from propri-
etary APIs and data models (Hoare, 2016), the differ-
ences regarding (i) the services offered by providers,
(i) their functionality, and (iii) their management fea-
tures are becoming increasingly challenging. Indeed,
such integration technologies help deploying appli-
cations on different clouds, but if required services,
functionalities, or management features are not pro-
vided by the selected provider, applications cannot
be deployed as desired. Thus, as the offerings of
providers cannot be configured arbitrarily and as there
are typically no natively-supported means to add re-
quired functionality or management features, this is
a serious portability problem—ifrom the functional as
well as from the non-functional perspective.

In this paper, we tackle these issues. We in-
troduce the SePaDe System, which is a pluggable
deployment framework that abstracts from cloud
providers and technologies in a new way: instead
of providing unified interfaces that wrap proprietary
APIs and normalizing data models, which are the
typical approaches of integration technologies, the
SePaDe System builds upon the concept of searching,
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Figure 1: Overview of motivations for our work, ranging from issues of (i) missing application portability between different
*aa$ providers, (ii) the need for custom functionality on top of *aaS providers, and (iii) the need for *aaS layers to be portable.

packaging and deploying Self-Manageable Applica-
tion Archive Templates (SMAART). SMAARTs are
reusable archives that contain (i) a deployment model
for a certain type of application on a certain infras-
tructure and (ii) all executables, e.g., shell scripts, re-
quired to deploy and manage the application to en-
able the functionalities and management features re-
quested. The goal of the system is to enable the user to
only specify the application files, the target infrastruc-
ture, and the desired features while the system auto-
matically deploys the application following these re-
quirements. We validate the practical feasibility by
a prototype based on the TOSCA standard (OASIS,
2013): By applying SePaDe to TOSCA, we add an
additional layer on top of TOSCA that enables users
to search suitable templates that can be used to au-
tomatically deploy given application files following
specified requirements. Moreover, we evaluate the
practical relevance of our approach with case studies
that show how different kinds of functionalities and
features that are not natively supported can be added
using the SePaDe System. Thus, besides increasing
the degree of portability, the proposed concept can be
also used to add new functionalities and features to
existing offerings in a reusable way. Please note that
our system does not replace existing technologies but
adds another layer of abstraction.

The remainder of this paper is structured as fol-
lows: In Section 2, we motivate our approach based
on the issue of portability. Afterwards, we present an
overview of the SePaDe System, its architecture, and
introduce the concept of SMAARTS in Section 3. We
present a TOSCA-based prototype in Section 4 while
Section 5 illustrates case studies. In Section 6 related
work is discussed, Section 7 concludes the paper and
outlines possible future work.

2 MOTIVATION &
STATE-OF-THE-ART

In this section, we discuss three motivating scenarios
that are difficult to realize using state-of-the-art tech-
nologies (see scenarios in Figure 1).

2.1 Missing Application Portability

The application portability problem results from ven-
dors providing proprietary APIs, services, and data
models (see left side in Figure 1). As a result, de-
veloping applications on top of one provider’s APIs
raises the issue of vendor lock-in, which impedes
porting an application to another provider. Avail-
able integration technologies such as Nucleus (Réck
and Kolb, 2016) tackle these issues by providing
generic APIs and data models that wrap proprietary
implementations. Also container technologies such as
Docker (Fink, 2014) tackle portability issues. How-
ever, these approaches do not solve portability issues
in general: if, for example, PaaS offerings of two dif-
ferent providers support deploying Docker contain-
ers, a container may be technically portable from a
functional point of view. However, if one provider of-
fers a required management feature, e.g., automated
scaling, that is not supported by the other provider,
the portability fails on the non-functional level. Thus,
de facto and de jure standards and technologies only
help partially regarding portability as they cannot sup-
port all variants that may be needed to get appli-
cations portable on the functional as well as on the
non-functional level. The same applies to integration
technologies: if one provider offers a service that is
not supported by another provider, an application is
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Figure 2: Overview of the SePaDe approach.

not portable between these providers if this service is
mandatorily required.

2.2 Custom Layers

Deploying custom layers on top of existing resources
enables to use arbitrary hardware and eases the de-
ployment of applications on these (see middle in Fig-
ure 1). Applications can use available resources in a
transparent manner as they are developed on top of
chosen platforms, and, therefore, are not bound to a
specific environment. Especially within fields such as
the Internet of Things (Atzori et al., 2010), it is not
feasible to expect homogeneous resources. This trend
raises the need for portable platforms which can be
deployed on arbitrary resources. However, installing
and configuring such layers is typically a complex,
knowledge-intensive, and time-consuming task that
requires automation. Our approach tackles this by en-
abling developers to build / reuse custom layers and to
ship them in automatically installable archives. This
enables to ship custom platforms which are highly
specialized for a particular domain.

2.3 Layer Portability

Enabling developers to use their preferred layers de-
creases the issue of vendor lock-in, e.g., when an ap-
plication is developed based on Cloud Foundry. By
making the platform portable, the application can be
migrated between different infrastructures, too (see
right side in Figure 1). However, if a provider does
not support all functions and features required by such
a platform, the same issue of portability raises up one
layer above. Nevertheless, bringing the whole plat-
form logic to where it is needed is one concept of our
approach. But in contrast to using a single portable
platform for this purpose, we present a generic ap-
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proach that is not coupled to a certain platform tech-
nology, which enables selecting an appropriate imple-
mentation for the target environment.

3 THE SEPADE SYSTEM

In this section, we introduce the SePaDe System,
which is a pluggable deployment framework that ab-
stracts from cloud providers and technologies in a
completely new way. We first present an overview of
the approach and detail the concepts in the following.

3.1 Overview of the Approach

The overall SePaDe approach is shown in Figure 2.
The SePaDe System enables users to deploy the appli-
cation automatically on a desired target infrastructure
without the need to deal with technical deployment
details. Thus, no technical expertise about deploy-
ment technologies such as Chef, virtualization tech-
nologies such as OpenStack, or cloud provider API
handling is required. Using the SePaDe System, the
user only has to specify the following information:

e Application files that shall be deployed as well as
the application’s type, for example, that the appli-
cation is implemented in PHP.

o Management features that have to be provided au-
tomatically during operation, for example, that the
application shall be automatically scaled.

e Target infrastructure on which the application
shall be deployed, e.g., a certain OpenStack in-
stallation or a cloud provider such as Amazon.

e Required Management operations that can be trig-
gered manually, for example, that an operation
must be provided to update the application files.
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The SePaDe System is connected to a SMAART
Repository that contains reusable archive templates
(SMAARTs) for deploying applications (see next sub-
section for details). Each of these SMAARTS can be
used to deploy a certain type of application on a spe-
cific type of infrastructure and provides a defined set
of management features and operations. As this in-
formation is annotated to each SMAART, the system
can match this information with the specified user re-
quirements and selects an appropriate SMAART for
deploying the application files. All required deploy-
ment and management logic is contained in these
SMAARTSs, which provides a pluggable deployment
approach as reusable archives for arbitrary target in-
frastructures and requirements that can be developed.
Thus, the SePaDe System itself is a generic technol-
ogy that only executes the deployment and manage-
ment logic contained in SMAARTS and is, therefore,
not bound to a certain technology. Using the sys-
tem, users just have to upload their application files
and to specify the desired infrastructure as well as the
required functionalities and features, and the system
selects an appropriate SMAART to automatically de-
ploy the application following these requirements.

3.2 Self-Manageable Application
Archive Templates (SMAARTS)

Our approach is based on application packages
called Self-Manageable Application Archive Tem-
plates (SMAARTs), which are reusable archive tem-
plates that contain (i) a deployment model for a cer-
tain type of application on a certain infrastructure,
e.g., to deploy a PHP application on OpenStack. In
addition, (ii)) a SMAART contains generic executa-
bles, e.g., scripts, required to deploy and manage this
type of application in a way that defined functionali-
ties and management features are provided. The idea
of SMAARTS is to put the user’s application files into
a suitable archive template that matches the user’s re-
quirements, which is then deployed automatically us-
ing a deployment system that is capable of invoking
the contained deployment and management executa-
bles. We present a possible standards-based realiza-
tion of this approach in Section 4. Thus, by select-
ing a suitable SMAART from the repository that ful-
fills the users requirements and putting the user’s ap-
plication files into it, arbitrary deployments on vari-
ous infrastructures can be wrapped. This allows the
reuse of available SMAARTSs for a certain applica-
tion type, a set of requested features, the specified
target infrastructure, and required management oper-
ations. Moreover, the generic management executa-
bles in SMAARTS enable the automated management
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Feature
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Figure 3: Meta-Model of Self-Manageable Application
Archive Templates (SMAARTS).

of the deployed application on runtime. These are ei-
ther triggered automatically by the runtime or invoked
by a user to execute a certain management operation.

The meta-model of SMAARTSs as an ER model is
shown in Figure 3. A SMAART has an Application
Type property that specifies the type of applications it
can deploy on a certain Target Infrastructure, which
is specified by the Deployment Model. Moreover, this
model describes all components and their relation-
ships that are involved in this deployment. Manage-
ment operations specify operations that can be explic-
itly invoked, e.g., to undeploy the application, while
Management Features are built-in features that are en-
forced automatically, for example, automated scaling.
The Injection Target is specified by the Deployment
Model and defines the path in the archive template to
which the application files must be copied. Manage-
ment Executables implement operations or features
and expect the application files exactly at this path.
To implement the deployment and management
executables, the SMAART concept specifies no re-
strictions: Both, using low-level technologies such as
scripts to implement these operations as well as using
high-level orchestration approaches such as workflow
technology may be used. Especially, workflow tech-
nology provides several standards such as BPEL (OA-
SIS, 2007b) that is already used for automating the
provisioning of applications (Breitenbiicher et al.,
2014). Of course, the employed deployment system
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Figure 4: Example of a SMAART.

has to support the chosen technology. We will present
how to realize these concepts in Section 4 based on
the OpenTOSCA ecosystem.

Figure 4 shows an example for the deployment of a
PHP application on OpenStack, which is both spec-
ified by the Application Type and Target Infrastruc-
ture. The SMAART contains a deployment model
and associated BPEL workflow that implements the
deploy () operation: the Management Executable de-
ploy.bpel installs the needed components such as the
Apache2 HTTP server and the PHP modules on an
Ubuntu virtual machine, which it provisions before
on an OpenStack installation. The workflow extracts
configurations, such as the HTTP port to be used, out
of the deployment model. User-specific information,
for example, the account information of the Open-
Stack to be used, are passed to the workflow via in-
put parameters. Moreover, the SMAART contains an
executable update.bpel that implements the operation
to update () the deployed files. Both operations are
exposed in the form of the Management Operations
property. Thus, it defines supported management op-
erations that can be triggered by the system or the
user. Moreover, the SMAART also supports auto-
scaling, which is specified by the Management Fea-
tures property. In this example, installing and config-
uring auto-scaling is the responsibility of the deploy-
ment workflow. To enable the system to put the user’s
application files into the archive, the Injection Target
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specifies the path where the files need to be stored.
The generic deployment and management workflows
expect these application files exactly at this path.

3.3 SePaDe System & Matchmaking

In this section, we present the system architecture of
the SePaDe system (see Figure 5). The main func-
tionalities of the system are Selection, Packaging, and
Deployment, hence SePaDe. In the following, we de-
scribe how the system enables the deployment of ap-
plications with a suitable SMAART.

Users specify their requirements in the user inter-
face of the system. They enter (i) the application files
to be deployed and their Application Type, e.g., a PHP
Application, (ii) desired Management Features such
as auto-scaling, (iii) the Target Infrastructure, e.g.,
a certain OpenStack installation, and finally (iv) the
Management Operations they need, e.g., a deploy ()
and an update () operation. Of course, the user
does not have to specify all of these requirements.
For example, if the user only requests a special ap-
plication type, features, and management operations
but no special infrastructure, multiple SMAARTS that
are based on different infrastructures are offered and
the user selects one of them based on his prefer-
ences. When such a request arrives at the system,
the SMAART Selector starts querying the SMAART
Repository for a suitable SMA ART that matches these
inputs. To be a suitable SMAART, the following con-
ditions must be fulfilled:

e The entered Application Type must match the Ap-
plication Type of the candidate SMAART

e The entered Target Infrastructure must match the
supported Target Infrastructure of the candidate

e The entered Management Operations must be a
subset of the Management Operations supported
by the candidate SMAART

e The entered Management Features must be a sub-
set of the Management Features supported by the
candidate SMAART

Based on these matchmaking rules, the SMAART Se-
lector calculates a possible set of suitable SMAARTS
that fulfill the requested criteria and selects afterwards
one option from the set, e.g., based on different prices
if SMAARTS are available for different providers. If
no SMAART can be found, the application cannot be
deployed in the requested way. After this selection
step, the selected SMAART is passed to the SMAART
Packager together with the given application files.
This packager injects the passed application files to
the path specified by the Injection Target property
of the SMAART’s Deployment Model. Please note,
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all Management Executables in the SMAART expect
these files exactly there, thus, they can be executed
automatically after this injection.

Finally, the generated archive is shipped to a De-
ployment System that is capable of executing the Man-
agement Executables contained in the SMAART. To
deploy an instance of this archive, i.e., to deploy the
entered application files, the Deployment System in-
vokes the Management Executable that implements
the deploy () operation of the SMAART. Thus, this
operation must be provided by each SMAART.

4 A TOSCA-BASED PROTOTYPE

In this section, we describe how we validated our
approach using the TOSCA standard. We first de-
scribe the standard in Section 4.1, afterwards we de-
scribe how we mapped our SMAART meta-model to
TOSCA in Section 4.2. In Section 4.3, we present our
prototype that implements the SePaDe concept based
on TOSCA CSARs and the open-source TOSCA en-
vironment OpenTOSCA (Binz et al., 2013).

4.1 An Introduction to TOSCA

In this section, we present an overview of the Topol-
ogy and Orchestration Specification for Cloud Appli-
cations (TOSCA) (OASIS, 2013), which enables au-
tomating the deployment and management of appli-

cations. TOSCA is an OASIS standard that speci-
fies a meta-model for modelling the structure of cloud
applications in the form of so-called Topology Tem-
plates. A Topology Template is a colored and at-
tributed graph wherein nodes represent the compo-
nents (Node Templates) of an application, and edges
their relationships (Relationship Templates). Both
Node and Relationship Templates are typed by Node
Types or Relationship Types, respectively, specifying
a template’s semantics. Node Types expose Man-
agement Operations to manipulate instances of these
types, e.g., a VSphere Node Type may expose op-
erations to start and stop virtual machines. Thus,
using these concepts various kinds of cloud infras-
tructures and technologies can be integrated as Node
Types. Further, both types define a set of Proper-
ties that represent configurations of instances. A rela-
tionship between components can represent arbitrary
types of relations specified by the corresponding Re-
lationship Type, e.g., a PHP Application Node Tem-
plate is hostedOn a Apache 2 Node Template. Thus,
as TOSCA’s type system is extensible, arbitrary ap-
plication structures of components and their relation-
ships can be modelled.

TOSCA defines two types of artifacts: Deploy-
ment Artifacts (DAs) implement the business func-
tionality of a Node Template, for example, a DA for a
PHP Application Node Template are the PHP files im-
plementing the application. The second type is called
Implementation Artifacts (IAs). 1As are used to im-
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1 <ServiceTemplate id="PHP_OpenStack" ...>

2 <Tags>

3 <Tag name="ApplicationType" value=

4 "{http://.../Types}PHP5Application"/>

5 <Tag name="InjectionTarget" value="DAl2"/>
6 <Tag name="TargetInfrastructure" value=

7 "OpenStack-Liberty-12"/>

8 <Tag name="Features" value="AutoScaling"/>
9 </Tags>

10 <BoundaryDefinitions>

11 <Interfaces>

12 <Interface name="SePaDe-Lifecycle">
13 <Operation name="deploy">

14 <Plan planRef="BuildPlan"/>

15 </Operation>

16 <Operation name="update">

17 <Plan planRef="UpdatePlan"/>

18

19 </BoundaryDefinitions>

20 <TopologyTemplate>

21 <NodeTemplates>

22 <NodeTemplate name="App" ...

Figure 6: TOSCA Service Template for SMAART.

plement the management operations defined by Node
Types, e.g., . To orchestrate operations, TOSCA de-
fines the concept of Management Plans, which are ex-
ecutable workflow models that implement a certain
management functionality, e.g., the provisioning of
the entire application. All these elements are summa-
rized in a Service Template. Moreover, TOSCA de-
fines Cloud Service Archives (CSARs) to package all
the mentioned elements into a self-contained archive
file. Thus, TOSCA enables to embed all required soft-
ware and models into such CSARs, which can be ex-
ecuted by standard-compliant runtimes to deploy and
manage the application.

4.2 Mapping SePaDe to TOSCA

We map the SMAART meta-model (cf. Figure 3)
to TOSCA as follows. SMAARTSs are realized as
TOSCA CSARs that contain a Service Template as
shown in listing 6. For modelling the Application
Type, Management Features, and Target Infrastruc-
ture supported by the SMAART, we used the concept
of Tag-elements that can be attached to TOSCA Ser-
vice Templates (lines 2-9). To realize the Deployment
Model of the SMAART meta-model, we use TOSCA
Topology Templates (lines 20-22). Management Op-
erations supported by the SMAART are modelled us-
ing the Boundary Definitions of a Service Template,
which contains interfaces that specify invokable oper-
ations (lines 10-19). Management Executables are re-
alized as Implementation Artifacts that implement the
operations exposed in the Boundary Definitions. The
Injection Target is modelled as a Tag, whose value
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points to a Deployment Artifact’s name to which the
entered application files shall be attached. For at-
taching these files, only the referenced Deployment
Artifact’s file path property has to be updated. Us-
ing this injection mechanism, no Implementation Ar-
tifacts (i.e., Management Executables) are affected as
these only refer to Deployment Artifacts by name and
extract the file path property on runtime. Thus, the
injection is seamless and does not affect executables.
As a result, many concepts of SePaDe can be mapped
to the native meta-model of TOSCA. Thus applying
the SePaDes approach to TOSCA adds an additional
layer on top of TOSCA (based on the SMAART meta-
model) for searching suitable templates that can be
used to automatically deploy application files follow-
ing specified requirements.

4.3 Prototypical Implementation

In this section, we present our TOSCA-based proto-
type. We implemented the SePaDe concept into two
systems: We extended (i) the open-source TOSCA
modelling tool Winery! (Kopp et al., 2013) as well
as (ii) the open-source TOSCA runtime environment
OpenTOSCA? (Binz et al., 2013).

In the following, we describe the RESTful API
which was implemented inside the OpenTOSCA
Container to provide SePaDe’s functionality. The API
expects a single HTTP POST request with the fol-
lowing data: (i) the application file to be deployed,
(i) an XML QName indicating a TOSCA Artifact-
Type which is the Application Type, (iii) a set of XML
QNames denoting TOSCA Node Types that serves
finer selection, (iv) a single XML QName denoting
a TOSCA Node Type that serves as Target Infrastruc-
ture, (v) a set of strings stating the requested features
for the application. For (i), we expect a single file
which can range from archive files to binaries. This
file is typed through the QName of the TOSCA Ar-
tifact Type specified by (ii). For (iii), we expect a
possibly empty set of TOSCA Node Types specified
as XML QNames which indicates that the SMAART
to be selected must contain Node Templates of the
given Node Types. This enables a finer-grained se-
lection of SMAARTS. Our approach enables the de-
ployment of applications on a target infrastructure and
environment specified by (iv) with a single QName
pointing to the desired target in the form of a Node
Type. This Node Type specifies the infrastructure re-
quested, e.g., OpenStack, Raspberry Pi, or Amazon
AWS. As the last part, for (v) we expect an also pos-
sibly empty set of strings, which state requested Man-

Thttps://projects.eclipse.org/projects/soa.winery
Zhttps://github.com/OpenTOSCA/container
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Figure 7: Case studies showing a custom layer for PHP apps and make the layer portable on OpenStack and Raspberry Pi

agement Features of the SMAART. These strings are
then checked against the tags defined inside TOSCA
Service Templates implementing our SMAART meta-
model. After sending such a request to the API, it will
search inside the back-end for suitable SMAARTS,
and after finding a suitable SMAART, the entered file
is injected and the resulting CSAR is deployed on
the OpenTOSCA container. To actually provision the
application, i.e., to execute the deploy () operation,
the user has to enter required input parameters into a
user interface, e.g., credentials for OpenStack or the
MAC-Addresses of the Raspberry Pis that have to be
used. Then OpenTOSCA executes the associated exe-
cutable for the deploy () operation, which is a BPEL
or BPMN workflow model in our prototype.

S CASE STUDIES

How our system complements existing integration
technologies regarding the issue of application porta-
bility (Section 2.1) has been shown throughout the
paper: by specifying non-functional requirements re-
garding management features, our approach is capa-
ble of providing them. For example, the SMAART
(see Figure 4) used throughout the paper for deploy-
ing PHP applications on OpenStack shows how auto-
scaling can be provided regardless of the actually used
underlying system. To validate our concepts also re-
garding custom layers (Section 2.2) and layer porta-
bility (Section 2.3), we describe two case studies in
this section with the goal to provision a single PHP
application on different infrastructures with the means
of packaging a custom layer in different SMAARTs.
The SMAART on the left in Figure 7 resembles

our example SMAART from Figure 4, with the dif-
ference in available Management Operations. Here
we altered the package to expose a scale-out () in-
stead of an update () operation to show how we man-
age to scale applications on different infrastructures.
While in the example version of the SMAART users
can request an update of the applications’ topology
by executing update (), in this case the SMAART
is able to scale the PHP application by executing the
scale-out () operation. This is achieved with the
TOSCA Plan implementing the scale-out () oper-
ation, which at runtime can instantiate a new PHP
application stack on top of OpenStack, i.e., creating
new instances of the Ubuntu 14.04 virtual machine,
the Apache? server, the PHP5 module, and the PH-
PApp application. After creating such a new stack the
scale-out () operation additionally adds the end-
point of the stack to the Proxy Balancer nodes’ con-
figuration to serve arriving request to it, enabling the
overall application to serve more requests, thus scale.
To show that our approach enables layer portability
the second SMAART on the right in Figure 7 is also
usable for PHP applications and implements the same
Management Operations as the first (deploy () and
scale-out ()). Difference between the SMAARTS is
the underlying infrastructure the PHP application will
be hosted on, instead of an OpenStack cloud the right
SMAART enables the usage of Raspberry Pis as the
infrastructure. At the beginning of deploying such a
SMAART all relevant components for the PHP appli-
cation are installed, these components are analogous
to the OpenStack case, but instead of installing the
load balancer stack (Apache2 and Proxy Balancer)
and PHP application stack (Apache2, PHP5 and PH-
PApp) on two distinct Ubuntu 14.04 instances, they
are installed on the same initial Raspberry Pi at de-
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ployment time. After deployment the load balancer is
listening on the intended application port, e.g., port
80, and redirects requests to the application. As a
single Pi is not sufficient to keep up with large re-
quest loads, the package exposes the add-P1i () opera-
tion. Users can use this operation to add additional re-
sources at runtime to the topology, which can then be
used by the scale-out () operation to scale the over-
all application. The add-Pi () operation will when
executed add a Raspberry Pi to the instance model,
i.e, by creating a new Raspberry Pi node (New Rasp-
berry Pi) and a node for its installed operating system
(Raspbian Jessie on the right in the topology). Prop-
erties of the created nodes are taken from the input of
the add-Pi () operation, containing information such
as the MAC and/or IP address and credentials. When
the system needs to scale, the scale-out () operation
would detect the new Raspberry Pi nodes (hardware
and os) and install a whole new stack of the PHP Ap-
plication, i.e., installing an Apache2, a PHP5 and a
PHPApp node and add the new PHP application end-
point to the Proxy Balancers’ configuration.

In summary, we showed how to extend available
APIs with our approach to build custom layers by
making management operations portable. Addition-
ally, these case studies show layer portability by en-
abling the user to either deploy his PHP application
on an OpenStack cloud or on a physical Raspberry Pi.

6 RELATED WORKS

Related works are concepts that introduce a layer
on top of multiple PaaS providers, that reuse tem-
plates for cloud applications, and which allow users
to develop applications without committing to a spe-
cific provider. In summary most approaches solve
the challenges of PaaS platform interoperability by
defining their own API on top of PaaS platforms.
Hoare (Hoare, 2016) studied state-of-the-art research
in PaaS interoperability and identified, beside the API
approaches, the use of techniques in the field of the
semantic Web. Loutas et al. (Loutas et al., 2011) in-
troduce a PaaS Semantic Interoperability Framework
that contains descriptions of different PaaS platforms
to resolve interoperability issues. Yangui et al. (Yan-
gui et al., 2013) describe a method on how to use
the OASIS standard Service Component Architecture
(SCA) (OASIS, 2007a) as a model for composite ser-
vices. With these models a split into a set of services
is taking place, which are afterwards deployed to so-
called Micro-Containers which may already run in-
side one of the PaaS solutions. Yangui et al. argue that
these Micro-Containers must be implemented once to
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be deployable into new PaaS environments, which in
return allows the set of services to be deployed on
those. Rock et al. (Rock and Kolb, 2016) tackle the
problem of API differences between PaaS providers
by introducing an abstract API on top. The general
concept behind the API is to use adapters for different
PaaS providers while the API itself exposes the ca-
pabilities of the environments as abstracted objects to
the user, e.g., ranging from a generic Service to an Ap-
plication. Similar to this is the Cloud4SOA platform
by D’Andria et al. (D’ Andria et al., 2012), which is
also based on adapters for each supported PaaS plat-
form. In contrast to our approach, these works in-
troduce another API on top of the existing solutions,
which nevertheless binds the applications against a
particular interface. Our approach enables incorpo-
rating entire PaaS platforms inside a single SMAART,
which allows to use the desired platform. It also en-
ables installing platforms on bare metal, which ad-
ditionally reduces portability issues. Yamato et al.
(Yamato et al., 2014) introduce a Template Manage-
ment Server which stores OpenStack HOT Templates
for reuse by its users. The server enables user to cre-
ate, share, extract from running OpenStack resources
and update of templates to reflect changes in the en-
vironment. Additionally, the server is responsible
for instantiating the templates by creating virtual re-
sources inside the target OpenStack cloud. While this
approach leverages a similar idea as our paper, it is
limited to the OpenStack cloud, our approach can be
implemented for arbitrary technologies as shown by
the case studies. Another approach based around tem-
plates is presented by Gao et al. (Gao et al., 2012).
Templates in their approach are virtual machine im-
ages that incorporate different software packages and
services. Users can select an appropriate template
from a repository and use it to provision their services.
After such a request is made, the system selects ap-
propriate cloud resources based on criteria given by
the user to install the image and afterwards the ser-
vices to run on those resources. While this approach
is related to our method, it only deals with the de-
ployment on virtual machines, our approach also in-
corporates bare-metal and arbitrary *aaS resources.
Nguyen et al. (Nguyen et al.,, 2012) introduce the
Blueprints meta-model, which specify a cloud appli-
cation model according to basic properties, offerings,
implementation artifacts, resource requirements, vir-
tual architecture, etc. While a Blueprint allows speci-
fying fine-grained information about a cloud applica-
tion enabling to select an appropriate blueprint from
a repository, these blueprints describe complete, de-
ployable cloud applications and are not intended for
reuse to deploy new applications.
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7 CONCLUSIONS

In this paper, we presented an approach to deploy
arbitrary applications on arbitrary infrastructures by
leveraging the concept of templates. We showed in
case studies how the reuse of deployment models can
be enabled to deploy applications on heterogeneous
resources such as virtual machines, PaaS layers, and
also bare-metal machines. Further, our approach en-
ables developers to choose their preferred platform
and package their applications along with it in a single
archive. This enables to port applications from one
*aaS provider to another without the need to change
implementations as the needed platform API’s and
services can be shipped together with the application.

Our approach enables wrapping entire *aaS lay-
ers in a reusable manner and, thereby, allows to cope
with future challenges of growing fields such as IoT
and Fog Computing. One challenge of those fields
is to integrate local bare-metal resources with virtual
resources of the cloud, and enable applications to be
migrated between those resources. By enabling reuse
of proven SMAARTS to automatically deploy *aaS
layers on environments close to the “edge”, the com-
plexity of migrating applications from the traditional
cloud to these scenarios is significantly reduced.

For future work, we plan to extend our approach
by generating SMAART archives in an automated
way, e.g., by determining the Application Type and
Implementation Placeholder of a deployment model.
Moreover, we plan to extend the approach to refer-
ence multiple infrastructures suitable to be used as
underlying resources for the deployment model.
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