
Evaluating the Quality of the Documentation of
Open Source Software

Lerina Aversano, Daniela Guardabascio and Maria Tortorella
Department of Engineering, University of Sannio, p.za Roma 21, Benevento, Italy

Keywords: Open Source Software, Software Maintenance, Software Reusability, Software Measurement, Software
Metrics, Software Documentation.

Abstract: Software documentation is a basic component of the software development process: from the definition of
the functional requirements to the maintenance phase. Software documentation refers to different types of
documents that facilitates the software developer’s tasks. Then, it includes the textual documentation
required by the Software engineering standards, API documentation, Wiki pages and source code
comments. Surveys and studies indicate that the documentation is not always available and, if available,
only partially addresses the developers' needs, as it is often wrong, incomplete, out-of-date and ambiguous.
This paper focuses on the quality assessment of the documentation of open source systems with the aim of
understanding the support it can offer for adopting them and executing maintenance activities. Specifically,
a quality model is defined and a preliminary investigation of its applicability is performed.

1 INTRODUCTION

Software documentation has a significant relevance
in the software development process from the
definition of the functional requirements to the
maintenance phase (Chomas and Saini, 2015),
(Garousi et al., 2013), (Sommerville, 2005).

Actually, the software is not only documented by
the textual documentation required by the software
engineering standards (IEEE Std 830-1998), (IEEE
Std 1028-2008), (IEEE Std 1063-2001), (ISO/IEC
9126:2001), (ISO/IEC 25010:2005), (ISO/IEC
26514:2008), even if in different formats (e.g.,
Word, pdf, ppt), but it can include additional
documents describing the software artefacts, such as
all the documents produced during the software
development process, and formalized as API
documentation, Wiki pages, and source code
comments.

In the proposed study, the term "software
documentation" is used to refer the various types of
documents indicated above.

The documentation required by the standards
(IEEE Std 830-1998), (IEEE Std 1028-2008), (IEEE
Std 1063-2001), (ISO/IEC 9126:2001), (ISO/IEC
25010:2005), (ISO/IEC 26514:2008) generally
consists of documents aiming to explain the

functionalities the software performs, its
architecture, how it is structured and implemented,
and how it can be used. It includes the following
documents: software requirements specifications,
software design documents, code, quality and testing
documents. Each document is relevant for
understanding the software product. Differently, the
API documentation specifies how software
components can be used and interacts with each
other. Wiki pages allow for web-based visualization
and knowledge management. It offers semantic-
enhanced search facilities such as filtering, faceting,
and graph-like exploration of knowledge. Finally,
software documentation also includes the inline
comments of the source code. Actually, according to
de Souza at al. (Cozzetti de Souza et al., 2005), the
comments help developers to fully understand the
software product.

Several interviews with software engineers and
developers working in organizations have been
performed. The results are enclosed in surveys and
papers, and indicate that the documentation is not
always available and it only partially addresses the
developers' needs, as it is often wrong, incomplete,
out-of-date and ambiguous.

In the case of closed source software, the
requirements are generally clear and well-
documented, as well as the design and testing

308
Aversano, L., Guardabascio, D. and Tortorella, M.
Evaluating the Quality of the Documentation of Open Source Software.
DOI: 10.5220/0006369403080313
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 308-313
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

documents (Satzinger et al., 2000). These does not
happen for open source systems, where these
documents may not exist, or not represent any
official documentation.

This paper focuses on the assessment of the
quality of the various types of documents that may
be useful for understanding a software artefact. In
particular, it is focused on the documentation of the
Open Source Software systems, with the aim of
understanding if it can be a valuable support to
anyone who wants to adopt such a kind of systems
and/or execute maintenance activities.

With this in mind, the paper presents a quality
model and the results of a preliminary investigation
of its applicability.

This paper is organized as follows. Section 2
discusses the principal research work related to the
quality of software documentation. Section 3
describes the proposed model for evaluating the
quality of the documentation of Open Source
Software system. Section 4 presents a case study,
while conclusions are given in Section 5.

2 RELATED WORK

The literature reports several studies focusing on the
evaluation of the usefulness of the documentation of
a software product. Specifically, these studies
discuss the use that software practitioners make of
different kinds of documentations.

Forward and Lethbridge (Forward and
Lethbridge, 2002) made a survey, involving
different developers. They presented several
documentation attributes, such as document writing
style, grammar, level of upgrade, type, format,
visibility, etc. They observed that the documentation
content is an important support for communication
and should always be useful and serve a purpose. It
can be relevant even if it is not updated or
inconsistent. The same authors (Lethbridge et al.,
2003) highlighted the general attitudes regarding the
software engineering documentation. For example,
some results indicated that various types of abstract
documentation are a valid guidance for maintenance
work and that inline comments of the source code
are often a good support to assist detailed
maintenance work. The study also discussed
negative results, such as the fact that multiple types
of documents are often out of date or that the
documentation is poorly written.

de Souza et al. (Cozzetti de Souza et al., 2005)
established in their surveys the importance of each
documentation artefacts, with reference to the full

understanding of the software product and execution
of maintenance activities. The results of this study
have also shown that the documentation is often
incomplete or out-of-date, and the developers have
to use the source code and related comments for
fully understanding the software product.

Another aspect coming from the contribution of
Kipyegen and Korir (Kipyegen and Korir, 2013)
regards the little usage of the documentation, and,
consequently, the decrease of its efficiency during
the software development task.

Several other research works focused on the
documentation quality.

Arthur and Stevens (Arthur and Stevens, 1989)
identified four Document Quality Indicators (DQI)
that are attributed to an appropriate documentation:
Accuracy, Completeness, Usability and
Expandability. As quality is an intangible
characteristic, without direct measure, the authors of
the cited paper associated each quality characteristic
to some factors, and each factor to some quantifiers,
whose combination gave rise to quality indicators
(DQI) that are quantifiable.

In (Plösch et al., 2014), (Wingkvist et al., 2010),
the following additional documentation quality
attributes are proposed: Accuracy, Clarity,
Consistency, Readability, Structuring, and
Understandability. Indeed, from a conducted survey
(Wingkvist et al., 2010), it emerges that the typical
problems related to the documentation quality deals
with unreliable, incomplete or non-existent
documentation, not documented changes in the
software system and lack of integrity and coherence.
The authors developed a tool (Lethbridge et al.,
2003) for analysing the quality of software systems,
documentation included.

Problems related to the documentation quality
have also been encountered by Uddin and Robillard
(Uddin and Robillard, 2015) with reference to the
API documentation quality, and by Diaz-Pace et al.
(Diaz-Pace et al., 2014) with reference to the Wiki
pages.

This paper considers all the aspects arising from
the previous studies and proposes a quality model
for evaluating various types of documentation
associated with an Open Source Software system.

Then, unlike other proposed approaches,
focusing on just one kind of documentation, the
proposed quality model considers multiple types of
document supporting an Open Source Software
system, such as textual standard documentation, API
documentation, Wiki support and in line comments.

Evaluating the Quality of the Documentation of Open Source Software

309

3 QUALITY OF SOFTWARE
DOCUMENTATION

This section proposes an approach to assess and
evaluate the quality of software documentation. The
approach is metric-based and considers different
indicators to be evaluated on the various types of
documentation considered: technical documentation,
user documentation, API, Wiki, and source code
comments. The quality indicators have been
formalized by using a set of Questions, which entail
the evaluation of a set of Metrics. Overall, the
identified quality indicators aim to evaluate:
 to what extent the documentation reflects the

current state of the software system;
 to what extent the documentation is

understandable and well structured.
Tables 1 contains the list of the questions and

related metrics that have been considered. For each
metric the table reports the formula used for its
assessment, the range of values it can assume and its
acceptance threshold, if definable. In particular, the
acceptance thresholds are useful to identify where
the software system documentation needs to be
improved, on the basis of the values of the measured
metrics. The quality indicators considered for the
definition of the metric-based quality model and
reported in Table 1 are the following:

 Completeness: to evaluate the completeness level
of the documentation with reference to the
source code; in particular, these quality
indicators check whether the documentation
describes all of the items (packages, classes,
methods) of the source code.

 Alignment: to verify whether the documentation
is updated with reference to the project release it
refers to.

 Readability: to examine if the sentences express
clear and understandable concepts. The Flesch
readability test (Flesch Reading Ease) was used,
designed to indicate how difficult is to be
understood an English reading. The index score
ranges from 0 to 100 and a value equal to 50 is
considered adequate as it is associated with the
10th to 12th grade school level; while higher
scores indicate material that is easier to read and
lower marks indicate passages that are more
difficult to read (Flesch and Rudolf, 2016).

 Dimension: to analyse if the document sentences
are too long or too short, with the aim of
verifying if text is too difficult to be understood,
or too short for exhaustively expressing a
concept, respectively. Cutts asserted that over the

whole document, average sentence length should
be 15-20 word (Cutts, 2013).

 Graphical Support: to verify the availability of
visual aids (figures and tables) facilitating the
understandability of the text. The citations of the
visual aids within the text and existence of clear
captions are verified. It may occur that figures or
tables not included in the document are indexed,
in this case the score is greater than 1.

 Consistency to Standard: to verify if the
available documentation is compliant to the
Software Engineering Standards: Software
Requirement specification, Software Design
documents, Code system documentation, Test
plans, and so on.

 Structure: regarding the textual documentation
and aiming at evaluating its actual structure in
terms of number of chapters, sections, sub-
sections nesting, document length, and density of
tables and figures. A good structure and
organization of the document helps to consult it.

 Easy to use: concerning API and Wiki and
assessing the organization from a usability point
of view. Aspects that will be investigated are the
fragmentation of the concepts within web pages,
and the size of the Java Doc and Wiki.

 Appropriateness comments: estimating the
density of comments in the code. A high density
of comments helps the developer in the
comprehension of source code.

Most of the metrics included in the model can be
evaluated with reference to the API, Wiki, code
comments and documentation. While Graphical
Support and Consistency to Standard are evaluated
just with reference to Documentation. Easy to use is
evaluated with reference to Wiki and JavaDoc;
finally, the Appropriateness of the comments is
evaluated with reference to the code comments.

The evaluation of these metrics requires the
application of NLP, Information Extraction and
Information Retrieval techniques in order to make an
objective analysis and not a subjective one. Table 1
shows the metrics considered for the different types
of documentation. The index I indicates in which set
of documents refers analysis, while index E refers to
what visual aid it is evaluated (figure or table).

4 CASE STUDY

This section described the study conducted to verify
the applicability of the proposed metrics-based
approach. In particular, the approach has been used

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

310

Table 1: Metrics adopted for evaluating the quality of documentation.

QUESTION METRIC
Id Name Id Formulas Values

metrics
Acceptance
threshold

Q1 What is the
completeness level
of documentation
with reference to
the source code?

M1.I ݏݏ݁݊݁ݐ݈݁݌݉݋ܥூൌ ݈ݐ݋ܶ ݏ݁ݏݏ݈ܽܿ ܽ݊݀ ݏ݁݃ܽ݇ܿܽܲ ܾ݀݁݅ݎܿݏ݁݀ ݅݊ Documentation}	Comments,	Wiki,	{API,	∈	I	With			݁݀݋ܥ	݁ܿݎݑ݋ݏ	݊݅	ݏ݁݃ܽ݇ܿܽܲ	݀݊ܽ	ݏ݁ݏݏ݈ܽܥ	݈ܽݐ݋ܶܫ
[0..1] 0.6

Q2 Is the available
documentation
updated with the
considered release?

M2.I ܷ݃݊݅ݐܽ݀݌ூ
 With	I	∈	{API,	Wiki,	Comments,	Documentation} {yes, not} Yes

Q3 What is the level of
readability of the
documentation?

M3.I ݔ݁݀݊ܫݕݐ݈ܾܴ݄݅݅ܽ݀ܽ݁ܿݏ݈݁ܨூ With	I	∈	{API,	Wiki,	Comments,	Documentation} [0..100] 50.0

Q4 What is the medium
sentences

dimension?

M4.I ݐ݄݃݊݁ܮ݁ܿ݊݁ݐ݊݁ܵ݉ݑ݅݀݁ܯூ With	I	∈	{API,	Wiki,	Comments,	Documentation} Natural
number

[15..20]

Q5

If present, the
Figures and the
Tables are
appropriately
indexed? Have they
a Legend?

M5.1.E ܰݎܾ݁݉ݑ஽_ா With	E	∈	{Figure,	Table} Natural
number

M5.2.E ݃݊݅ݔ݁݀݊ܫ஽_ா ൌ ݀݁ݔ݁݀݊݅# ݈ܽݐ݋ݐݏ݁ݎݑ݂݃݅ ݏ݁ݎݑ݂݃݅ With	E	∈	{Figure,	Table} [0..1] 0.6

M5.3.E ݀݊݁݃݁ܮ஽_ா ൌ ܧ_ܫ݈ܽݐ݋ܶܧ_ܫݏ݊݋݅ݐ݌ܽܥݎܾ݁݉ݑܰ With	E	∈	{Figure,	Table}
[0..1] 0.6

Q6 Is the
documentation
organized in

accordance to the
standards?

M6.I ݐܵݕܿ݊݁ݐݏ݅ݏ݊݋ܥ஽ ൌ #ݏݐ݊݁݉ݑܿ݋݀# ݏݐ݊݁݉ݑܿ݋݀ ݂݋ ݏ݀ݎܽ݀݊ܽݐݏ
[0..1] 0.6

Q7
Is the
documentation well
structured?

M7.1 ݁ݖ݅ܵݐ݊݁݉ݑܿ݋ܦ஽ ൌ ݎܾ݁݉ݑܰ ݏ݁݃ܽ݌ ݂݋ ூܿ݋ܦ

Natural
number

M7.2 ܥ݁ݖ݅ܵ݁݃ܽݎ݁ݒܣ ஽ܲ ൌ ݏ݁݃ܽ݌#ݏݎ݁ݐ݌݄ܽܿ#
[0..1] 0.6

M7.3 ݐ݌݁ܦ݁݁ݎܶݎ݁ݐ݌݄ܽܥ஽ Natural
number

3

M7.4.E ݕݕݐ݅ݏ݊݁ܦ஽_ா ൌ Table}	{Figure,	∈	E	஽_ா Withݏ݈݁݃ܽܲܽݐ݋஽_ாܶݎܾ݁݉ݑܰ [0..1] 0.6

Q8
Is the
documentation easy
to use?

M8.1 ݊݋݅ݐܽݐ݊݁݉݃ܽݎܨ݋݂݊ܫௐ ൌ ௐݏ݁݃ܽܲݎܾ݁݉ݑௐܰ݋݂݊ܫݎܾ݁݉ݑܰ
[0..1] 0.6

M8.2 ݕݐ݅ݏ݊݁ܦܿ݋ܦܽݒܽܬ ൌ ܿ݋ܦܽݒܽܬݏ݁ݏݏ݈ܽܿ# 0.8 {..,0,1} ܤܯ

M8.3 ܹ݅݁ݖ݅ܵ݅ݖ ൌ #ܹ݅݇݅ ݏ݁݃ܽ݌ Natural
number

M8.4 ܹ݅݇݅ܲܽ݃݁ݐ݌݁ܦ݁݁ݎܶݏ Natural
number

Q9 Is the code
appropriately
commented?

M9.1 ݕݐ݅ݏ݊݁ܦݐ݊݁݉݉݋ܥ ൌ ݏ݁݊݅ܮݏ݁݊݅ܮ݊݁݉݉݋ܥ# ݂݋ ݁݀݋ܥ [0..1] 0.15

to measure the quality of the documentation of an
open source software system, namely, OpenNMS.
OpenNMS (www.opennms.org) is an enterprise
network management application platform
developed under the Open Source model. This
Project started in July of 1999 and was registered on
SourceForge in March of 2000. It evolved over

seventeen different releases. Currently it includes
more than 700 packages.

Table 2 reports the results of the evaluation of
the documentation of OpenNMS. A subset of these
metrics have been manually computed, such as
ChapterTreeDept or DocumentationSize, other with

Evaluating the Quality of the Documentation of Open Source Software

311

the support of Python scripts, such as Consistency of
API and Code Comments.

Table 2: Metrics evaluation of OpenNMS.

Id NAME Formulas
M1.D CompletenessD 0
M1.A CompletenessA 0.62
M1.W CompletenessW 0
M1.C CompletenessC 0.29
M2.D UpdatingD Yes
M2.A UpdatingA Yes
M2.W UpdatingWiki Yes
M2.C UpdatingC Yes
M3.D FleschReadabilityIndexD 43.55
M3.A FleschReadabilityIndexA 49.48
M3.W FleschReadabilityIndexW 58.47
M3.C FleschReadabilityIndexC 53.85
M4.D MediumSentenceLenghtD 12.72 words
M4.A MediumSentenceLenghtA 7.7 words
M4.W MediumSentenceLenghtW 16.73 words
M4.C MediumSentenceLenghtC 8.03 words

M5.1.F NumberD-F 56 figures
M5.1.T NumberD-T 286 Tables
M5.2.F IndexingD-F 0.0
M5.2.T IndexingD-F 0.0
M5.3.F LegendD-F 0.71
M5.3.T LegendD-T 0.33

M6.I ConsistencyStD 0.20
M7.1 DocumentSizeD 405 pages
M7.2 AverageSizeCPD 11.57 pp/cap
M7.3 ChapterTreeDeptD 3 sections

M7.4.F DensityD-F 0.14
M7.4.T DensityD-T 0.71
M8.1 InfoFragmentionW 0.20
M8.2 JavaDocDensity 0.19
M8.3 WikiSize 2825
M8.4 ܹ݅݇݅ܲܽ݃݁5 ݐ݌݁ܦ݁݁ݎܶݏ subsections
M9.1 CommentDensity 0.14

The first indication emerging from the
assessment of Question Q1 is that not all the
packages and classes in the source code are referred
in the API (M1.A), and not all the classes and
methods in Source Code are commented (M1.C),
indeed both these values are less than one. While
Wiki and Documentation have not references to the
Source Code, then their Completeness (M1.W,
M1.D) is equal to 0.

From the assessment of Question Q2, it emerges
that the documentation is updated with reference to
the source code. This means that the analysed
documentation, API, Wiki and inline comments was
aligned with the source code.

The evaluation of Question Q3 indicates that the
Documentation (M3.D) and API (M3.A) are difficult
to read, and that even the medium sentences length
is excessively long (M4.A and M 4.D). Readability
of Comments inline of source Code (M3.C) and
Readability of Wiki (M3.W) are fairly difficult to be
read. Indeed, these metrics assume a value very
closed to the thresholds.

Instead, the evaluation of Question Q5 indicates
that the documentation includes some figures with
clear captions (M5.1.F= 56 figures, M5.3.F = 0.71),
while the documentation includes a lot of Tables, but
many of them do not have an adequate caption
(M5.1.T = 286 tables, M5.3.F = 0.33), or they are
not adequately indexed (M5.2.F = 0, M5.2.T = 0).

With reference to the assessment of Question Q6,
it is possible to observe that the available
documentation is not consistent with the standards.
In fact, the documentation includes just one kind of
document foreseen in the standards (M6 = 0.20).

With reference to the assessment of Question Q7,
it is possible to observe that the number of pages of
the documentation is equal to 405 (M7.1), but the
documentation analysed includes four documents:
administrators guide (264 pages), developers guide
(79 pages), installation guide (30 pages), users guide
(32 pages). The average length of a chapter is 11.57
pages (M7.2), and the tree depth of each chapter is 3
(M7.3).

In addition, Figure density does not achieve a
high value as just 56 figures are included in 405
pages (M7.4.F = 0.13); the reverse can be observed
for the Table density as 286 tables are present in 405
pages (M7.4.T = 0.70).

With reference to the assessment of Question Q8,
it is possible to observe that the Info Fragmentation
does not achieve a high value, then each information
is distributed among few pages (M8.1 = 0.20).
Regarding JavaDocDensity, about 18 classes are
described in one JavaDoc MB indicating that even
the Java doc density (M8.2 = 0.18) assumes low
values. The size of the Wiki is fairly high (M8.4 =
2825), and has a navigation tree equal to 5 (M8.3 =
5).

Finally, density of comments in the code is fairly
low (M9.1 = 0.14), indicating that the code is few
commented.

From the obtained results, it can be deduced that
the documentation of the reporting software system
must be improved. In particular, it can be observed
that; the readability needs to be improved; more
documents requested by Software Engineering
Standards must be included; the comments should be
increased within the source code; the API should be

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

312

aligned to the source code; and Figures and Tables
should be indexed.

5 CONCLUSION

This paper proposed a metric-based quality model
for the assessment of the quality of the
documentation of Open Source Software systems. In
particular, the proposed model includes the
specification of a set of metrics to be measured. It
refers to a wide concept of documentation that
considers the various type of documentation that
facilitates the software developer’s tasks, such as
textual documentation required by the Software
engineering standards, API documentation, Wiki
pages and source code comments.

A preliminary investigation of its applicability
of the proposed quality model has been performed
by considering an Open Source Software systems,
OpenNMS.

Future work will consider a refinement of the
quality model with the introduction of additional
needed metrics considering grammatical correctness
of documentation, ambiguity of the text, duplication
of arguments and the analysis of more case studies.
Indeed, a larger base of software systems should be
measured to increase the practical relevance of the
achieved results.

REFERENCES

Arthur, J.D., Stevens, K. T., 1989, Assessing the adequacy
of documentation through document quality
indicators. Conference on Software Maintenance,
IEEE comp. soc. press, pp. 40-49.

Briand, L. C., 2003. Software documentation: how much
is enough? Software Maintenance and Reengineering,
Seventh European Conference. IEEE comp. soc.
press., pp. 13-15.

Chomas, V. S., Saini, J. R., 2015, Software Template for
Evaluating and Scoring Software Project
Documentations. Int. Journal of Computer
Applications, 116(1).

Cozzetti de Souza, S., Anquetil, N., de Oliveira, K.M.,
2005. A Study of the Documentation Essential to
Software Maintenance. 23rd Annual Int. Conference
on Design of communication: documenting &
designing for pervasive (SIGDOC '05), ACM press,
pp.68-75.

Cutts, M., 2013. Oxford guide to plain English. OUP
Oxford.

Dautovic A., Plösch, R., Saft, M., 2011. Automated
quality defect detection in software development

documents. First Int. Workshop on Model-Driven
Software Migration (MDSM 2011).

Diaz-Pace, J.A., Nicoletti, M., Schettino, S., Grisando, R.,
2014. A recommender system for technical software
documentation in Wikis. Biennial Congress of
Argentina (ARGENCON), IEEE comp. soc. press, pp.
393-398.

Garousi, G., Garousi, V., Moussavi, M., Ruhe G., Smith,
B., 2013. Evaluating usage and quality of technical
software documentation: an empirical study. 17th Int.
Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM, pp. 24-35.

Flesch, R., 2016. How to Write Plain English. University
of Canterbury.

Forward, A., Lethbridge, T. C., 2002. The relevance of
software documentation, tools and technologies: a
survey. Symposium on Document engineering, ACM
press, pp. 26-33.

Kipyegen, N. J., Korir, W. P. K., 2013. Importance of
Software Documentation. IJCSI Int. Journal of
Computer Science, 10(5), pp.1694-0784

IEEE Std 830-1998. 1998. IEEE Recommended Practice
for Software Requirements Specifications.

IEEE Std 1028-2008. 2008. IEEE Standard for Software
Reviews and Audits.

IEEE Std 1063-2001. 2001. IEEE Standard for Software
User Documentation.

ISO/IEC 9126:2001. 2001. Software engineering –
Product quality. �

ISO/IEC 25010:2005. 2005. Software engineering –
Software product Quality Requirements and
Evaluation (SquaRE).

ISO/IEC 26514:2008. 2008. Systems and software
engineering - Requirements for designers and
developers of user documentation.

Lethbridge, T. C., Singer, J., Forward, A., 2003. How
software engineers use documentation: The state of the
practice. IEEE Software, 20(6), pp. 35-39.

Plösch, R., Dautovic, A., Saft, M., 2014, The Value of
Software Documentation Quality. 14th Int. Conference
on Quality Software. IEEE comp. soc. press, pp. 333-
342.

Satzinger, J. W., Jackson, R. B., Burd, S. D., 2000. System
Analysis and Design in a Changing World , Thomson
Learning.

Sommerville I, 2005. Software Documentation. Software
Engineering, Volume 2: The Supporting Process, pp.
143-154.

Uddin, G., Robillard, M. P., 2015. How API
documentation fails. IEEE Software, 32(4), pp. 68-75.

Wingkvist, A., Ericsson, M., Lucke, R., Lowe, W., 2010.
A metrics-based approach to technical documentation
quality. 7th Int. Conference on the Quality of
Information and Communications Technology
(QUATIC). IEEE comp. soc. press, pp. 476-481.

Evaluating the Quality of the Documentation of Open Source Software

313

