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Abstract: Optimal power flow is important for operation and planning of smart grids. The paper considers the so called
unbalanced thee-phase optimal power flow problem (TOPF) for smart grids, which involves multiple quadratic
equality and indefinite quadratic inequality constraints to model the bus interconnections, hardware capacity
and balance between power demand and supply. The existing Newton search based or interior point algorithms
are often trapped by a local optimum while semidefinite programming relaxation (SDR) even fails to locate a
feasible point. Following our previously developed nonsmooth optimization approach, computational solution
for TOPF is provided. Namely, an iterative procedure for generating a sequence of improved points that
converges to an optimal solution, is developed. Simulations for TOPF in unbalanced distributed networks are
provided to demonstrate the practicability and efficiency of our approach.

1 INTRODUCTION

Optimal power flow (OPF) for minimizing the cost of
power generation subject to operating constraints and
meeting demands provides one of the most important
applications of smart grids (Farhangi, 2010).

There are two types of modeling distribution net-
works in smart grid: balanced equivalent single-phase
modelling, which aims at naively approximating the
network by a balanced system of three decoupled
single-phase subsystems, and unbalanced three-phase
modelling, which preserves the unbalanced structure
of the network for constructive power flow analysis
(Yang and Li, 2016). In recent years, more attentions
have been paid to the unbalanced three-phase model-
ling (Kersting, 2007).

The single-phase OPF problem in balanced trans-
mission networks has been more or less well studied
(see e.g. (Lavaei and Low, 2012; Bukhsh et al., 2013;
Madani et al., 2015)). However, the unbalanced three-
phase optimal power flow problem (TOPF) in unba-
lanced networks is still left open with no available ef-
ficient computational solution due its nonlinearity.

The nonlinear power balance equality constraints
of TOPF have been linearized in (Deshmukh et al.,

2012) using the first-order Taylor expansion. As
a result, its found solution is not necessarily feasi-
ble for TOPF. On the other hand, (Abdelaziz et al.,
2013) proposed to combine Newton-Raphson met-
hod and trust region method to handle these nonli-
near constraints, which may lead to a local optimum
only. Furthermore, (Dall’Anese et al., 2013) em-
ployed semi-definite programming relaxation (SDR)
to address the TOPF. Namely, TOPF is equivalently
expressed by a convex semi-definite program (SDP)
with the additional nonconvex matrix rank-one con-
straint. The latter is then dropped for SDR. It has been
claimed in (Dall’Anese et al., 2013) that the optimal
solution of SDR is always turned-out to be rank-one
so it provides the global optimal solution of TOPF.
However, our simulation will show that it is not quite
the case, i.e. the optimal solution of SDR is turned
out to be high rank and as such it cannot provide even
a feasible point for TOPF.

In this paper, we follow the approach of (Phan
et al., 2012; Shi et al., 2015) to provide computati-
onal solution for TOPF. Namely, we develop an effi-
cient iterative procedure, which invokes a SDP in each
iteration to generate a sequence of infeasible points,
which quickly converges to the optimal solution of
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TOPF.
The paper is structured as follows. Section II is

devoted to the TOPF model formulation for smart
grids. Section III provides the equivalent matrix opti-
mization formulation. A nonsmooth optimization al-
gorithm for its solution is developed in Section IV.
Section V provides simulation to show the efficiency
of our methods. The conclusions are drawn in Section
VI.

The notations used in this paper are standard. Par-
ticularly, j denotes the imaginary unit, (X)∗ means
element wise complex conjugate operation of vec-
tor/matrix X , M � 0 means the Hermitian symme-
tric matrix M is positive semi-definite, rank(M) and
Tr(M) are the rank and trace of matrix M, respecti-
vely; ℜ(·) and ℑ(·) denote the real and imaginary
parts of a complex quantity. a ≤ b for two complex
numbers a and b is componentwise understood, i.e.
ℜ(a)≤ℜ(b) and ℑ(a)≤ ℑ(b).

2 TOPF STATEMENT

Consider a three-phase network with a set of nodes
N := {1,2, · · · ,n}. The nodes are connected through
a set of flow lines L ⊆ N ×N , i.e. node k is con-
nected to node m if and only if (k,m) ∈ L . Accor-
dingly, N (k) is the set of other nodes connected to
node k. A subset G ⊆ N of nodes is supposed to be
connected to generators. Any node k ∈N \G is thus
not connected to generators. Denote by φ ∈ {a,b,c}
the node phase. Accordingly V φ

k and Iφ
k are the com-

plex voltage and current at node k on phase φ.
Practically, all loads in smart grids are assumed

constant, while the reactance between the neutral po-
tentials and ground is assumed to be zero. Fig.1 de-
picts the π−equivalent model is used for this three-
phase unbalanced network, which involves both self-
impedance and mutual-impedance with other phase.
Other forms of load models can be easily incorpora-
ted by introducing additional linear terms in the for-
mulation.
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Figure 1: Three-phase distributed line model.
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(k,m)∈L , and ykm ∈C3×3 be three-phase admittance
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Other notations are:
• Skm = [Sa

km,S
b
km,S

c
km]

T is three-phase apparent po-
wer transferred from node k to node m, Skm =
Pkm + jQkm, where Pkm and Qkm represent three-
phase real and reactive line power, respectively;

• SGk = [Sa
Gk
,Sb

Gk
,Sc

Gk
]T is three-phase apparent po-

wer injected by node k ∈ G , SGk = PGk + jQGk ,
where PGk and QGk represent three-phase real and
reactive generated power, respectively;

• SLk = [Sa
Lk
,Sb

Lk
,Sc

Lk
]T is three-phase apparent po-

wer injected by node k ∈N \G , SLk =PLk + jQLk ,
where PLk and QLk represent three-phase real and
reactive load power, respectively;

Let [·]diag denote an operator that transport an n× 1
vector to the diagonal of an n× n diagonal matrix.
Then it is obvious that,

SGk −SLk = PGk −PLk + j(QGk −QLk)

= [Vk]diag ∑
m∈N (k)

I∗km

= [Vk]diag ∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)]. (2)

Therefore, we can express the three-phase real ge-
nerated power PGk and reactive generated power QGk
at node k as the following nonconvex quadratic functi-
ons of the node voltage Vk,

PGk = PLk +ℜ([Vk]diag ∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)]),

QGk = QLk +ℑ([Vk]diag ∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)]).

(3)
The objective of TOPF is to minimize the following
cost function of real active generated power PG

f (PG) = ∑
k∈G

∑
φ∈{a,b,c}

(ck2(P
φ
Gk
)2 + ck1Pφ

Gk
+ ck0), (4)

where (Pφ
Gk
) are the real generated power on phase φ,

φ ∈ {a,b,c}, ck2 > 0,ck1,ck0 are given. Substituting
(3) in (4), the objective turns to be a function over bus
voltages V :

f (V ) = ∑
k∈G

∑
φ∈{a,b,c}

(ck2(P
φ
Lk
+ℜ([Vk]diag ∑

m∈N (k)

[y∗km(V
∗
k −V ∗m)])

φ)2 + ck1(P
φ
Lk
+ℜ([Vk]diag

∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)])

φ)+ ck0). (5)
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Accordingly, TOPF problem is formulated as

min
V∈Cn

f (V ) s.t. (6a)

−PLk − jQLk = [Vk]diag

∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)],∀k ∈N \G (6b)

Pmin
Gk
≤ PLk +ℜ([Vk]diag

∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)])≤ Pmax

Gk
,∀k ∈ G (6c)

Qmin
Gk
≤ Qφ

Lk
+ℑ([Vk]diag

∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)])≤ Qmax

Gk
,∀k ∈ G (6d)

(V φ
k )

min ≤ |V φ
k | ≤ (V φ

k )
max,∀k ∈N (6e)

|Skm|= |[Vk]diag[y∗km(V
∗
k −V ∗m)]| ≤ Smax

km ,

∀(k,m) ∈ L (6f)

|V φ
k −V φ

m| ≤ (V φ
km)

max,∀(k,m) ∈ L (6g)
∀φ ∈ {a,b,c}.

where

• (6b) is the equation of the balance between the
demand and supply power at the load node k ∈
N \G ;

• (6c)-(6d) are the power generation bounds, where
(Pφ

Gk
)min, (Qφ

Gk
)min and (Pφ

Gk
)max, (Qφ

Gk
)max are the

lower bound and upper bound of the real power
reactive power generations on phase φ, respecti-
vely;

• (6e) are the voltage amplitude bounds;

• (6f)-(6g) are capacity limitations, where line cur-
rents between the connected nodes are constrai-
ned by (6f), while (6g) guarantees the voltage dif-
ference in terms of their magnitude (Zimmerman
et al., 2011);

3 MATRIX RANK-ONE
CONSTRAINED
OPTIMIZATION FOR TOPF

Define
V := [V T

1 , · · · ,V T
n ]T ∈ C3n

and
I := [IT

1 , · · · , IT
n ]

T ∈ C3n,

where Vn and In are the complex three-phase voltage
and current respectively. Define a symmetric block
matrix Y ∈ C3n×3n, with diagonal block ∑

m∈N (k)

ykm

and off-diagonal block −ykm. Set ykm = 0 if node k
and m are not connected. The Ohm’s law is written as

I = YV.

The voltage inserted at node k of phase φ can be
expressed by

V φ
k = (eφ

k)
TV, φ ∈ a,b,c (7)

where eφ
k = [01×3(k−1), ē

φ
k ,01×3(n−k)]

T , ēφ denotes the
canonical basis of R3.

Under the definition of the outer product matrix
W =VV H , for each phase φ, constraint (6b) becomes
a linear function of W as follows,

−Pφ
Lk
− jQφ

Lk
= V φ

k (I
φ
k )
∗

= (V Heφ
k(e

φ
k)

TYV )H

= Tr(Y φ
k W ), (8)

where Y φ
k = eφ

k(e
φ
k)

TY .
Similarly, the injected real and reactive powers

corresponding to constraint (6c)and (6d) can be ex-
pressed by the following linear constraints in W :

Pφ
Lk
+ℜ(V φ

k ∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)]

φ) = (9)

Pφ
Lk
+Tr(1/2(Y φ

k +(Y φ
k )

H)W )

Qφ
Lk
+ℑ(V φ

k ∑
m∈N (k)

[y∗km(V
∗
k −V ∗m)]

φ) = (10)

Qφ
Lk
+Tr( j/2(Y φ

k − (Y φ
k )

H)W )

Constraint (6e) is also linear in W because

|V φ
k |2 = (V φ

k )
∗V φ

k

= V Heφ
k(e

φ
k)

TV

= Tr(eφ
k(e

φ
k)

TW ) (11)

Next, define complex matrix Akm and Bk as,

Akm : = [03×3(k−1),ykm,03×3(m−k−1),

−ykm,03×3(n−m)]3×n

Bk : = [03×3(k−1),13×3,03×3(n−k)]3×n.

Then, it is obvious that Iφ
km = (ykm(Vk −Vm))

T ēφ =

(AkmV )T ēφ,V φ
k = (BkV )T ēφ, ēφ denotes the ca-

nonical base of R3, thus, Sφ
km = V φ

k (I
φ
km)
∗ =

V HBkēφ(ēφ)T AkmV = Tr(Bkēφ(ēφ)T AkmW ). There-
fore, the line flow constraint (6f) can be re-expressed
by

|Sφ
km|= |Tr(Bkēφ(ēφ)T AkmW )| ≤ (Skm)

max,∀(k,m)∈L
(12)
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Similarly, the line flow constraint (6g) can be re-
expressed by

|V φ
k −V φ

m|2 =V H(Bk−Bm)
H ēφ(ēφ)T (Bk−Bm)V

= Tr((Bk−Bm)
H ēφ(ēφ)T (Bk−Bm)W )

≤ (V φ
km)

max,∀(k,m) ∈ L
(13)

In summary, TOPF (6) is reformulated by the follo-
wing optimization problem in matrix W ∈ C3n×3n,

min
W∈C3n×3n

F(W ) s.t. (14a)

−PLk − jQLk = Tr(Y φ
k W ),∀k ∈N \G , (14b)

(Pφ
Gk
)min ≤ Pφ

Lk
+Tr(1/2(Y φ

k +(Y φ
k )

H)W )

≤ (Pφ
Gk
)max,∀k ∈ G (14c)

Qmin
Gk
≤ Qφ

Lk
+Tr( j/2(Y φ

k − (Y φ
k )

H)W )

≤ Qmax
Gk

,∀k ∈ G (14d)

(V min
k )2 ≤ Tr(ēφ

k(ē
φ
k)

TW )≤ (V max
k )2,∀k ∈N (14e)

|Tr(Bkeφ(eφ)T AkmW )| ≤ (Skm)
max,∀(k,m) ∈ L (14f)

Tr((Bk−Bm)
H ēφ(ēφ)T (Bk−Bm)W )

≤ (V max
km )2,∀(k,m) ∈ L (14g)

W � 0, (14h)
rank(W ) = 1, (14i)

where

F(W ) = ∑
k∈G

[ck2(P
φ
Lk
+Tr(1/2(Y φ

k +(Y φ
k )

H)W ))2

+ck1(P
φ
Lk
+Tr(1/2(Y φ

k +(Y φ
k )

H)W ))

+ck0], (15)

which is convex quadratic in W .
As all constraints (14b)-(14h) are linear, the difficulty
of (14) is now concentrated at the nonconvex matrix
rank-one constraint (14i). The existing SDRs, such as
(Lavaei and Low, 2012) and (Dall’Anese et al., 2013)
simply drop the only nonconvex constraint (14i) to
have the SDP (14a)-(14h). If the optimal solution of
this SDR is of rank-one, i.e. it satisfies the nonconvex
rank-one constraint (14i) then it obviously leads to
the global optimal solution of the nonconvex program
(14). Otherwise, SDR cannot provide even feasible
point to the original TOPF (6). In the next section
we will provide an efficient computational nonsmooth
algorithm for the optimal solution of the nonconvex
problem (14).

4 NONSMOOTH OPTIMIZATION
ALGORITHM FOR TOPF

In this section, followed by our previous work (Shi
et al., 2015), a nonsmooth optimization algorithm is
proposed to deal with the nonconvex rank-one con-
straint (14i) in program (14). Firstly, the rank-one
constraint (14i) is equivalently expressed by the fol-
lowing spectral constraint

Trace(W )−λmax(W )≤ 0, (16)

where λmax(W ) stands for the maximal eigenvalue of
W .

Instead of dealing with the nonconvex constraint
(16), we incorporate it into the objective, leading to
the following formulation

min
W∈C3n×3n

F(W )+µ(Trace(W )−λmax(W )) s.t.

(14b)− (14h), (17)

where µ > 0 is a penalty parameter. The above pe-
nalization is exact because the constraint (16) can be
satisfied by a minimizer of (14) with a finite value of
µ. On the other hand, any feasible W to (14) is also fe-
asible to (17), implying that the optimal value of (14)
for any µ > 0 is upper bounded by the optimal value
of (17).

Function λmax(W ) is nonsmooth but is lower
bounded by a linear function as the following relation
shows (Tuan et al., 2000):

λmax(W ) ≥ λmax(W (κ))+(w(κ)
max)

H(W −W (κ))w(κ)
max

= (w(κ)
max)

HWw(κ)
max, ∀W � 0. (18)

Here, w(κ)
max is the eigenvector corresponding to the ei-

genvalue λmax(W (κ)).
Therefore, for any W (κ) feasible to convex con-

straints (14b)-(14h), the following SDP yields an up-
per bound for nonconvex program (17)

min
W∈C3n×3n

F(κ)(W ) := F(W )+µ[Trace(W )−

(w(κ)
max)

HWw(κ)
max] s.t. (14b)− (14h)

(19)

because

F(κ)(W )≥F(W )+µ(Trace(W )−λmax(W )) ∀W � 0

according to (18).

By Algorithm 1, we provide an iterative compu-
tational procedure for computing (14). Its initial step
is to solve SDP (20), which is a SDR for (14) so its
optimal value is a lower bound for (14).
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Algorithm 1: Nonsmooth Optimization Algorithm for the
unbalanced TOPF problem.

1: Initialize κ := 0 and solve the SDP

min
W∈C3n×3n

F(W ) s.t. (14b)− (14h) (20)

to find its optimal solution W (κ). Stop the algo-
rithm if

Trace(W (κ))− (w(κ)
max)

HW (κ)w(κ)
max ≤ ε (21)

and accept W (κ) as the optimal solution of the
nonconvex program (6).

2: repeat
3: Solve the convex program (19), to find the op-

timal solution W (κ+1)

4: Set κ := κ+1.
5: until

Trace(W (κ))− (w(κ)
max)

HW (κ)w(κ)
max ≤ ε. (22)

6: Accept W (κ) as a found solution of (6).

Suppose that W (κ+1) is the optimal solution of
SDP (19). Since W (κ) is also feasible to (19), it is
true that

F(W (κ))+µ(Trace(W (κ))−λmax(W (κ))) =

F(κ)(W (κ)) ≥
F(κ)(W (κ+1)) =

F(W (κ+1))+µ(Trace(W (κ+1))−λmax(W (κ+1))),

so W (κ+1) is better solution of (17) than W (κ).

5 SIMULATION RESULTS

The hardware and software facilities for our compu-
tational implementation are:
• Processor: Intel(R) Core(TM) i5-3470 CPU

@3.20GHz;
• Software and toolbox : Matlab version R2015b;

CVX (Grant and Boyd, 2014) with Sedumi
(Sturm, 1999) to solve SDP (19).

• tolerance: ε = 10−4 is set for the stop criterion
(22) of Algorithm 1, which is applied to solutions
of all cases.
To demonstrate the efficiency of our nonsmooth

optimization algorithm, the following two cases are
tested.

5.1 Six-node Network

This six-node three-phase network is a modifica-
tion from the unbalanced network from (Sanseverino

et al., 2015), which is depicted by Fig. 2. There are
six nodes with three distributed generators and five li-
nes, which lead to three nonlinear equality constraint
in (6b). The size of the Hermitian symmetric ma-
trix variable W is 18× 18. The coefficients of the
power cost are set by ck2 = 0, ck1 = 4 and ck0 = 10
for each node and phase, respectively. The minimum
and maximum capacity of service voltage are set by
V min

k = 0.95pu, V min
k = 1.05pu for all nodes. The ini-

tial iteration of Algorithm 1 found rank(W (0)) = 8
with power cost 1086 ($/h), which is only a lower
bound of TOPF (14). SDR thus can not lead to feasi-
ble point for the original TOPF (6). After 5 iterations,
Algorithm 1 yields a rank-one solution with the po-
wer cost 1125 ($/h), with a 3.5% increase compared
to the lower bound 1086 ($/h).

DG1 DG2 DG3

4 5 6

Figure 2: Topology of the 6-node three-phase network.

5.2 Ten-node Network

This ten-node three-phase network is a modifi-
cation of the unbalanced network modified from
(Dall’Anese et al., 2013), which is depicted by Fig.
3. There are ten nodes with two distributed generators
and nine lines, which lead to eight nonlinear equality
constraint in (6b). The size of the Hermitian symme-
tric matrix variable W is 30×30. The coefficients of
the power cost are set by ck2 = 0, ck1 = 6 and ck0 = 30
for each node and phase, respectively. The minimum
and maximum capacity of service voltage are set by
V min

k = 0.95pu, V min
k = 1.05pu for all nodes. The ini-

tial iteration of Algorithm 1 found rank(W (0)) = 12
with power cost 1573 ($/h), which is only a lower
bound of TOPF (14). Again SDR can not find even
a feasible point for original TOPF (6). After ten itera-
tions, the nonsmooth optimization Algorithm 1 yields
a rank-one matrix solution with the power cost 1652
($/h), which is a 5.0% increase compared to the lower
bound 1573 ($/h).
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DG5 DG7

1 2 3 8

4 6 9

10

Figure 3: Topology of the 10-node three-phase network.

6 CONCLUSIONS

TOPF is a very computationally difficult problem as
it involves multiple quadratic equality and indefinite
quadratic inequality constraints of the bus intercon-
nections, hardware operating capacity and balance be-
tween power demand and supply. We have proposed
an iterative nonsmooth algorithm for its computatio-
nal solution. The provided simulations demonstrate
its merit. Its applications to larger scale TOPFs are
currently under consideration.
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