
A Case-based Approach for Reusing Decisions
in the Software Development Process

Hércules Antonio do Prado1,2, Edilson Ferneda1, Aluizio Haendchen Filho3
and Sandra Silva de Alvarenga4

1MGCTI, Catholic University of Brasilia, Brasília, Brazil
2 Brazilian Agricultural Research Corporation, Brasília, Brazil

3 UNIFEBE, Brusque, Brazil
4UniCEUB, Brasília, Brazil

Keywords: Software Engineering, Design Rationale, Case-Based Reasoning, Knowledge Management.

Abstract: This paper proposes a process for supporting reuse of decisions during the software development process,
involving architectural, technological, or management issues, in order to help reducing time and costs in
process. A survey with software engineering professionals was performed aiming at identifying a set of
decision-making cases that could be applied to design the process. From the result of this survey, a process
was implemented, including related software and procedures that eases the reuse of decisions made during
software development projects. Design Rationale techniques were applied to structure the cases that were
represented and recovered by means of a Case-Based Reasoning approach. The applicability of this
approach was evaluated by means of a two-phase case study. The first one encompassed the construction of
the case base using the cases identified previously and the second was focused in the application of the
system and its evaluation by means of group dynamics. The focal group was chosen among a set of software
engineering experts from companies and universities located in Brasília, the Brazilian capital. Satisfactory
results were found with respect to the usefulness of the model to improve the performance of software
development when past cases are available.

1 INTRODUCTION

The software development process involves the use
of highly specialized and expensive technical
knowledge. This knowledge can represent important
asset if properly registered and made available for
reuse. Usually, the development of an activity can
benefit from the experience of past decisions,
avoiding the re-work or even the adoption of
solutions that are not the best for the same class of
problems.

However, it is not usual to adopt a systematic
approach for this purpose. Usually, these activities
are carried out occasionally and without reference to
the context of the problem. Indeed, documenting
decision making throughout the software lifecycle
can be costly or have limited success chances if
adequate support is not available for the
management of the involved knowledge.

Although the widely recognized importance of
reuse in Software Engineering (SE)

(Gopalakrishnan, 2015, Moaven et al., 2008), the
available solutions do not retain the context of the
design decisions or even the course taken by the
software engineer in the formulation of solutions.
Usually, the approach is to design components with
broad spectrum of application that are difficult to
apply to specific problems. The treatment of the
knowledge involved in the construction of
components for reuse is still a problem without a
largely accepted solution.

Misleading and re-working should be mitigated
to the maximum, and successful solutions should
serve as the basis for new problems solving. An
aggravating factor is that in general, the knowledge
involved is dispersed, large and very dynamic
(Parreiras e Bax, 2003).

During the software development process, many
solutions can be devised for a given problem
situation. Many are the arguments involved in the
discussions for the definition of an alternative. What
is sought is a narrative based on well-defined criteria

Prado, H., Ferneda, E., Filho, A. and Alvarenga, S.
A Case-based Approach for Reusing Decisions in the Software Development Process.
DOI: 10.5220/0006356606250631
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 625-631
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

625

as a rationale for the choice of a way forward. There
are many risk situations for these knowledge assets.
Explanations offered by users to understand a
demand and the knowledge that is lost by employee
turnover can be cited as examples. All this
knowledge asset can be lost by failing in
documenting the solutions to the problems. (Burge,
Brown, 2000).

Despite the many facilities provided in the realm
of SE to document information related to software
projects, the non explicitation of tacit knowledge
involved in decision-making weakens the overall
process. In addition, companies are increasingly
concerned with reaching higher levels of capacity
maturity models, spending much more time with
documentation, metrics, and indicators than simply
writing and debugging codes (Burge, 2008).

This paper proposes an environment for
representation, storage and retrieval of the
knowledge involved in the software development
process, in order to: (i) avoid the repetition of past
errors and (ii) evolve products based on previous
successful decisions.

2 RELATED WORKS

Considering the literature regarding to concrete
technological solutions for decision reuse in SE,
Conklin and Begeman (1988) presented gIBIS
(Graphical Issue-Based Information System),
proposal to capture design deliberations in their
early stages. The system uses IBIS notation for
argumentation, focusing on the collaborative
working context. Afterwards, a graphical
representation was incorporated into the IBIS
vocabulary by means of a directional graph that
shows the contents nodes. It allows a hierarchical
view of the information, being able to represent
problems, answers and arguments.

Rus, Lindvall, and Sinha (2001) take as start
point the fact that the software development process
involves several profiles of professionals that need
to interact and decide on a variety of options. In this
process, timely and quality solutions must be sought,
while keeping a good tradeoff between the cost-time
to obtain a solution.

DocRationale (Francisco, 2004) is a tool for
supporting the capture, representation, and retrieval
of software artifacts based on Design Rationale (DR)
(Shum, 1991). The idea is the collaboration among
members of development teams, that register
solutions for later consultation in different projects.
DocRationale promotes the many forms of digital

communication (audio, video and e-mail files,
among others) in order to complement rationale
documentation, all of which are captured
hierarchically and chronologically ordered. In order
to provide DR support for software artifacts,
DocRationale is process-oriented, enabling the
maintenance of phases, activities, and artifacts of a
project.

InfoRat (Inference Over Rationale) also uses DR
for knowledge representation and is able to make
inferences on a particular design, to detect
inconsistencies and estimate the impact of changes
(Burge, Brown, 2000). The tool is designed to be
used along with the Eclipse development
environment. It provides an ontology criteria
visualization for evaluation and selection of
alternatives. The capture is performed manually and
separately from the design process, adding a high
cost to the software process.

Based on the Decision Rationale Language
(DRL), which allows the representation of rationale
decisions, SYBIL (Lee, 1990) is a system that aims
to assist users in the management and representation
of the qualitative aspects involved in the decision-
making process. The decision-making tasks are
supported by graphs that allow the visualization of
different alternatives involved and their respective
evaluations. SYBIL eases the user interaction with
the environment by means of a visual user interface.
It enables the management of dependency,
precedence, and evaluation, supporting decision-
making based on information quality.

SEURAT (Software Engineering Using
RATionale) (Burge, Brown, 2004) supports the use
of DR in software maintenance. It provides an
overview of the rationale and possible inferences
pointing to unresolved or inconsistent issues
resulting from software modifications. This system
adopts RATSpeak, a DRL-based representation,
which allows the generation of an arguments´
ontology, organized in a hierarchy of constraints that
can be applied to a software. SEURAT is integrated
with the Eclipse development environment.

Aiming to assist the teaching of fresh students in
the software development field, Analogus (Santos
Jr., 2009) was developed in a virtual environment
that acts in the resolution of programming problems.
This environment applies the case-based framework
jColibri to suggest programming problems similar to
the current one. In addition, to simulate a virtual
teacher an intelligent dialogue agent was embodied
in the solution. Departing from a set of information
about a programming problem reported by a student,
the system searches the case base for similar

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

626

problems already solved. This set of cases is made
available to the intelligent agent that presents similar
aspects of the cases to the student. The student
solves the new problem by reusing the knowledge
presented by the agent. A teacher checks the
resolution proposed by the student and verifies the
need for adjustments. A problem is considered
solved and made available when all of the teacher's
considerations are met by student.

ECoCADe (Evidence, Context, and Decision
Support Cases) is a framework to support evidence-
based decision making, mainly by assisting
developers in modeling evidence and case
representation. ModECoCa (Context Evidence
Modeling and Case Representation) is an
instantiation of ECoCADe. Its involves the Case-
Based Reasoning (CBR) cycle with evidence-based
practice procedures, considering the diversity of
contexts (problem actor, evidence generation and
decision making), supported by the decision-making
model of Simon et al. (1987).

Kruchten et al. (2006) propose an ontology to
organize different types of decisions, as well as an
extensive list of attributes focused on the
documentation and evolution of each decision. An
information retrieval technique gathers the traces of
the information collected using data mining.

3 FOUNDATIONS

Two basic techniques are involved in this proposal:
DR and CBR. Toulmin (1958) can be considered the
precursor of semiformal graphical representation
schemes for visualization of arguments based on
DR. An argument consists of a fact or observation, a
logical step, and an assertion. The rationale is based
on a reference or an explanation. The most relevant
features of DR are: (i) ease of explicit
documentation (Tyree, Akeman, 2005); (ii) retention
of context so that the suitability of solutions can be
verified (Rittel, 1973); (iii) ease solutions obtained
from the discussion on alternatives in groups; (iv)
avoidance of conflicts between restructuring of a
solution with the rest of the project (Burge and
Brown, 2000); (v) capture of knowledge related to
intellectual capital, collaboration and knowledge
sharing and (vi) visibility of all ideas that have
helped to guide the project, facilitating continuity in
the same chain of reasoning or the integration of
new participants.

Rittel (1973) found in DR a response to the
complexity involved in a project. For him, the real
problems in design situations were not well

described and associated with a set of possible
solutions, precluding a clear view of the problem
from the outset.

Souza et al. (1998) emphasize that DR helps: (i)
solving similar problems; (ii) understanding the
design of a product; (iii) maintenance of a product,
avoiding the forgetfulness of the reason for the
adoption of certain solutions; (iv) impact assessment
of changes; (v) communication between teams; (vi)
monitoring and finding errors; and (vii) reduction of
arbitrariness in the decision-making process, since it
is based on the justification of a choice.

The literature considers DR as an interesting
alternative to represent problematic situations and
associated solutions, along with the respective
justifications. Despite the relative consensus on this
advantage, there have been few advances in the
adoption of tools based on DR. It follows three
perspectives: argumentation, communication, and
documentation (Shipman, McCall, 1997).
Argumentation and documentation focus on project
decisions and the reasons behind them. The first one
structures how the decision maker addressed the
problem and the second one provides knowledge
about the project to external people. The
communication perspective is an attempt to preserve
the information interchange among the team (Burge,
Brown, 2000).

Although Shipman and McCall (1997) have
considered communication as the strongest
motivation for capturing a DR, they points the
difficulty involved for indexing it. Francisco (2004)
argues on the usefulness of argumentation recovery,
but emphasizes the existence of problems related to
the capture in this perspective.

The DR power is that it ensures the preservation
of information related to important decision-making
in a project. However, to enable this ability it is
necessary to develop a representation that addresses:
What is appropriate to represent? How could this
representation be used? What alternatives are
designed to solve an issue? Why a solution was
adopted? What feedbacks were offered over the time
that a particular solution was used?

In addition, it is important to ensure that the
essential issues will be clear to others that will need
to deal with them later. It is essential to promote the
visibility of all ideas that have helped to guide the
project up to the present, facilitating the continuity
in the same chain of reasoning or even the
integration of new participants.

However, Horner and Attwood (2006) pointed
the following restrictions to DR: (i) limitation of
human information processing, (ii) difficulties in

A Case-based Approach for Reusing Decisions in the Software Development Process

627

eliciting tacit knowledge; (iii) lack of incentives to
capture; (iv) difficulty in perceiving probable
benefits; (v) costs; (vi) risk of exposing an employee
if his decision was not satisfactory; (vi) identifying
what rationale should be stored and what methods
are used for recovery; and (vii) applicability of the
reasoning.

The basic idea of CBR is to keep the information
related to the alternatives considered for solving a
problem and their justifications. Amodt (1994)
proposed the following steps for the knowledge
representation:
 Case representation: structure of cases for

representation, indexing and recovering;
 Cases recovery: it requires a clear definition

of the criteria that best represent a problem
and what kind of similarity will be considered.
The data retrieval process should be able to
discard the insignificant cases showing only
those that offer an adequate proximity to the
solution;

 Cases reuse: there are two possibilities in this
step: a complete copy of the recovered
solution or its adaptation to the new problem;

 Cases review: both the success and failure of
an adopted solution must be stored in the case
base; in cases of failure, it is necessary to
identify the reasons for this result,
contributing in the future for avoiding the
occurrence of similar faults;

 Cases retention: learning process of the CBR,
the appropriation of results from both reused
cases and those that were not useful.

CBR was developed under the necessity to

mitigate the dependency of specialist for problem
resolution. To make CBR feasible, the problem
knowledge must be represented by a contextualized
case, registering an episode in which a problematic
situation has been solved. A case is characterized by
a problem situation associated with its respective
solution. By means of similarities, old solutions can
be adapted to solve new problems.

A case can be considered as a basic structure of
knowledge encapsulation; an opportunity for
learning by experience. For Watson and Marir
(1994), a case is a contextualized piece of

knowledge, representing an experience that contains
past lessons and its context of use. A case is
represented by: (i) a problem (case scenario); (ii) a
solution (set of steps to solve the problem) and (iii) a
result (domain behavior after solution application).

Shiu and Pal (2004) consider that CBR should be
used in scenarios that include the following
characteristics: (i) when it is impossible to fully
understand the domain; (ii) there are exceptions in
new situations; (iii) the problem occurs recurrently;
(iv) it is advantageous to adapt a situation in order to
solve another problem; and (v) previous situations
provide significant inputs to new situations.

Watson (2003) states that, in general, the
representation of a case can be seen as a set of pairs
(attribute-value) indexed (information that helps to
reduce the search space of a case) or not indexed,
used for storing information about the case context
of the case context.

4 PROPOSED APPROACH

We propose DecisionMaker, an environment that
combines CBR and DR for reuse in SE. CBR were
adopted since a DR can be considered a case. The
work involves the proposition of procedures, roles
and activities that help the SE process.

4.1 Description

When facing a problem, the developer starts the
decision-making process supported by
DecisionMaker. As a first step, it makes the
representation of the case, which allows the tool to
suggest similar cases. The developer can now decide
on the reuse of a case (completely or even through
an adaptation). Then, the tool allows the refinement
of the designed solution, by means of review cycles,
providing feedback and adjustments to meet the
problem requirements. Finally, the case is evaluated
and retained in the memory of cases of the system,
being able to support the resolution of future
problems (Fig. 1).

The tools functionalities were defined on the
basis of four use cases:
 Problem register: consultation, inclusion,

Figure 1: Decision Making Process – DecisionMaker.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

628

modification or even exclusion of a problem in
the system.

 Solution register: consultation, inclusion,
modification, exclusion or even evaluation of
alternatives to a problem.

 Search similar situations: suggest a group of
situations similar to the problem informed.

 Solution reuse: complete or partial use of a
solution attributed to a previous problem.

For the similarity calculation among cases, the

closest neighbor method was used by comparing the
corresponding vectors. The cases are also
characterized by the category and complexity of the
problem and the technology involved, according to
Tables 1, 2 and 3, defined from expert consultation.

After recording the problem, the system presents
a list of cases considered similar to the one
presented. The problem-solving features are
triggered in order to retrieve records that answer the
following questions: (i) what problems are similar to
the one registered? (ii) what is the level of similarity
for each attribute?

To help identifying these criteria, similarity
functions were defined (Table 4). Only those cases
that are considered Very Similar or even Similar are
presented to the user, ordered according their degree.

Given the suggestions presented, the system user
evaluates if some of them solve the presented
problem. If so, the decision maker selects the one
chosen for reuse in solving the problem. It is worth
to remember that a reused solution does not need to
solve a problem totally, as this can only serve as the
basis for the definition of a new solution. Thus,
cases presented as similar can assist the decision
maker in solving the problem by merely serving as
inspiration.

After choosing the solution, the decision maker
performs the implementation. However, just as it
does during software testing, the solution to the
problem can suffer many adjustments until it reaches
its correct format. In this activity, known as problem
review, the decision maker changes problem
information and alternatives as needed.

Next, the user evaluates the solution. For this,
the decision maker assigns a score from 0 to 10
considering the degree of satisfaction experienced
with the resolution of the problem. This evaluation
will also serve to point out that the case has been
completed and can be made available as a
suggestion for new problems.

4.2 Case Study

In order to evaluate the environment, a controlled
experiment was carried out involving a group of
professionals working in the area of software
development. This experiment is divided into three
stages: (i) real data collection; (ii) use of
DecisionMaker, and (iii) evaluation of the
experience.

Table 1: Domain - Problem Category.

Category Description
Programming Problems related to coding.

Solution
Architecture

Problems related to the
architectural solution chosen to
the project or even to the pattern
adoption.

Realization

Problems related to the
realization of systems analysis
artifacts as sequence diagrams of
sequence, activities or classes.

Management
Management problems including
team atitude or strategy.

Business
Strategy

Problems involving actions that
an corporation needs to reach its
desired position in market.

Activity
Execution

Problems related to the effective
use of a resource.

Table 2: Domain - Complexity of Problem.

Complexity Description

Low
Problems that does not affect the
project cost and timetable.

Medium
Problems that affects or the cost
either the timetable of the project.

High
Problems that affects the cost and
the timetable of the project.

Table 3: Project Technology.

Technologies
BPM JSF PrimeFaces
DotNet MSProject RMC
Glassfish MySQL TomCat
Java Oracle
Jdeveloper PHP

Table 4: Similarity Degree.

Degree Similarity
Very Similar 60% ≤ x < 100%
Similar 40% ≤ x < 60%
Low similarity 0% ≤ x < 40%

A Case-based Approach for Reusing Decisions in the Software Development Process

629

Stage 1
With the support of ten experts, a set of problem
situations was raised and recorded in
DecisionMaker. We have collected cases
experienced by those involved in order to represent
the most common situations, including the use of
tools, technologies, or even strategies of operation.
Such representation covered the description and
solution of the situation, including the criteria used
for choice adoption. The alternatives considered for
decision making was also recorded, even though
they were not adopted. Thus, it was identified a
problem and the considered alternatives, along with
their justifications for choice or disposal, after the
definition of the solution.

Seventy seven problem cases were surveyed,
from which 17% were considered highly complex,
73% medium complexity, and 10% low complexity.
Regarding the categories of problems, 39%
corresponded to the Programming category, 29% to
the Solution Architecture category, 17%
Management and the rest also distributed in
Realization, Business Strategy and Activity
Execution. Project Technologies focused on the use
of Java (32%), Oracle (23), MySQL (16) and
TomCat (11%), remembering that a case may
involve more than one technology.

Stage 2
In the second stage, a restricted set of 7 specialists
had access to the environment to carry out queries
based on the simulation of needs described
according to the characteristics of both the available
cases in the available collection and in totally
different cases. The group included professionals
with experience in software development in the
ranges 1 to 3 years, 3 to 5 years, 5 to 10 years, and
more than 10 years. Each participant was asked to
describe two cases, one similar to the content of the
collection and another totally different, registering in
a form the evaluation of the process. The form
included the following attributes to be evaluated
with respect to recovered cases: (i) relevance of
information about cases; (ii) relevance of the cases
for the solution of the problem; and (iii) potential
application. For each attribute of each case, the
specialist assigned a score from 1 to 5 on the likert
scale.

Stage 3
From the information obtained in the first two
stages, the results were processed and shown in
Table 5. The three issues considered were evaluated
above 3, denoting a trend toward the relevance of

the overall process. Globally, among the 21
evaluations, 66% are above 3 what can point the
proposal as promising.

Table 5: Evaluation of the Proposed Decision Support
Support Process.

 Participants/Answers
1 2 3 4 5 6 7

Level of relevance
of cases information

5 3 3 3 4 2 5

Level of relevance
of suggested cases

4 3 1 2 4 2 5

Usefulness of the
information to solve
the problems

4 4 1 1 3 2 4

5 CONCLUSION AND FURTHER
WORKS

The results obtained in the expert evaluations
indicate that the DR-based software reuse process
implemented by the CBR technique is capable of
aiding professionals in the area of software
development. The deepening of the experience, with
a broader case base and evaluation in a real working
environment can strengthen this perception with
more emphatic results. In this case, similarity
functions should be calibrated due to the natural
adherence of the contents of the case base to specific
development environments.

Despite the gains provided by the flexibility of
the methodology used, it was found too much
resistance in obtaining answers from the participants
to the survey of problem situations. Corroborates to
this difficulty the subjective format of the
information needed to be raised (from the
application of the argument perspective to DR
representation) and the way in which the focal group
was performed, outside the work routine of the
participants. This only reinforces the need to test the
tool in a real-world environment.

It can be concluded that the combined use of DR
and CBR to support the decision-making process in
scenarios comprised by software development can
provide an improvement in the maturity of a new
decision, the adaptation of a case, the speed in
problems solving, influencing positively the final
result of a project.

The integration of the proposed tool into a
development suite can be an interesting research
effort, as mentioned by experiment participants. This
integration would collaborate with the

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

630

institutionalization and adherence of the necessary
procedures for the collection and representation of
problem situations, making the process involved to
capture and recover a case, as part of the
collaborator's work environment.

Finally, the association of artifacts related to the
problem or even alternatives, including text
documents, spreadsheets, emails or even videos and
audios, that collaborate to the understanding of the
explicit case could be included as a functionality to
the proposed platform.

REFERENCES

Aamodt, A., Plaza, E., 1994. Case-based reasoning:
foundational issues, methodological variations, and
system approaches. AI Communications. 7(1): 39–59.

Burge, J.E., 2008. Design rationale: Researching under
uncertainty. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 22(4):311-324.

Burge, J., Brown, D.C., 2000. Reasoning with design
rationale. In Proceedings of the Artificial Intelligence
Design Conference.

Burge, J., Brown, D.C., 2004. An integrated approach for
software sedign checking using rationale. In J. Gero
(Ed.), Design computing and cognition ’04, Kluwer
Academic, p. 557-576..

Conklin, J., Begeman, M.L., 1988. gIBIS: a hypertext tool
for exploratory policy discussion. ACM Transactions
on Information Systems, 6(4):303-331.

Fischer, A., Greiff, S., Funke J., 2012. The Process of
Solving Complex Problems. The Journal of Problem
Solving, 4(1):19-42

Francisco, S. D., 2004. DocRationale - uma ferramenta
para suporte a Design Rationale de artefatos de
Software. Master Dissertation. Instituto de Ciências
Matemáticas e de Computação de São Carlos,
Universidade de São Paulo, Brazil.

Gopalakrishnan, A., 2015. Improving decision making and
reuse in software systems using domain specific
reference architectures. In IEEE International
Conference on Electronics, Computing and
Communication Technologies (CONECCT).

Horner, J., Atwood, M.E., 2006. Effective Design
Rationale: Understanding the Barriers, In Dutoit, A.H.
et al., Rationale Management in Software
Engineering, Springer, p. 73-90.

Kolodner, J.L., 1993 Case-Based Reasoning. Morgan
Kaufmann.

Kruchten, P., Lago, P., van Vliet, H., 2006. Building up
and Reasoning about Architectural Knowledge. In
Hofmeinster et al (Eds.) 2nd International. Conference
on the Quality of Software Architectures, LNCS 4214,
Springer Verlag.

Lee, J., 1990. SYBIL: a tool for managing a group
decision rational. In Proceedings of the 1990 ACM

Conference on Computer-Suppoerted Cooperative
Work, p. 79-92

Moaven, S., Habibi, J., Ahmadi, H., Kamandi, A., 2008. A
Decision Support System for Software Architecture-
Style Selection. In Sixth International Conference on
Software Engineering Research, Management and
Applications, SERA '08.

Parreiras, F.S., Bax, M.P., 2003. A gestão de conteúdos no
apoio à engenharia de software. In: KMBrasil, São
Paulo, Brazil.

Rittel, H.W.J., Webber, M.M., 1973. Dilemmas in a
general theory of planning. Policy Sciences,
4(2):155-169.

Rus, I., Lindvall, M., Sinha, S.S., 2001 Knowledge
Management in Software Engineering. Nova York:
The Data and Analysis Center for Software.

Santos Jr, G.P. dos, 2009. Integração de um Sistema de
Raciocínio Baseado em casos e um Agente Inteligente
de Diálogo para Resolução de Problemas de
Programação. Master Dissertation. Universidade
Federal de Campina Grande, Brazil.

Shipman, F., McCall, R., 1997. Integrating Different
Perspectives on Design Rationale: Supporting the
Emergence of Design Rationale from Design
Communication. Artificial Intelligence in Engineering
Design, Analysis, and Manufacturing, 11(2):141-154.

Shiu, S., Pal, S.K., 2004. Foundations of Soft Case-Based
Reasoning. Wiley-Interscience.

Shum, S., 1991. Cognitive Dimensions of Design
Rationale. In D Diaper and N V Hammond (Ed.)
People and Computers VI: Proceedings of HCI’91,
Cambridge University Press: Cambridge., p. 331-344.

Simon, H. A., et al., 1987. Decision making and problem
solving. Interfaces, 17(5):11-31.

Souza, C.R.B, et al., 1998. A Model Tool for Semi-
Automatic Recording of Design Rationale in software
Diagrams. In Proceedings of the Strict Processing and
Information Retrieval Symposium, p. 306-313.

Toulmin, S. The Uses of Argument. Cambridge:
Cambridge University Press, 1958.

Tyree, J., Akerman, A., 2005. Architecture Decisions:
Demystifying Architecture. IEEE Software, 22(2):19-
27.

Watson, I., Marir, F., 1994. Case-based reasoning: a
review. Knowledge Engineering Review, 9(4):327-
354.

Watson, I., 2003. Applying Knowledge Management:
Techniques for Building Corporate Memories, Morgan
Kaufmann.

A Case-based Approach for Reusing Decisions in the Software Development Process

631

