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Abstract: The foundation of the Internet of Things (IoT) consists of different devices, equipped with sensors, actuators 
and tags. With the emergence of IoT devices and home automation, advantages from data analysis are not 
limited to businesses and industry anymore. Personal analytics focus on the use of data created by individuals 
and used by them. Current IoT analytics architectures are not designed to respond to the needs of personal 
analytics. In this paper, we propose a lightweight flexible analytics architecture based on the concept of the 
Kappa Architecture and microservices. It aims to provide an analytics platform for huge numbers of different 
scenarios with limited data volume and different rates in data velocity. Furthermore, the motivation for and 
challenges of personal analytics in the IoT are laid out and explained as well as the technological approaches 
we use to overcome the shortcomings of current IoT analytics architectures.

1 INTRODUCTION 

It is estimated that the number of Internet of Things 
(IoT) devices will grow in huge quantities, to around 
24 billion in the year 2020 (Greenough, 2016). This 
ever-increasing number of IoT devices creates vast 
opportunities for businesses and industry but also for 
common individuals (Ruckenstein, 2014). In order to 
gain meaningful insights, it is necessary to provide 
analytics platforms which are able to process, 
integrate and enrich the data from IoT devices. 
Current research in the field of IoT analytics focuses 
on different domains, such as health care, energy and 
utilities and manufacturing (Stolpe et al., 2016). Yet, 
in order to further enhance the usefulness of IoT 
devices to consumers, it seems plausible to provide 
powerful personal analytics.  

During our research, we found that these kinds of 
analytics have different challenges and technological 
requirements compared to common IoT analytics 
architectures and therefore need new approaches to be 
handled. Against this background, we present an 
architectural approach for an IoT analytics platform 
in the context of personal analytics. 
In this paper, we describe the motivation to conduct 
this research and the challenges when designing 
architectures for IoT personal analytics platforms but 

also the opportunities they provide (Section 2). We 
give an overview of the state of the art in IoT analytics 
regarding technologies and architectures and show 
that these are not fully suitable for personal analytics 
(Section 3).  

Further, this paper presents technological 
approaches to resolve these issues and challenges 
(Section 4). The main contribution of this paper, an 
approach to build an analytics platform architecture 
which is able to be used for personal analytics, is 
described in Section 5. In conclusion, we provide 
ideas to further the research in this field (Section 6). 

2 MOTIVATION AND 
CHALLENGES 

The usage, adoption and impact of the IoT can be 
categorized into levels of society, industry, 
organization and individuals (Riggins and Wamba, 
2015). With the growing number of IoT devices used 
in everyday life, it is necessary to gather richer 
insights in how to use the data not only on a high, 
aggregated level. A smaller, more intimate scale and 
use, by individuals, commonly referred to as personal 
analytics (Choe et al., 2014) should also be looked 
upon. Lacking a unanimous definition, we describe 
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personal analytics as analytics of data produced by an 
individual. It can also be seen as analytics of data 
from or linked to a specific individual. Therefore, 
personal analytics call for user-friendly applications 
which empower self-service capabilities. The types of 
analytics used in this regard are descriptive, 
predictive and prescriptive (Swan, 2012). 

Since IoT topics like Smart Home and home 
automation have become more popular in recent 
years, but still struggle to gain broader acceptance 
(Accenture, 2016), it seems plausible to extend the 
field of personal analytics to these. This enables 
consumers, for instance, to gain insights into their 
own energy consumption and device usage in the 
closed environment of their homes. Further, the 
complex interaction of IoT devices as well as their 
smart usage can be supported by the use of machine 
learning, data mining, clustering and analytics 
insights, enhancing the usage value of them to the 
consumers. 

Providing an analytics platform or tools to 
consumers is usually part of IoT platforms (Mineraud 
et al., 2015). They can be vendor-agnostic, third-
party-based or open source and omit the need for 
consumers to build their own management and 
control systems to use their IoT devices.  

In the context of providing an IoT platform for 
large numbers of consumers, IoT analytics platforms 
face several architectural challenges. Semantics of the 
data to be collected and analysed change frequently 
over time and are sometimes unknown (Xu et al., 
2016). Also, the ability to save large volumes of 
different kinds of structured and unstructured data 
(Hasan et al., 2015), in a scalable, easy updatable 
manner is important. Furthermore, they need to 
process real-time data (Rozik et al., 2016) and 
integrate it with historical data, extend data 
processing capabilities without ease and provide the 
gained insights to different endpoints (Cheng et al., 
2015). Lastly, they need to be able to combine events 
of different IoT devices for meaningful information 
and predict events based on the data (Rozik et al., 
2016).  

In context of personal analytics, we found the 
requirements for IoT analytics platforms to be 
different. Major differences are data volume and 
velocity to be analysed. Whereas common Big Data 
technologies aggregate data from huge numbers of 
data sources thus creating large volumes of data, the 
number and therefore volume in personal analytics is 
much smaller. Corresponding architectures still need 
to be able to handle huge volumes and high velocity 
of data, but only at the infrastructure level. Instead of 
processing and computing a modest number of Big 
Data problems, the analytics architecture has to 
compute large numbers of smaller problems.  Since 
every consumer is able to define their own analytics 

use cases, the resulting applications do not need the 
same computational power as common Big Data 
scenarios and, as a consequence, should be designed 
in a flexible and lightweight way. 

This shift leads to huge numbers of different 
analytics scenarios in terms of data sources, data 
processing and transformation needs as well as 
insights gained. As a result, the architectures of the 
platform must be able to provide large quantities of 
processing and analysis algorithms which can be 
easily replaced in user-created analytics pipelines. 
Still, the already established architectural 
requirements for IoT analytics platforms apply.  

Looking at current solutions, these requirements 
seem to have only been insufficiently met. Therefore, 
we propose a new more flexible architecture which is 
able to satisfy the needs of personal analytics, 
especially in IoT platform environments.  

3 STATE OF THE ART 

As mentioned before, current IoT analytics platforms 
research and solutions mainly employ Big Data 
technologies in order to tackle the architectural 
requirements of IoT analytics scenarios. Commonly 
used are Big Data processing frameworks for batch 
and stream processing, such as Apache Spark, Storm, 
Samza, and Flink, to be composed in a Lambda 
Architecture (Cheng et al.; Hasan et al., 2015; Rozik 
et al., 2016). This architectural concept includes a 
batch, stream and serving layer. The batch layer is 
used to store all ingested data as well as compute 
views on the data continuously. Since batch 
processing huge data volumes creates high latency, 
the speed layer is used to compensate this and create 
incremental real-time views of the data. The real-time 
views complement the batch views. This creates the 
need to develop two data processing logics. In 
addition, the development of processing algorithms 
using processing frameworks is rather cumbersome 
and has a steep learning curve for developers.  

There have also been works which use Business 
Intelligence applications (Chang et al.; Mishra et al., 
2015) to implement IoT analytics or related problem 
fields for companies. In addition, Complex Event 
Processing (CEP) is used to analyse events of IoT 
devices and link them to external data sources 
(Naqishbandi et al., 2015), but also add another level 
of complexity to data processing and analysis. 
IoT analytics in general are object of investigation in 
a multitude of domains. This research, especially in 
energy and utilities, mainly focuses on aggregated 
insights of broad applications, such as smart cities 
(Ramakrishnan and Gaur, 2016) or smart grid (Hasan 
et al., 2015).  
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However, none of the related works consider the 
challenges for IoT analytics platforms which arise in 
the context of personal analytics. This paper aims to 
provide an architectural approach to fill this gap. 

4 TECHNOLOGY 

In this section, we describe the core technologies and 
technological approaches we use to implement our 
IoT personal analytics architecture. 

4.1 Kappa Architecture 

The foundation of our approach to IoT stream 
processing is the Kappa Architecture. It is derived 
from the more commonly used Lambda Architecture 
but tries to overcome its shortcomings. Comparing 
both architectures, Stolpe (2016) points out that the 
development of algorithms for both processing layers 
of the Lambda Architecture, the batch and the stream 
layer, is disadvantageous. Therefore, the main 
concept of the Kappa Architecture evolves around the 
idea to drop the batch layer and only use a stream 
processing system (Wingerath et al., 2016). In case 
the underlying logic changes, all historic datasets are 
reprocessed (Kreps, 2014; Wingerath et al., 2016) and 
the “old” output data tables of the serving layer are 
dropped (Kreps, 2014). For this to work, usually the 
data source is a (distributed) log data store, such as 
Apache Kafka. Therefore, the Kappa Architecture, in 
contrast to Lambda Architecture, allows for more 
flexible adaption of changing processing and 
analytics requirements since the overhead of a second 
processing layer is mitigated.  

Providing increased flexibility and reduced 
overhead, the Kappa Architecture is not without 
trade-offs. Especially, increasing data volumes 
require more computational power or better data 
compression, thus making the Kappa Architecture 
only a viable approach in systems with either high 
computational power, finite data retention rates or 
sufficient data compression (Wingerath et al., 2016). 

Looking at IoT data being dominantly time-series 
data with rapidly changing, oftentimes unknown, 
context and analytics concepts, the flexible and 
lightweight nature of the Kappa Architecture enables 
it to cope with the challenges these kinds of data 
provide. 

4.2 Microservices 

In recent years, the use of microservices for building 
flexible software architectures has become rather 
popular. In environments with fast changing 
requirements, microservice architectures offer a 

variety of advantages over traditional approaches. 
They are characterized as a set of small services, 
developed along business requirements and are 
completely independent from one another (Lewis and 
Fowler, 2014). They are loosely coupled and focus on 
a single task, and are therefore easily changeable or 
even replaceable (Fetzer, 2016).  

The microservice paradigm is closely linked to 
the DevOps approach which advocates tight 
collaboration between software development, 
execution and maintenance as well as automated 
software delivery. Microservices are often 
implemented using operating-system virtualization or 
container engines, such as Docker (Jaramillo et al.; 
Ueda et al., 2016). This adds to their fast and flexible 
deployment and also makes them easily transferable. 

4.3 Stream Processing and Libraries 

Stream processing is a major concept in an IoT 
analytics architecture. Data is constantly emitted by 
IoT devices thus creating the need to constantly 
update and increment existing data views. 

Stream processing libraries are software libraries 
which are used to implement data extraction with task 
and pipeline parallelism. To achieve this, they 
leverage the functional capabilities of either a 
programming language (RaftLib, Auto-Pipe, 
WaveScript) or an application system, which usually 
is some kind of data source (Kafka Streams) and 
provide these for usage in stream processing 
applications. The latter type of libraries is fairly new 
and since they do not require the setup of complex 
application architectures for processing jobs, they are 
more lightweight than the usually used Big Data 
processing frameworks.  

After conducting a literature review, we found 
that there is no substantial research on how they 
actually compare to Big Data frameworks in terms of 
computational speed and parallelism, especially 
considering Big Data problems. Still, they are an easy 
to learn alternative, showing lots of potential for use 
in Kappa Architectures. 

4.4 Data Lake 

The concept of the Data Lake is often used, when it is 
necessary to store large amounts of data without 
knowing their context or later use. Therefore, it is 
characterized as a data store, which does not employ 
a specific storage technology implementation but 
rather a set of typically NoSQL and In-Memory 
databases complemented by relational databases 
(Pasupuleti and Purra, 2015). It stores vast amounts 
of structured as well as unstructured data in low cost 
technologies (Fang, 2015) and supports flexible data 
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models and caters to data scientists and data 
exploration instead of rigid business applications 
(Pasupuleti and Purra, 2015). One of the major 
benefits using the Data Lake concept is that it is not 
necessary to transform or process data before its 
actual use (Fang, 2015). The data in the Data Lake is 
supposed to be open to further investigation to all 
members of an organization (Fang, 2015). In order to 
purposefully use the data in the Lake it is necessary 
to build and maintain a metadata repository which 
enables meaningful semantic connotation of all data 
(Alrehamy and Walker, 2015). 

5 SOLUTION PROPOSAL 

Because of the limitations of existing Big Data 
analytics architectures in general and IoT analytics 
platform architectures more specifically, we designed 
a new architectural approach for handling personal 
analytics in IoT environments. 

The platform architecture is based on the 
previously introduced concept of the Kappa 
Architecture and is shown in Figure 1. In the context 
of the IoT, data sources can be categorized into 
sensors, actuators and tags. They form the main data 
sources which are relevant to the IoT analytics 
platform. Still, it is possible to integrate other external 
data sources to provide context, such as 
meteorological data.  
The data IoT devices emit is pushed into a log data 
store. Whereas it is possible to use other alternatives, 
we used Apache Kafka due to its rich feature set, easy 
integration with other used technologies and its 
architectural distribution capabilities. These are all 
features which complement the overall requirements 
of handling a huge number of heterogeneous data 
streams. The actual data ingestion and push to the log 
data store is achieved using IoT middleware, such as 
Node-RED.  

While it is possible to have all data from one IoT 
device put into one topic in the log data store together, 
a lot of devices offer a variety of IoT services which 
in turn encapsulate different sensors or actuators. This 
makes it more feasible to have topics based on IoT 
services rather than devices. The topic is set by the 
control service and the identification is saved as 
metadata in an external device repository and is 
associated to an actual IoT device. This metadata 
repository is the basis for later reprocessing tasks as 
it enables the platform to identify topics which 
require reprocessing due to changed requirements. 

The data in the log data store is processed using a 
lightweight stream processing system. It needs to be 
easily adaptable to changing data models and 

analytics requirements. Also, the technological 
overhead for implementation needs to be low, so 
programmers can easily be introduced to enhance, 
maintain and test existing or develop new processing 
applications. A microservice architecture is suitable 
to fulfil these requirements. Rather than using a full-
fledged stream processing framework, each 
processing task is done by a single microservice. The 
microservices access the data directly from the log 
data store and transform it as needed using stream 
processing libraries. The control service accesses the 
metadata of different stream processing 
microservices from a processor repository. This 
information is used to start processing instances as 
needed. 

To utilize the full functionality of the distributed 
log data store, we used Kafka Streams. The 
microservice stream processing system can be scaled 
horizontally in regard of single topics but also as a 
whole system. Computation intensive 
transformations can be scaled out by starting 
additional microservices using the same processing 
algorithm, and the system itself can be scaled out to 
adequately compute huge amounts of topics. The 
feasibility of this stream processing architecture relies 
heavily on the nature of IoT personal analytics which 
is to handle problems at a much smaller scale than in 
common Big Data scenarios.  

Processed data is pushed back into the log data 
store as a new topic. At this point all data takes two 
different paths of further usage. Since meaningful IoT 
analytics applications rely heavily on near real-time 
data, it is only natural, that all processed data is 
pushed into an analytics data store which is the 
serving layer of the Kappa Architecture. The data 
store should be column-oriented or optimized for time 
series data. Examples of time-series databases are 
Graphite or InfluxDB. Using the serving layer, it is 
possible to access and query all processed data in a 
near real-time fashion. In addition, multiple 
application programming interface (API) services are 
used to serve analytics information to different 
endpoints, thus creating the functional layer of an API 
gateway which extends orchestration, routing and 
authorization services.  

The orchestration of new processing services as 
well as API services, is handled by the control 
service. This service can be accessed via an API and 
has information regarding available services, as well 
as already deployed services. It starts and stops 
services and offers information about health and 
performance. It is possible to subdivide this control 
service into smaller less sophisticated services, hence 
following the microservice paradigm with more 
rigour.  
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Figure 1: Solution proposal and data flows. 

Although, IoT analytics are most powerful when 
used in a near real-time environment, it is still 
important to enable users to access historic data.  
The log data store as embedded in our approach 
should only allow data retention of a couple of weeks. 
Otherwise, reprocessing data in case of changed 
requirements or needed insights becomes too 
cumbersome. More specific, it is advised to set 
retention rates of topics depending on the data 
ingestion velocity. To overcome data loss, when 
longer data retention rates are necessary, we use a 
Data Lake. In order to have the data pushed into it, a 
batch job implemented as a high-level log data store 
consumer is triggered at a regular time interval.  

As a first step to evaluate the feasibility of our 
approach, we implemented important parts of the 
proposed platform architecture. The log data store is 
provided using Apache Kafka in congestion with 
Kafka Streams as stream processing library 
embedded in microservices written in Java. The 
serving layer consists of the column-oriented data 
store Druid. Analytics API services are written in 
Python also designed as microservices. Data 
visualization is achieved using Metabase.  

6 CONCLUSIONS AND 
OUTLOOK 

In this paper, we presented a solution architecture for 
IoT analytics in the context of personal analytics. This 
architecture is based on the concept of the Kappa 
Architecture and uses microservices to enable 
flexible lightweight stream processing as well as 
analytics capabilities. Important parts of this 
architecture have already been implemented but lack 

automatic orchestration and creation of analytics 
pipelines. We showed that current IoT analytics 
architectures are not as well suited for huge numbers 
of inherently different analytics jobs which change 
frequently in requirements and semantics. The 
proposed architecture was designed to overcome 
these shortcomings. With the future implementation 
of a Data Lake and the corresponding tools and 
technologies, we are confident to also provide 
analytics capabilities which enhance the current ones 
to be able to handle Big Data problems in terms of 
volume and velocity as well as variety. Also, the 
Kappa Architecture itself, by being able to scale 
processing jobs horizontally, should be beneficial for 
Big Data real-time processing but needs to be 
evaluated in this regard. 

Further research in this field and more specific on 
this new type of analytics architecture needs to focus 
on how to automate data processing further in terms 
of deployment of processing jobs and the alignment 
of their inputs with IoT data structures. The use of 
semantic technologies seems promising to do so and 
some research has already been conducted (Qanbari 
et al., 2015). Also, the efficient incorporation of 
historic data analytics is a key aspect of future 
research. Therefore, in our next research steps, we 
will further design and develop the control service as 
well as the Data Lake to achieve automatic 
orchestration of data analytics pipeline components 
on the one side and historic data persistence and 
insights on the other. Moreover, innovative user 
interfaces need to be developed to empower 
consumers to map their own analytics scenarios to the 
analytics architecture. 
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