
Graph Databases: Neo4j Analysis

José Guia1, Valéria Gonçalves Soares2 and Jorge Bernardino1,3

1ISEC, Polytechnic of Coimbra, Rua Pedro Nunes, Coimbra, Portugal
2Informatics Centre, Federal University of Paraiba, Brazil

3CISUC - Centre for Informatics and Systems of the University of Coimbra, Portugal

Keywords: Graph Databases, NoSQL Databases, Neo4j.

Abstract: The volume of data is growing at an increasing rate. This growth is both in size and in connectivity, where
connectivity refers to the increasing presence of relationships between data. Social networks such as
Facebook and Twitter store and process petabytes of data each day. Graph databases have gained renewed
interest in the last years, due to their applications in areas such as the Semantic Web and Social Network
Analysis. Graph databases provide an effective and efficient solution to data storage and querying data in
these scenarios, where data is rich in relationships. In this paper, it is analyzed the fundamental points of
graph databases, showing their main characteristics and advantages. We study Neo4j, the top graph database
software in the market and evaluate its performance using the Social Network Benchmark (SNB).

1 INTRODUCTION

Relational databases are good at managing
transactional data and are still prevalent in data
storage. However, with the recent growth of
applications rich in relationships (e.g., social
networks), graphs are becoming the preferred choice
as the data model for representing and storing this
new type of data. Current platforms must deal with
huge amounts of data and the growth of
interconnected information (Lourenço et al., 2015a).
In the last years, a new database family, the NoSQL
model (Deka, 2015; Abramova et al., 2014a, 2014b),
has gained widespread popularity, especially
because of the need to deal with huge volumes of
data connected to each other, to store and to recover
them effectively (Lourenço et al., 2015b). So, a
special type of NoSQL database arises that fits this
paradigm: the graph databases (Larriba-Pey et al.,
2014).

Graph databases are a type of non-relational
databases that provide an effective and efficient
solution for the information storage in the current
context, where data are very strongly interconnected.
Graph databases can be defined as databases that use
graph structures with nodes, edges and properties to
store data (Wang et al., 2015).

The interest in graph models has been increasing
in the last few years, due to their applications in
areas like the Semantic Web and the Analysis of
Social Networks (Dietrich et al., 2014). The main
advantage is the lightning-fast access to complex
data, founded per example in social networks,
recommendations engines, data mining operations
and network systems.

This type of database is too easy to understand
because its concept is based on graph theory. This
theory is based on graphs (Rodriguez et al., 2010),
which are mathematical structures used to model
relations between objects. In this context, a graph is
a structure organized by nodes, also called vertices
(the entities), by edges (the relations) represented by
the lines that connect the various nodes and by
properties that represent the information related to
the nodes and/or with the edges. Therefore, the
graph databases can be described simply as a way to
represent and store data using their structures: nodes,
edges and properties. The simplicity of the storage
representation in their structures and quick access to
data make graph databases, a very practical database
type to use and manage. The graph databases are
optimized to store and query graph structures.

The problem of graph databases is that
sometimes they are not particularly effective in all
desired operations, for example, data representation
from the relational models. They are not a general

Guia, J., Soares, V. and Bernardino, J.
Graph Databases: Neo4j Analysis.
DOI: 10.5220/0006356003510356
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 351-356
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

351

replacement for relational databases, but are in fact
an efficient solution when dealing with huge
volumes of data that contain interconnected data.

The focus of this paper is the study of the
characteristics of graph databases, referring to its
advantages, and the evaluation of the most popular
graph database: Neo4j.

This paper is structured as follows: Section 2
describes the advantages and use cases of graph
databases. Section 3 describes the main
characteristics of the Neo4j database. Section 4
present Social Network Benchmark (SNB). Section
5 presents the experimental evaluation of Neo4j.
Finally, Section 6 presents the main conclusions
drawn from this study, as well as proposals for
possible future work in this topic.

2 MAIN ADVANTAGES AND
USES OF GRAPH DATABASES

Graph databases are effective for several industries
from telecommunications to financial services,
logistics, hospitality, and healthcare. Graph
databases are essential in main areas, such as
analysis of behavior in social networks, data
management, and census-related studies. According
to Forrester Research, graph databases is the fastest
growing category in database management systems
and will reach more than 25 percent of enterprises
by 2017. Following, we describe the main
characteristics and advantages of a graph database
(Robinson et al., 2013):

 Information search far more
optimized than compared to relational
databases, since it takes advantage of the
proximity data from one or more root (main
nodes) of the graph database.
 Quite intuitive, due to their natural
form of information representation - the
graphs.
 Support the data storage in the order
of petabytes (1015)..
 They are very agile in development
since they can be easily adapted over time,
either in the insert or in the deletion of
information.
 Allow new types of data.
 Suitable for data connected to each
other, usually involved in real-world cases.
 Optimized for data
mining operations.

 High performance in terms
of querying very deep searches when
compared to relational databases.

For example, Walmart and eBay adopt a graph
database to understand the behavior and preferences
of online buyers with adequate speed and enough
depth to make real-time and personalized
recommendations (Retail Technology, 2016). By
using a graph database, these companies can connect
rapidly masses of complex buyer and product data to
gain insight into customer needs and product trends.

3 Neo4J ANALYSYS

Neo4j is considered the reference software in this
area (Predictive Analytics Today, 2016), and it is
one of the most used graph databases in areas such
as health, government, automotive production,
military area, among others.

Neo4j is an open-source graph database
implemented in Java. The founders of Neo4j
describe it as a fully transactional database, a
persistent Java engine where it is possible to store
structures in the form of graphs instead of tables
(Webber, 2012). The Neo4j is considered the most
popular and used graph database worldwide, the
largest reference area and this is our choice due to
this general recognition (Predictive Analytics Today,
2016).

This software was first released in 2007, and is
divided into three broad categories: Community,
Government, and Enterprise. The Community
Edition is the trial version, which is basically the
version that any user can test. The Enterprise
Edition, where there is the possibility of testing a
more complete version than the Community for 30
days. It is therefore the commercial version of this
software, and there is still the Government Edition,
which is like an upgrade to the Enterprise version.
This release is highly focused on government
services. The major differences between the two
main versions of Neo4j (Community and Enterprise)
are: the existence of online backup, high
performance level of memory cache, detailed
monitoring system, strong managing of locks on the
database, and the greater database scalability, among
other advantages of Enterprise Edition.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

352

3.1 Neo4j Main Features

The main advantages of Neo4j are (Bruggen, 2015):
 Horizontal scalability (in the
Enterprise version) - allows easily adding
more nodes to the system. In the
Community version, the scalability is
vertical.
 Neo4j has its own language, created
by the company for its query methods -
Cypher language. It is through this
language that we can handle all the
information of graph database.
 The storage is disk- based - through
proprietary file systems.
 Its integrity is ACID guaranteed.
 It has a very intuitive and very
accessible interface.

In Neo4j interface (see Figure 1) we can see
a graph database in the central image menu – and
the graph with multiple nodes, the various
properties, and the edges that make up the graph
database. On the left side of the interface, we can
see the name of the nodes, the edges, the attributes
and the version of the program. We can also access
through an option on interface, visualize the size of
the disk graph database, follow various program
tutorials, and access the specific settings of the
program, among other options. In the center, above
the graph database, we can find a place to write
queries in Cypher language.

Figure 1: Neo4j interface (source: http://neo4j.com).

3.2 Query Methods

The query methods in Neo4j are written in Cypher
language that is the query language created by Neo
Technology (Vukotic et al., 2014).

The Cypher language allows an expressive and
efficient query execution and update of graph
database. It is a relatively simple language, but very
powerful. Very complex queries running in a
relational database can be easily executed in Cypher.
This allows users to focus on your domain instead of
getting lost in database access.

With this query language, we can delete/
insert/create, the basic elements such as nodes,
edges/relations and properties. For example, the
code to create a node with a name is:

CREATE (n: Person);

This code creates a node n, named Person,
using the CREATE command.

4 SOCIAL NETWORK
BENCHMARK (SNB)

In the experimental evaluation, it is used the Social
Network Benchmark (SNB), created by LDBC
(Erling et al., 2015). The SNB models a social
network like Facebook. The dataset consists of
people connected each other in a network
relationship, where most of the data relates to
messages that people post in various forums.

To accomplish the tests, we generated two large
data sets. Then we show the settings used for the
different tests in generating data on SNB. The
modified parameters were: scaleFator (which is the
scale factor of the data to be generated);
the serializer (which is the format that the generated
files out - supports the following: .csv, .ttl,
.csv_merge_foreign); the compressed (that specifies
whether the generated files must be compressed or
not); the numThreads (which is the number of
threads to use); updateStreams (option for
DATAGEN generate streams updated to use)
and outputDir (which is the location where the files
to be generated will be stored on disk). Following
we describe the two datasets that were generated
with in the SNB. Besides the datasets, we also will
describe the time to generate these files on the SNB.

In the first test, we generated one dataset with
about 1.2 GB of data (Dataset 1). This test takes 11
minutes and 54 seconds. In the second test, we
generated one dataset with about 11.6 GB of data
(Dataset 2). This test takes 1 hour, 52 minutes and
26 seconds.

The two generated datasets have eight main
entities, along with four other entities that are as
subclasses of the main entities. Relations connect
existing entities. The Tail and Head entities should

Graph Databases: Neo4j Analysis

353

be understood as the entities connected between
connection(s), and one is the end of the call and the
other is the start of the relationship, respectively.
Therefore, the relationship is oriented.

5 EXPERIMENTAL
EVALUATION

The experimental evaluation analyzes the Neo4j
behavior with different sizes of datasets, presenting
their load times and showing the performance using
SNB queries.

The experiment was executed with the following
configuration:

- Operating System: Windows 8.1 - 64bit;
- Processor: Intel (R) Core (TM) i7-3630QM

CPU @ 2.40GHz.
The tests were executed in order to load the two

datasets generated by the SNB - upload them one by
one to the Neo4j, then in each of the datasets loaded,
we run the queries test. Each dataset has 33 .csv files
- that are representative files of entities and
relationships between these entities. Two types of
tests were made with Neo4j. The first assessed the
load time of the two datasets created by the SNB, as
mentioned above. After that, we evaluate the
performance of Neo4J executing the SNB
benchmark queries.

5.1 Loading Time in Neo4j

In this step, we uploaded the files generated in the
SNB in the Dataset 1 that initially had 1.2 gigabytes
of data. At the end of loading, the original data,
which were generated by the SNB, increased from
1.2 gigabytes to 5.4 gigabytes in Neo4j when "built"
in graph database. This variation corresponds to an
overhead of 4.5 times compared to the original size,
so there was an increase of around 450%. The total
loading time of these files was 5h:12m: 24,81s.

In the second test, we load the files generated in
the Dataset 2 that has about 11.6 gigabytes of data.
The data that were generated by the SNB increased
from 11.6 gigabytes to 52.35 gigabytes in Neo4j. A
growth of about 451% compared to the size of the
files generated SNB. It is important to note that
during the loading time, the system blocked, and we
had to start it again, increasing the total final
time. The total loading time of this dataset was
160h: 28m: 4,74s.

In summary, we can say that relatively to the
Dataset 1, the Dataset 2 took much longer to load all

the files to the Neo4j. It went up for five hours in the
first dataset for approximately 160 hours in the
second dataset. This corresponds to an overhead of
about more 32 times to complete the load of all
files. This situation occurs because the volume of
data has increased considerably in the second
dataset.

5.2 Query Example

After completion of the Cypher language commands
to load the entities and relationships, we execute the
SNB queries in the two datasets, to assess the
runtimes. For example, Query 13, which will look
for people who know each other, traversing the
shortest possible route in the graph database. It
returns the length of this path taken in the search,
and the code in Cypher is:

MATCH (p1: Person), (p2: Person)

OPTIONAL MATCH shortestPath path =

((p1) - [: KNOWS] - (p2))

RETURN path CASE IS NULL

WHEN THEN true -1

ELSE length (path)

END THE pathlength

We execute the 14 queries of the SNB's

manual. It is through this type of test queries for data
query the database graph that makes assessments
such as the time it takes to query the data in the
graph database (from:
https://github.com/ldbc/ldbc_snb_docs).

Our tests were based on exactly the time that
these queries are executed to return the desired
results. In the next section we show the results in the
evaluations using Neo4j and the two datasets
generated by SNB benchmark.

5.3 SNB Queries Execution Time

In this section, we present the results of executing
the 14 queries of the SNB benchmark using the two
datasets. We execute all the queries four times and
take the average of last three runs to eliminate cold-
start.

We executed the 14 test queries in the Dataset 1,
(when coming from SNB it had 1.2GB and then
when it was built in the graph database Neo4j, it
increases to 5.4 GB) and obtained the results shown
in Table 1.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

354

Table 1: SNB queries execution time of Dataset 1.

Queries Test
Execution
time (s)

QUERY 1 19,27
QUERY 2 5,454
QUERY 3 41,221
QUERY 4 1,321
QUERY 5 23,720
QUERY 6 42,973
QUERY 7 8,037
QUERY 8 3,276
QUERY 9 12,169
QUERY 10 22,493
QUERY 11 0,270
QUERY 12 2,717
QUERY 13 50,328
QUERY 14 68,398
Total 5m 1,65s

It is noticed that Queries 6, 13 and 14 are the
ones that took longer to perform, as they require
more processing. This is due to the code they
contain and calculations they have to make to the
graph database. For example, calculations of shorter
paths between certain nodes and entities. From
Table 1, the average execution time of Dataset 1 was
5 minutes and 1.65 seconds.

After that, we run the same 14 queries test in
Dataset 2 (when coming from SNB had 11.6GB and
then when it was built in graph database in Neo4j, it
increases to 52.35 GB). The results obtained are
shown in Table 2.

Table 2: SNB queries execution time of Dataset 2.

Queries Test
Execution
time (s)

QUERY 1 80,765
QUERY 2 92,978
QUERY 3 117,483
QUERY 4 18,04
QUERY 5 60,95
QUERY 6 119,174
QUERY 7 54,926
QUERY 8 49,927
QUERY 9 56,172
QUERY 10 70,153
QUERY 11 22,512
QUERY 12 23,001
QUERY 13 122,408
QUERY 14 129,338
Total 16m 57,83s

As previously observed with Dataset 1, the
queries 6, 13 and 14 are the ones that took longer to

run. The reason is because are the queries which
have more calculations in the graph database. It was
also found that in the Dataset 2, queries 2, 4, 7, 8, 11
and 12 were the queries that were executed in
seconds. Although they take more time to search,
comparing the times shown in the Dataset 1, but it is
normal given the size that the graph database, which
is about 52 gigabytes of data.

As we can see in Table 2, the total execution
time for the 14 queries using the Dataset 2, is 16
minutes and 57.83 seconds.

6 CONCLUSIONS AND FUTURE
WORK

The concept of non- relational databases has been
growing in popularity and usability. The NoSQL
databases bring advantages over the previously
established databases, such as the manipulation of
huge volumes of connected data. The NoSQL
databases are divided into different models, each
model with a set of features and enhancements
(Abramova et al., 2015). Our study focused on only
graph databases.

Our analysis allows to conclude that there are
three very similar databases and with very similar
characteristics, but still Neo4j stands out for its
simplicity, despite the need to have prior knowledge
of the Cypher language to create and manage any
information in graph databases of Neo4j. Its
interface also makes Neo4j one graph database
reference for its accessibility. Our assessment allows
to say that the software more robust and more
practical is the Neo4j.

The experimental evaluation considered the
performance of the data loads Neo4j to form a graph
database, as well as testing the performance in terms
of certain databases searches to those previously
created graph. Accordingly, we tested the different
times of loading the files, which were generated in
the benchmark, and the different runtimes of created
surveys conducted to graph databases. With this
analysis, we can get the knowledge of how the
Neo4j handles loading external data to the software
along with the understanding of how the software
behaves the level of performance when it has to
consult certain information in a database. The results
showed that the Neo4j, is a powerful tool, and
according to the tests performed, we concluded that
the software has a fairly acceptable behavior when
dealing with different sizes of graph databases, as in
our case, the various datasets we tested. We note that

Graph Databases: Neo4j Analysis

355

where the software loses much time is on loading the
files to the Neo4j, getting later in graph format. The
data presented the first dataset (with 1.2GB) showed
speed in loading files, since they did not have any
file with more than 800MB to be loaded. In the case
of the second dataset, which was lost over time,
since there was files being uploaded that took almost
one day to be completely loaded into the Neo4j. We
can therefore say that the software has a great
behavior in loading files, with up to a size of 700 to
800MB, because above this value, it is time
consuming this process, as we proved with the
Dataset 2. Another important aspect that also tested
it was performance-level searches.

Using the test queries withdrawn in SNB
benchmark, one can see that in the two datasets
where it loses more time is in the information query
in the initial execution. It happens because the graph
database leverages one of its main features that is the
storage engine, that is optimized due to the fact that
it stores adjacent registers by direct references, thus
making access to quickly plays data in the next
executions.

It is normal for the amount of information that
has to go through that in a graph database with a
huge volume of data to take longer in a given query
test that a graph database with little information
running the same query test and that this present
almost immediately the respective output. One
drawback encountered in Neo4j is their instability
when it has to deal with a large volume of data, if
the Dataset 2 (which in order to be all loaded, it
became to the size of approximately 52GB) blocking
often the system and causing the restart to load the
data.. We cannot be sure if this issue was related to
the Neo4j, or with any restrictions the hardware and
also software of the machine where the tests were
performed.

As future work, we intend to analyze the loading
of files and query times in other graph databases.

REFERENCES

A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner,
2014, “Neo4j in Action”, Book Neo4j in Action, 2014.

G. C. Deka, 2015, “Tutorial on NoSQL Databases”,
Mobile Cloud Computing, Services, and Engineering
(MobileCloud) IEEE International Conference, San
Francisco, USA, April 2015.

I. Robinson, J. Webber and E. Eifrem. Graph Databases.
O‟Reilly Media Inc., California, 2013

J. Dietrich, N. Jones and J. Wright, 2008, “Using social
networking and semantic web technology in software
engineering – Use cases, patterns and a case study”,

Massey University, Institute of Information Sciences
and Technology, Palmerston North, New Zealand,
January 2008.

J. L Larriba-Pey, N. Martínez-Bazán, D. Domínguez-Sal,
2014, “Introduction to Graph Databases”, Reasoning
Web. Reasoning on the Web in the Big Data Era
Volume 8714 of the series Lecture Notes in Computer
Science pp 171-194, 2014.

J. R. Lourenço, V. Abramova, M. Vieira, B. Cabral, J.
Bernardino, “Nosql databases: A software engineering
perspective”, New Contributions in Inform. Systems
and Technologies, Springer, pp.741-750, 2015.

J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, J.
Bernardino, “Choosing the right NoSQL database for
the job: a quality attribute evaluation”, Journal of Big
Data, Vol 2: 18, 2015.

J. Webber, 2012, “A programmatic introduction to
Neo4j”, SPLASH’12, pages 217-218, ACM New
York, USA, 2012.

M. A. Rodriguez, Neubauer, P., 2010, “Constructions
from Dots and Lines” Bulletin of the American
Society for Information Science and Technology,
American Society for Information Science and
Technology, volume 36, number 6, pages 35-41,
August 2010.

O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A.
Gubichev, A. Prat, M. Pham, and P. Boncz. The
LDBC Social Network Benchmark: Interactive
Workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data
(SIGMOD '15). ACM, New York, NY, USA, 619-630.

Predictive Analytics Today, 2016, “Top 31 Graph
Databases”, http://www.predictiveanalyticstoday.com
/top-graph-databases/, accessed on 29th November,
2016

Retail Technology, “Walmart and eBay adopt graph
database “http://www.retailtechnology.co.uk/item.php
?news_id=5187, accessed on 23-11-2016

Rik Van Bruggen, 2015, Learning Neo4j, Packt
Publishing.

Shao-Ting Wang, Jennifer Jin, Pete Rivett, and Atsushi
Kitazawa, “Technical Survey Graph Databases and
Applications”, International Journal of Semantic
Computing 2015 09:04, 523-545

V. Abramova, J. Bernardino, P. Furtado, “Experimental
evaluation of NoSQL databases”, International Journal
of Database Management Systems, Vol 6 (3), 2014.

V. Abramova, J. Bernardino, P. Furtado “Testing Cloud
Benchmark Scalability with Cassandra”, 2014 IEEE
World Congress on Services, pp. 434-441.

V. Abramova, J. Bernardino, P. Furtado, “SQL or
NoSQL? Performance and scalability evaluation”,
International Journal of Business Process Integration
and Management, Vol 7 (4), pp. 314-321, 2015.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

356

