
MyMinder: A User-centric Decision Making Framework for Intercloud
Migration

Esha Barlaskar, Peter Kilpatrick, Ivor Spence and Dimitrios S. Nikolopoulos
The School of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast, BT7 1NN, Belfast, U.K.

Keywords: Cloud Computing, Dynamic Decision Making, QoS Monitoring, Inter-cloud Migration.

Abstract: Each cloud infrastructure-as-a-service (IaaS) provider offers its own set of virtual machine (VM) images and
hypervisors. This creates a vendor lock-in problem when cloud users try to change cloud provider (CP).
Although, recently a few user-side inter-cloud migration techniques have been proposed (e.g. nested virtu-
alisation), these techniques do not provide dynamic cloud management facilities which could help users to
decide whether or not to proceed with migration, when and where to migrate, etc. Such decision-making sup-
port in the post-deployment phase is crucial when the current CP’s Quality of Service (QoS) degrades while
other CPs offer better QoS or the same service at a lower price. To ensure that users’ required QoS constraints
are achieved, dynamic monitoring and management of the acquired cloud services are very important and
should be integrated with the inter-cloud migration techniques. In this paper, we present the problem formu-
lation and the architecture of a Multi-objective dYnamic MIgratioN Decision makER (MyMinder) framework
that enables users to monitor and appropriately manage their deployed applications by providing decisions on
whether to continue with the currently selected CP or to migrate to a different CP. The paper also discusses ex-
perimental results obtained when running a Spark linear regression application in Amazon EC2 and Microsoft
Azure as an initial investigation to understand the motivating factors for live-migration of cloud applications
across cloud providers in the post-deployment phase.

1 INTRODUCTION

With the addition of more and more Cloud
Infrastructure-as-a-Service (IaaS) providers in the
cloud market, cloud IaaS users have to face a num-
ber of challenges while selecting a particular cloud
provider (CP). One of the main challenges in CP se-
lection stems from performance variability amongst
the CPs. Different CPs provide similar services (i.e.
same virtual machine (VM) specification) but with
differing performance levels, which results in consid-
erable variations in the QoS. Another challenge in CP
selection arises due to the diversified prices and provi-
sioning policies of the instances (from here on we will
use the terms VM and instance interchangeably), e.g.
different CPs offer their services at different prices for
different provisioning policies of the instances, such
as, on demand instances, spot instances, reserved in-
stances, etc.

Cloud users face further challenges even after
selecting an appropriate CP as they need to verify
whether their applications are performing in a sta-
ble manner with minimum or acceptable variations

after being deployed in the CP’s instances. Perfor-
mance variability in the post-deployment phase usu-
ally arises when the instances of multiple users are
running on the same physical node, which leads to
multi-tenancy problems for I/O-bound applications
even if the users select specialised dedicated in-
stances (Leitner and Cito, 2016) (Li et al., 2012)
(Li et al., 2013). Multi-tenancy problems arise be-
cause most of the computing resources (network and
disk I/O) except for CPU cores are shared amongst
all the users’ instances running in a node. Such vari-
ations in QoS for latency-sensitive applications like
web services may become a matter of concern and
sometimes performance of a user application running
in an instance may significantly degrade and violate
QoS due to the behaviour of the co-located instances
from other users. In addition, the price for the current
cloud service may rise or other providers may offer
special discounts after the deployment of the instance.

In order to help cloud users verify the performance
of their applications, cloud service monitoring tools
are provided by CPs and third party companies (Sche-
uner et al., 2014) (Silva-Lepe et al., 2008) (Ciuffo-

560
Barlaskar, E., Kilpatrick, P., Spence, I. and Nikolopoulos, D.
MyMinder: A User-centric Decision Making Framework for Intercloud Migration.
DOI: 10.5220/0006355905880595
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 560-567
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

letti, 2016). However, the monitoring tools do not
provide any decision support on what steps a cloud
user should follow if he/she realises that even their
minimum QoS requirements are not met by the se-
lected instances in the current provider. In order to
meet the desired QoS requirements cloud users may
require to migrate their applications to new instance
type from the same provider with higher configura-
tion than the existing one or from a new provider with
a similar configuration. Taking decisions on whether
to migrate applications for better QoS poses further
decision making and technical challenges in migrat-
ing applications across CPs.

Although some of the researchers have tried to ad-
dress the issues in inter-cloud migration, they have not
provided any decision-making support. Others have
focussed mainly on pre-deployment decision-making
and there has been some work on post-deployment
phase support, but these latter do not consider real-
istic migration overheads in the evaluation of their
decision making framework. Therefore, naive cloud
users should have an efficient dynamic decision mak-
ing framework, which can help to provide a composite
decision on the following:

1. How to detect if the current provider is not per-
forming as required by user’s application?

2. How to decide that the user’s application needs to
be migrated from the current provider?

3. Which alternative CP should be chosen to migrate
the VM?

4. What instance type(s) will provide the best trade-
off between cost and performance?

5. Whether the migration overhead will be more sig-
nificant compared to the performance degradation
in the current CP?

Considering the above queries, we propose
a Multi-objective dYnamic MIgratioN Decision
makER (MyMinder) framework. MyMinder offers a
catalogue of metrics based on performance, cost and
type of resources, from which cloud users can choose
their requirement metrics depending on their applica-
tion. Also, while choosing these metrics users can set
certain ranges for the desired minimum and maximum
QoS performance and cost values, which define ac-
ceptable variability from the preferred QoS and user’s
budget. MyMinder takes these requirements as inputs
to carry out the monitoring and computes user satis-
faction values based on their QoS requirements. In
the event of any QoS violation or performance degra-
dation MyMinder supports the user in finding alter-
native cloud services which can provide near-optimal
performance, and efficiently migrates the application

to that service provided by either the same or different
CP. This paper makes the following contributions:

• Proposal of the architecture of MyMinder, a
post-deployment decision making framework,
which can dynamically decide whether user’s VM
should be migrated from the current CP to another
CP.

• Problem formulation for selecting the most suit-
able CP to migrate the VM to.

• Preliminary experimental results from evaluating
the performance of a user application running on
public clouds, which motivates the requirement
for a live VM migration in the post-deployment
phase.

The remainder of the paper is organised as fol-
lows. Section 2 presents background and related
work in user centric live VM migration and decision
making. Section 3 and Section 4 provide detail of
the problem formulation and the MyMinder architec-
ture, respectively. Preliminary experimental results
are evaluated and discussed in Section 5. Section 6
concludes the paper and discusses future work.

2 BACKGROUND AND RELATED
WORK

With the proliferation of CPs it has become very dif-
ficult for cloud users to select the one that best meets
their needs. Once they select the perceived optimal
cloud service from a CP, cloud users encounter further
challenges as they need to verify whether their appli-
cations are performing in a stable manner with min-
imum or acceptable variations after being deployed
in the CP’s instances. If the user realises that even
their minimal QoS requirements are not met by the
selected instances then they may require to migrate
their applications to a new instance type from the
same provider or to an instance with a similar con-
figuration from a new provider. Taking decisions on
whether to migrate applications for better QoS poses
further decision-making and technical challenges for
the user. We discuss how current work in the literature
addresses these challenges in the following sections.

2.1 Post-deployment Decision Making

Although researchers have proposed different deci-
sion making methods in the pre-deployment phase
(Li et al., 2010), (Brock and Goscinski, 2010), (Han
et al., 2009), (Silas et al., 2012), (Rehman et al.,
2014), (u. Rehman et al., 2013) decision making in

MyMinder: A User-centric Decision Making Framework for Intercloud Migration

561

the post-deployment phase has not received much at-
tention, other than the works in (ur Rehman et al.,
2015) and (Li et al., 2011).

The authors in (ur Rehman et al., 2015) address
decision making in the post-deployment phase by
proposing a multi-stage decision-making approach.
In the first stage, the available CP instances are short-
listed on the basis of the user’s minimum QoS and
cost criteria, and in the second stage, migration cost
and time are evaluated. After completing these stages,
they use the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) (Behzadian
et al., 2012) and ELimination Et Choix Traduisant
la REalit (ELimination and Choice Expressing REal-
ity), commonly known as ELECTRE (Roy, 1991), to
find the most appropriate migration suggestion. They
demonstrate their approach using a case study ex-
ample. However, in their evaluation, they consider
the overhead of a manual migration process where
they assume that the network throughput between the
source and the destination hosts remains constant dur-
ing the migration process, which is unlikely to be true
in real scenarios.

In (Li et al., 2011) a linear integer programming
model for dynamic cloud scheduling via migration of
VMs across multiple clouds is proposed in the con-
text of a cloud brokerage system. The migration is
triggered if a CP either offers a special discount or
introduces a new instance type, and also if the user
needs to increase the infrastructure capacity. They do
not consider QoS violation or degradation in their mi-
gration decision. Moreover, they performed their ex-
periments in a simulation based environment and the
metrics that they considered for measuring migration
overhead may not be feasible to obtain in real world
scenarios.

2.2 User-centric Inter-cloud Migration

Although cloud users should not be worried about the
complexities involved in VM migration - which is the
essence of the ‘cloud philosophy’, experienced cloud
users may wish to have the flexibility that migration
brings in the form of inter-cloud migration. How-
ever, there are complexities in migrating VMs from
one CP to another CP due to vendor lock-in issues.
For users to avail of the benefits of VM migration in-
dependent of the cloud provider’s permission, recent
studies proposed different inter-cloud migration tech-
niques which use a second layer of hardware virtu-
alisation called nested virtualisation (Williams et al.,
2012), (Jia et al., 2015), (Razavi et al., 2015). Nested
VMs are usually migrated by using an NFS-based
solution or an iSCSI-based solution. In some cases

such as that of (Ravello, 2016) the focus is not on
providing storage and network support for wide-area
network (WAN) application but rather on providing
an enclosed environment for distributed application
development and debugging. In an NFS-based and
iSCSI-based solution the WAN VM migration expe-
riences increased latencies, low bandwidth, and high
internet cost in accessing a shared disk image if the
shared storage is located in a different data centre or
region. To address this issue (Shen et al., 2016) pro-
posed Supercloud using nested virtualisation with a
geo-replicated image file storage that maintains the
trade-off between performance and cost. However,
Supercloud does not provide any decision-making
framework.

Other state-of-the-art techniques which allow
multi-cloud deployment are Docker (Docker, 2013)
and Multibox containers (Hadley et al., 2015). Al-
though containers are lightweight, they are not ideal
for stateful applications due to limited volume man-
agement in the case of container failover. More-
over, containers are not as pliable as VMs because all
containers must share the same kernel and also both
Docker and Multi-box container migration techniques
are in their preliminary stages. Our proposed MyMin-
der system will adopt the most robust and resilient
technique amongst the available inter-cloud migration
techniques after evaluating their complexities and mi-
gration overhead. We envisage a system which can
handle inter-cloud migration automatically along with
a decision making framework, thus delivering the best
of both worlds.

3 PROBLEM FORMULATION

In this paper we present the MyMinder framework
(Figure 1), which can assist cloud users in achieving a
stable QoS performance in the post-deployment phase
by helping decide on actions to be taken as well as
providing support to achieve such actions. MyMinder
can monitor the performance of the deployed users’
applications and provide the required measurements
to determine the satisfaction level of the user’s re-
quirements described in their requests. In the event
of QoS violation or degradation in the current CP’s
service, MyMinder can trigger a migration decision
after identifying a suitable CP to which the overhead
of migration and the chances of QoS violation are the
least. For performing these actions MyMinder needs
to evaluate the satisfaction values based on the QoS
requirements specified in the user’s requests. In the
following subsections we illustrate user requirements,
details of the CP instance type model, and the related

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

562

measures.

3.1 User Requirements

A user sends a request describing his/her resource
requirements and QoS requirements. This re-
quest is represented by a requirement vector :
ri = [ri1,ri2,,ri j] where ri j specifies the jth(j =
1,2, ...J) requirement of user i that has to be satisfied
by the selected CP and these requirements may in-
clude the following information criteria: 1) Resource
criteria: amount of resources required for running the
user’s application (e.g. memory, storage, CPU etc.).
2) Budget constraint: prices of the instances should be
within the cost limit of the user. 3) Migration over-
head constraint: cost of migration and performance
overhead of migration should be acceptable. 4) QoS
criteria: Quality of service requirements of the user’s
application that has to be fulfilled (e.g. desired and
maximum execution time, response time, etc.).

Here, criteria 1 to 3 will be evaluated before de-
ploying the application and only if these criteria are
met then the application will be deployed and after
deploying the application criteria 4 will be measured
using a satisfaction value.

3.2 CP Instance Types Model

Instances of different CPs differ in performance de-
pending on their characteristics such as VM instance
size, hardware infrastructure, VM placement policies
used for load balancing or power optimisation etc.
Reasons affecting the QoS obtained from a particular
instance type of a CP are typically not known by the
user and so the QoS data of a given CP are not avail-
able in advance. It is possible to measure the QoS pa-
rameters only after the instance is deployed and these
measurements may be evaluated against the require-
ments specified in the user request by determining the
runtime performances such as execution time of ap-
plications, instructions committed per second (IPS),
etc. These measurements constitute the evaluation of
the extent to which the QoS requirements specified
in the user’s request ri j are satisfied. The satisfaction
level of user requirement ri j is denoted by si j ∈ [0,1],
where si j = 1 if the requirement ri j is fully satisfied,
otherwise 0 6 si j < 1.

If a user provides the requirement vector ri along
with the desired QoS requirement and acceptable
maximum variability in the QoS, then standard devi-
ation (SD) is used as a measure of QoS performance
variability. The closer the SD is to 0, the greater is the
uniformity of performance data to the desired value
(rQd(ri j)) and greater is the satisfaction value. The

closer the SD is to 1, the greater is the variability of
performance data to the desired value and smaller is
the satisfaction value. Hence, the satisfaction value is
given as follows:

si j = 1−SD (1)

SD =

√
1

N−1

N

∑
i=1

(Qa(ri j)−M(ri j))2 (2)

M(ri j) =
1

N−1

N

∑
i=1

(Qa(ri j)) (3)

where,
Qa(ri j)=Actual QoS value obtained after deploying
the user’s application (e.g. actual execution time, re-
sponse time, etc.). These values are in normalised
form.
M(ri j)= The arithmetic mean of Qa(ri j) .
rQd(ri j)= Desired QoS requirements of the user’s ap-
plications (e.g. desired execution time, response time,
etc.) for the QoS requirement ri j. This value is used
as a standard value against which QoS variability is
compared.
N= total number of measurements.

3.3 Utility Function

The utility function f (ri) for each user request ri j is
a linear combination of the satisfaction value si j and
the associated weights wi j multiplied by an indicator
function φ(ri). The weight for each of the user request
indicates its importance to the user and the indicator
function sets the satisfaction level to zero when the
request is not satisfied. In the case of satisfied re-
quests the value of the indicator function is selected
such that: φ(ri) = (∑ j wi j)

−1 normalises the weight
vector and limits the maximum possible value of f (ri)
to 1. Thus, the utility function is defined as:

f (ri) = φ(ri)
J

∑
n=1

wi jsi j (4)

where

φ(ri) =

{
0, if QoS not met.
(∑ j wi j)

−1, otherwise.
(5)

If all the requirements of a user are fully satisfied
then f (ri) = 1; otherwise if the requirements are par-
tially satisfied then the value of f (ri) will vary with
the extent of requirements being satisfied by a par-
ticular instance type of a CP. To demonstrate this we
consider an example.

Let ri = [ri1,ri2,,ri j] be the user’s requirement
vector while making his/her initial request. The re-
quest contains the user’s requirements constraints and

MyMinder: A User-centric Decision Making Framework for Intercloud Migration

563

the type of the requirement attributes are presented
below:

1) rR: Requested amount of resources
required for running the user’s application
(e.g. memory, storage, CPU etc.) where
ri ∈ micro,small,medium, large,xlarge.

2) rB: Prices of the instances specified in the user’s
budget where rB ∈Maxprice

3) rMo: Maximum migration overhead a user can
accept where rM ∈ Overhead o f migration.

4) rQd : Desired QoS requirements of the user’s
applications (e.g. desired execution time, response
time, IPS, etc.) where rQd ∈ Dval .

The value of the satisfaction vector is calculated
with the help of monitoring and detection modules
(see Section 4) which is given by ST

i (Equation 1).
We assume that for a user’s request with a require-
ment vector ri=[micro, 200s, 400s, £5/hr, 30%], the
satisfaction vector is calculated as:

ST
i = [1,0,1,1] (6)

For simplifying the example we did not consider
partial satisfaction values, and here 0 denotes fully
satisfied and 1 denotes not satisfied. Therefore the
utility value is calculated as follows if the weight vec-
tor is W T

i = [0.1,0.1,0.1,0.3] :

f (ri) =

{
0, if QoS not met.
φ(ri)W T

i ST
i = 0.5, otherwise.

(7)

The indicator function’s value is considered to be
1 in this case and also the utility function’s value did
not exceed 0.5 even though more than half of the re-
quirements were fully satisfied.

These utility values will be used to predict the QoS
for each CP’s instance types model.

4 MyMinder ARCHITECTURE

In this section we describe the architecture of MyMin-
der that will implement the system. Figure 1 depicts
the MyMinder architecture, which includes modules
for: monitoring, detection, prediction, and decision
making. We describe each of these modules in the
following subsections.

4.1 Monitoring Module

The monitoring module is designed for monitoring
the QoS performance of the user’s application de-
ployed in the VM. The performance data are collected
by local monitoring agents deployed in each user’s

Figure 1: MyMinder Architecture.

VM. The local monitoring agents send the collected
data periodically to the global monitoring component
in the monitoring module and then finally the data
are stored in the QoS performance repository. Also,
the monitoring module maintains another repository,
which stores information regarding the list of avail-
able VMs from different CPs and their prices. This
information is collected by CP profiling components.

4.2 Detection Module

The detection module is responsible for detecting any
QoS violation or degradation in the performance. The
performance data are retrieved from the QoS perfor-
mance repository. It uses a window-based violation
detection technique (Meng and Liu, 2013) to gener-
ate QoS violation or performance degradation alarms
based on the user’s QoS requirement constraints and
the user can decide the size of the window. This mod-
ule generates QoS violation alarms if the current per-
formance value falls outside the acceptable range as
defined by the QoS statement. It also can be tuned
to generate a degradation alarm if the performance
moves to and stays within a defined distance of the
QoS limits throughout a defined period. Degradation
alarms may be used to predict likely breach of QoS
and so may contribute to preventative migration. The

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

564

module reports QoS and degradation alarms on a con-
tinuous basis by sending them to the decision making
module.

4.3 Prediction Module

The objective of the prediction module is to help de-
termine a suitable CP instance to which the user’s ap-
plication may be migrated. Based on the user’s QoS
satisfaction values (measured by the detection mod-
ule) and the user’s requirements, the prediction mod-
ule calculates the utility function (see Equation 4) for
each of the available CP instances. The satisfaction
values for the current as well as previously deployed
CP instances by the same user or different users are
stored with their corresponding utility values. These
perceived utility values are used to train the prediction
models for each of the CP instances using machine
learning techniques. Thus, the prediction models are
capable of predicting the QoS satisfaction values in
the destination CP for the new user’s instance which
needs migration.

4.4 Decision-making Module

The decision making module receives alarms from the
detection module if any QoS violation or degradation
is detected, and also it takes utility function values as
input from the prediction module. It then checks with
user requirement constraints to know whether the user
wants to be informed before reaching the minimum
requirement levels, i.e. performance degradation alert
or to be informed if the minimum requirements are
not met, i.e. QoS violation alert. After confirming
user requirements, this module verifies whether the
instances with different utility values provided by the
prediction module are currently available for selec-
tion. If the instances are available then it evaluates
the migration overhead of each of the instances and
finally ranks the instances based on their utility value
and migration overhead values. The instance with
highest utility value and lowest migration overhead
is chosen for migration. The migration overhead will
depend on the type of inter-cloud migration technique
being used. The migration overhead can be defined
either in terms of monetary loss or performance loss
and it usually denotes the service downtime penalty
per time unit.

5 PRELIMINARY EXPERIMENTS
IN PUBLIC CLOUDS

In this section we present some experimental results
to showcase that user application performance varies
across CPs and even when running in the same in-
stance of the same CP, which may lead to QoS degra-
dation and violation. The goal of this experimental
evaluation is to understand why a cloud user may
require a dynamic decision making framework and
inter-cloud migration of VMs. For the experiments
we chose two public cloud providers: Amazon Elas-
tic Cloud Compute (EC2) and Microsoft Azure. We
considered the t2.micro instance with 1GB memory
and 1 CPU core in Amazon EC2, and Dsv2 (which is
a small instance) with 3GB memory and 1 CPU core
in Azure. We ran a Spark application which performs
linear regression between two randomly generated
variables with 1 million rows of data each containing
two floating variables in both the cloud providers.

5.1 Experimental Result

We evaluate the experimental results from both cloud
providers in order to understand how user applica-
tion performance varies per day and per week. We
collected performance metrics (application execution
time) of two weeks (7 October to 20 October, 2016)
from both the cloud providers. Figure 2 and Figure 3
present box-plots, which show performance variabil-
ity in both Amazon and Azure.

In Amazon (Figure 2), there is significant vari-
ability in week 1 with a relative standard deviation of
81%. In week 2, although the performance does not
improve, there is less variability with a relative stan-
dard deviation of 10%. Whenever we stop the appli-
cation and restart the instance, the application seems
to perform better for a number of executions but after
it is executed continuously the performance degrades
and shows significant variation compared to the initial
performance. However, after degrading to a certain
extent the performance seems to remain in that range
without further degradation or improvement. Such
variability is primarily because of the instance type
t2.micro which is a general purpose instance and suf-
fers from CPU stealing as they share their processor
with other tenants based on a credit system.

In Azure (Figure 3), while there is some variation
in both weeks, the difference in performance variation
from week 1 to week 2 is less as compared to Ama-
zon. In week 1, the relative standard deviation is 25%,
whereas in week 2, although the performance does not
improve, there is less variability with a relative stan-
dard deviation of 18%. Thus, we observe that QoS

MyMinder: A User-centric Decision Making Framework for Intercloud Migration

565

Figure 2: (Top) Amazon week 1 performance. (Bottom)
Amazon Week 2 performance.

varies across CPs and even within the same instance
type of the same CP while running a user applica-
tion. This observation motivates us further in imple-
menting MyMinder in order to dynamically manage
cloud user applications in maintaining a stable QoS
throughout the lifetime of the applications.

6 CONCLUSION AND FUTURE
WORK

In this paper we have proposed the architecture
of MyMinder, a post-deployment decision making
framework, which can detect Cloud QoS violation
and performance degradation and dynamically decide
whether a user’s VM requires migration from the cur-
rent provider to another provider. In addition, we have
presented the problem formulation for selecting the
most suitable CP in the case that the VM requires
migration from the current provider. We performed
some initial experiments to understand how a real
application performs after being deployed in public
cloud and whether significant performance variation
actually occurs. These experiments motivate the need

Figure 3: (Top) Azure week 1 performance. (Bottom)
Azure Week 2 performance.

for live VM migration from one CP to another.
As part of MyMinder implementation, we are cur-

rently experimenting with different inter-cloud mi-
gration techniques as discussed in Section 2.The key
challenge in adopting these techniques is to maintain
the baseline performance in spite of the extra layer
of indirection due to the second-layer hypervisor. We
executed sysbench CPU benchmark and a Spark ap-
plication in the nested VMs of Xen-Blanket in Open-
Stack VMs and observed an overhead of 20-30% on
the application performance. This overhead is mainly
due to the indirection and two levels of scheduling in
nested virtualisation. We assume that this overhead
can be reduced by using Docker containers. How-
ever, Docker containers bring other challenges in the
form of creating a distributed storage for migrating
containers with its associated storage across different
CPs. Currently, Docker containers can be migrated
by using a storage plugin called Flocker within a data
centre, i.e. within one single CP.

Our future work includes building the proof of
concept for MyMinder and incorporating within it
one of the state-of-the-art inter-cloud migration tech-
niques. Also, we will consider a suitable machine

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

566

learning algorithm in our prediction module.

REFERENCES

Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani,
M., and Ignatius, J. (2012). Review: A state-of the-
art survey of TOPSIS applications. Expert Syst. Appl.,
39(17):13051–13069.

Brock, M. and Goscinski, A. (2010). Toward ease of dis-
covery, selection and use of clusters within a cloud.
In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 289–296.

Ciuffoletti, A. (2016). Application level interface for a
cloud monitoring service. Computer Standards and
Interfaces, 46:15 – 22.

Docker (2013). Docker Containers. https://www.
docker.com/. [Online; accessed 25-October-2016].

Hadley, J., Elkhatib, Y., Blair, G., and Roedig, U.
(2015). MultiBox: Lightweight Containers for
Vendor-Independent Multi-cloud Deployments, pages
79–90. Springer International Publishing, Cham.

Han, S.-M., Hassan, M. M., Yoon, C.-W., and Huh, E.-N.
(2009). Efficient service recommendation system for
cloud computing market. In Proceedings of the 2nd
International Conference on Interaction Sciences: In-
formation Technology, Culture and Human, ICIS ’09,
pages 839–845, New York, NY, USA. ACM.

Jia, Q., Shen, Z., Song, W., van Renesse, R., and Weath-
erspoon, H. (2015). Supercloud: Opportunities and
challenges. SIGOPS Oper. Syst. Rev., 49(1):137–141.

Leitner, P. and Cito, J. (2016). Patterns in the chaos – a
study of performance variation and predictability in
public iaas clouds. ACM Trans. Internet Technol.,
16(3):15:1–15:23.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
cmp: Comparing public cloud providers. In Proceed-
ings of the 10th ACM SIGCOMM Conference on In-
ternet Measurement, IMC ’10, pages 1–14, New York,
NY, USA. ACM.

Li, W., Tordsson, J., and Elmroth, E. (2011). Modeling
for dynamic cloud scheduling via migration of virtual
machines. In Proceedings of the 2011 IEEE Third In-
ternational Conference on Cloud Computing Technol-
ogy and Science, CLOUDCOM ’11, pages 163–171,
Washington, DC, USA. IEEE Computer Society.

Li, Z., OBrien, L., and Zhang, H. (2013). Ceem: A practical
methodology for cloud services evaluation. In 2013
IEEE Ninth World Congress on Services, pages 44–
51.

Li, Z., O’Brien, L., Zhang, H., and Cai, R. (2012). On a
catalogue of metrics for evaluating commercial cloud
services. In 2012 ACM/IEEE 13th International Con-
ference on Grid Computing, pages 164–173.

Meng, S. and Liu, L. (2013). Enhanced monitoring-as-a-
service for effective cloud management. IEEE Trans-
actions on Computers, 62(9):1705–1720.

Ravello (2016). Ravello Systems: Virtual Labs Us-
ing Nested Virtualization. https://www.

ravellosystems.com. [Online; accessed 15
November-2016].

Razavi, K., Ion, A., Tato, G., Jeong, K., Figueiredo, R.,
Pierre, G., and Kielmann, T. (2015). Kangaroo: A
tenant-centric software-defined cloud infrastructure.
In Cloud Engineering (IC2E), 2015 IEEE Interna-
tional Conference on, pages 106–115.

Rehman, Z. U., Hussain, O. K., and Hussain, F. K. (2014).
Parallel cloud service selection and ranking based on
qos history. Int. J. Parallel Program., 42(5):820–852.

Roy, B. (1991). The outranking approach and the foun-
dations of electre methods. Theory and Decision,
31(1):49–73.

Scheuner, J., Leitner, P., Cito, J., and Gall, H. C. (2014).
Cloud workbench - infrastructure-as-code based cloud
benchmarking. CoRR, abs/1408.4565.

Shen, Z., Jia, Q., Sela, G.-E., Rainero, B., Song, W., van
Renesse, R., and Weatherspoon, H. (2016). Follow the
sun through the clouds: Application migration for ge-
ographically shifting workloads. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC
’16, pages 141–154, New York, NY, USA. ACM.

Silas, S., Rajsingh, E. B., and Ezra, K. (2012). Efficient
service selection middleware using electre methodol-
ogy for cloud environments. Information Technology
Journal, 11(7):868.

Silva-Lepe, I., Subramanian, R., Rouvellou, I., Mikalsen,
T., Diament, J., and Iyengar, A. (2008). SOAlive
Service Catalog: A Simplified Approach to Describ-
ing, Discovering and Composing Situational Enter-
prise Services, pages 422–437. Springer-Verlag Berlin
Heidelberg.

u. Rehman, Z., Hussain, O. K., and Hussain, F. K. (2013).
Multi-criteria iaas service selection based on qos his-
tory. In 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications
(AINA), pages 1129–1135.

ur Rehman, Z., Hussain, O. K., Chang, E., and Dillon, T.
(2015). Decision-making framework for user-based
inter-cloud service migration. Electronic Commerce
Research and Applications, 14(6):523 – 531.

Williams, D., Jamjoom, H., and Weatherspoon, H. (2012).
The xen-blanket: Virtualize once, run everywhere. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 113–126, New
York, NY, USA. ACM.

MyMinder: A User-centric Decision Making Framework for Intercloud Migration

567

