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Abstract: The paper proposes design principles for data representation in cloud data interchange services among 

various information systems. We apply equivalence algorithms and canonical representation in order to 

ensure the uniform representation in the cloud database. The solution we describe, proposed to be provided 

within cloud architectures, brings important advantages in organizational communication and cooperation, 

with important societal benefits. The generic design principles we apply bring important advantages in the 

design of the cloud interchange services.  

1 INTRODUCTION AND 

WORKING FRAMEWORK  

Within the framework of software design principles, 

based on systematic techniques, abstract patterns and 

adequate tools for problem solving, we propose 

means of using simplification and equivalence 

algorithms for modelling data representation. We 

apply these techniques in designing data interchange 

service among various information systems within 

cloud environments.  

Equivalence algorithms can be implemented in an 

abstract manner, based on category theory (Andreica 

et al, 2012). Applying generic techniques is useful 

both for design reasons and for solving specific 

problems based on mathematical models (Andreica et 

al, 2012).  

Interoperability is the capability of different 

systems to share functionalities or data (Olmedilla et 

al, 2006). System interoperability has been dealt with 

by means of various models (Morris et al, 2004) and 

has been extensively researched for business 

processes (Ziemann, 2010). 

In (Andreica et al, 2015) we overview 

interoperability layers, principles and tools. Ones of 

the most relevant are: The Electronic Data 

Interchange (EDI) model (Adams et al, 2002), the 

XML standard (XML standard, 2015), RosettaNet 

(Rosetta, 2015), ebXML (OASIS, 2015) standards. 

Knowledge discovery, inference, logic are enabled 

by semantic interoperability.  

Knowledge sharing over computer information 

systems, a major task for ensuring interoperability, is 

based on the Conceptual Knowledge Processing 

paradigm (Stumme and Wille, 2000).The Open 

Internet of Things standards (OpenIoT, 2015) may 

also be used as an efficient framework for data 

interchange.  

Within section 2 we address means of 

implementing simplification and equivalence 

algorithms on various entities, including hierarchical 

structures. In section 3 we propose techniques for 

solving specific pattern matching problems using 

equivalence algorithms. Section 4 addresses 

principles of data interchange between information 

systems using a cloud database that retains data in a 

canonical representation. We propose structures for 

the entities and attributes to be used in the local and 

cloud databases. Conclusions reveal the most 

important topics presented in the paper and future 

research and development directions. 

2 EQUIVALENCE ALGORITHMS  

Within this section we present means of 

implementing equivalence algorithms (Buchberger 

and Loos, 1982) on various entities, including 

hierarchical structures. We use the implementation 

framework that we have introduced in (Andreica et 

al, 2012).  

An equivalence relation ‘~’ verifies reflexivity, 
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symmetry, transitivity properties (Buchberger and 

Loos, 1982).  

Since the data volume that has to be processed is 

usually large, the most efficient way of organizing it 

is using a relational database, in which entities are 

retained in dedicated tables. Database structuring 

principles for processing equivalent entities are 

introduced in (Andreica et al, 2012). 

We also use tables for retaining the entities on 

which equivalence algorithms are applied and we 

process entities belonging to the dedicated tables that 

retain those entities based on the following principle:  

IsSpecificEntity(d) := 


 

otherwisefalse

EntityTbldtrue

,

]id_entity[_,  

Hierarchical data structures are often necessary to 

be processed in a database; such structures may be 

retained in relational databases by means of 

ascendant / successor pointers in dedicated tables 

(Andreica et al, 2010). Principles for retaining and 

processing hierarchical structures and a comparison 

of their processing techniques are presented in 

(Andreica et al, 2010).  
In (Andreica et al, 2012) and (Andreica et al, 

2010) we present means of processing hierarchical 
structures at database level, using a dedicated table 
for retaining the corresponding entities and a 4 
pointers representation technique: ascendant, 
descendant, predecessor (same level), successor 
(same level).  

In (Andreica et al, 2012) we discuss the case 

study of equivalent disciplines and in (Andreica, 

2016) – the example of an expert system for plant 

therapy  

In (Andreica et al, 2010) we detail the above 

mentioned principles for processing modules of 

didactic activities. The implementation uses stored 

procedures parameterized with the level value. The 

system uses a MS SQL database, the hierarchical 

structures which model curricula information being 

processed by means of stored procedures – see 

(Andreica et al, 2010) for details. 

Postorder type n-ary tree evaluation algorithms 

using the above described tree representation are 

implemented in order to parse the hierarchy of 

entities.  

Some efficiency studies we have performed on 

processing hierarchical structures at database level 

are presented in (Andreica et al, 2010).  

In the hierarchical entity structure, leaf entities 

are retained in dedicated  tables, based on the 

principle stated below:  

IsLeafEntity(m) := 
, : [d]

,

true d m IsSpecificEntity

false otherwise

 



 

For example, in (Andreica et al, 2012) we process 

hierarchies of modules in which all non-leaf modules 

consist only of modules.  

Let d1, d2 be two entities. We use the notation 

‘~’ for describing the equivalence of the two entities 

d1 ~ d2; this relation may have various significances 

in various case studies – see (Andreica et al, 2010), 

(Andreica et al, 2012). In each case, we have to 

check whether the relation is an equivalence one 

since by verifying if it complies reflexivity, 

symmetry, transitivity properties.  

The canonical representative of an entity 

equivalence class is important since it will be further 

used in pattern matching rules – see section 3. 

We implemented the simplification algorithm for 

determining the canonical representative for a given 

entity class (Andreica et al, 2015). Based on this 

algorithm, we may also test the equivalence of two 

entities by verifying they have the same canonical 

representative. 

By generically denoting with ‘’ an equivalence 

relation for categories of entities, we may state that: 

e1  e2  (d1  e1, ! d2  e2 : d1 ~ d2  )  

(d2  e2, ! d1  e1 : d1 ~ d2  ) 

For a leaf category of entities e, we consider 

Canonic (e) = {Canonic(d) | de} – the set of 

canonical representative for the contained entities. It 

can be shown that two leaf equivalent entities have 

the same sets of canonical representatives.  

For a category of entities we can recursively 

compute its canonical representative set as: 

Canonic(e) =









otherwisee

etyIsLeafEntie

},ed | d){Canonic(e

][},d | ){Canonic(d
 

Intuitively, the canonical set for a category of 

entities is obtained by “flattening” its category sub-

tree and computing the union set of all canonical sets 

corresponding to its descendant leaf entities. 

Generically, we may state:  

Canonic (e) = {Canonic(d) | de} 

3 PATTERN MATCHING 

PRINCIPLES  

Within this section we refer to mappings between 

two elements as correspondences between the two 

elements that may be occur in various cases, usually 

named as pattern matching.  

We implement pattern matching rules for 

equivalent entities by reducing the mapping between 
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two elements, belonging to the two equivalence 

classes that are to be mapped, to mapping their 

canonical representatives, as described below: 

Let ei  E class of equivalent entities, emj  EM 

class of equivalent mapped entities, e0 – the 

canonical representative of class E and em0 – the 

canonical representative of class EM. Then we 

reduce a mapping of two entities ei , emj belonging 

respectively to the equivalence classes E, EM to the 

mapping between the two canonical representatives 

e0 E, em0  EM – see Figure 1: 

ei -> emj    e0 -> em0, where ei  E, emj  EM 

 

Figure 1: Pattern Matching Scheme for Equivalence 

Classes. 

We may as well use the equivalent mappings:  

ei -> em0, where ei  E,  

(any element of E may be mapped into the 

canonical element of EM)  

or 

e0 -> emj , where emj  EM  

(there is a mapping between the canonical 

element of E and any element of EM) 

For the case of equivalence classes with 

hierarchical representations – see Figure 2 – the 

canonical representatives are the roots of the 

corresponding trees (Figure 2). Parsing algorithms 

for finding the canonical representatives generally 

use the ascendant pointer – see section 2. 
We can use the above described rules in 

managing pattern matching problems on equivalence 
classes that occur in the design of expert systems.  

We note that for the database representation it is 
important to improve table access speed table by 
indexing the tables in respect with the search id; this 
principle is very useful to be applied as well in 
managing hierarchical representations at database 
level, which are frequently processed in order to find 
the canonical representative. 

 

Figure 2: Pattern Matching on Hierarchical Structures of 

Equivalence Classes. 

4 PRINCIPLES FOR BUILDING 

THE CLOUD UNIFORM 

DATABASE 

REPRESENTATION  

The data interchange architecture (Andreica et al, 

2015) provides data exchange services between 

various information systems or entities using cloud 

services and a cloud database for mapping and 

handling the exchanged information – see Figure 3. 

Data exchange may be performed both in XML 

relational database formats; for XML format, the 

corresponding database representation (Andreica et 

al, 2012) is generated into the cloud database. The 

following sequences are pursued: data to be 

exchanged is marked in the source database using 

dedicated tables and columns, mapped into the cloud 

database, sent and retained into the cloud database – 

see the structure proposed below. For the destination 

system / database, which sends data requests, a data 

mapping is also performed and required data is sent 

from the cloud database into the destination one.  

The data exchange may use multi-criteria agents 

implemented in the cloud environment both for 

performing necessary mappings and for handling 

communication. 

The Cloud Data Interchange Services will be 

designed for supporting automatic data exchange in 

various fields, with important communication 

efficiency benefits (Andreica et al, 2015). 

The design principles are based on agent system 

development, the communication between agents 

being designed as a multi-agent system, since the 

multi-agent   architecture    (Weiss,  1999)   provides 

many advantages, such as: decentralization, 

extensibility, robustness, maintainability, flexibility.  
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Figure 3: Data Interchange Model Using Cloud Services. 

The agent architecture includes self-adapting 

communicating objects, which work on distributed 

datasets, supporting both the exchange and the 

analysis of distributed sources (Andreica et al, 

2015). 

Multi-agent systems (MAS) are appropriate for 

modelling heterogeneous interactions, based on 

flexible autonomous actions aiming at achieving 

specific goals. Ontologies and agent technologies 

may be combined in order to successfully enable 

heterogeneous knowledge sharing (Andreica et al, 

2015). 

 

Figure 4: Agent Architecture Model for Data Interchange 

in Cloud Frameworks. 

We use the multi-agent model proposed in (Faulkner 

et al, 2014) for modelling the agent interaction. The 

agent architecture implements local agents for 

gathering data from the communicating systems. 

Within the cloud environment, a multi-criteria agent 

handles information mapping between source and 

destination systems, using a generic information 

structure defined in the cloud database, as a 

canonical representation – see Figure 4. 

This agent can be viewed as a mediator type of 

agent. A mediator may be defined as a system which 

refines, in a specific way, information from one or 

more sources (Wiederhold , 1992). A mediator 

embeds the knowledge which is necessary for 

processing a specific type of information and may 

also convert data to a common format (Chawathe et 

al , 1994). This mediator agent definition (Andreica 

et al, 2015) frame is given in Definition 1. 

Agent:{ Local 
Interface: 
Data[require(local_representation)] 

… 
Effector[provide(exchanged_items)] 
KnowledgeBase: 

Source_Exchanged_Data 
LocalDB_into_CloudDB 
… 
Capabilities: 

Handle_Exchange_Request 
… } 

Definition 1: Mediator definition frame   

These mediators model the interface between the 

destination systems and the cloud environment, 

having queries as inputs and returning objects via 

the interface layer. The proposed mediators are 

primarily hosted in the cloud environment, but they 

can also be used within client information systems 

(Andreica et al, 2015). They send dedicated queries 

in order to obtain appropriate objects from the 

remote sources, via the cloud environment. 

In order to enable the exchange of various data 

between two information systems, using dedicated 

databases, with different structures, we set the 

canonical representation on the cloud database. The 

mapping process is user assisted since it requires 

human input.   

We further propose a database mpdel for 

processing the entity equivalence from tables in 

various local databases using a uniform caninical 

representation in the clod database.  

Let {E1, E2, ..., Em} be the class of entities to be 

processed from a local database: 

E1 [A1
E1, A2

E1 , ..., An1
E1 ] 

E2 [A1
E2, A2

E2 , ..., An2
E2 ] 

.... 

Em [A1
Em, A2

Em , ..., Anm
Em ] 

We note min=min{Card(E1), ..., Card(Em) }.  

If min < n ie. i{1,...,m}: Card(Ei)<n, there 

exist entities Ei, i{1,...,m} which do not represent 
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all attributes that are taken into account into the 

canonical representation. In this case, we consider 

the corresponding attributes from the entities Ei, 

i{1,...,m} to be Null.  

If min > n, there exist entities Ei, i{1,...,m} 

which contain attributes that are not represented into 

the canonical representation. 

We further discuss the attribute equivalence from 

a local database, ie. the columns contained in the 

entity tables.  

We note with A1 the canonical representative for 

the class {A1
E1, A1

E2, ... A1
Em} containing attributes 

from the entities {E1, E2, ..., Em}  

We note with A2 the canonical representative for 

the class { A2
E1, A2

E2, ... A2
Em} containing attributes 

from the entities {E1, E2, ..., Em} 

.... 

We note with An the canonical representative for 

the class { An
E1, An

E2, ... An
Em} containing attributes 

from the entities {E1, E2, ..., Em} 

Then the entity E0[A1, A2 , ..., An
 ] will be the 

canonical representative for the class of entities {E1, 

E2, ..., Em} 

When mappings between the entities and 

attributes from the various information systems 

databases are performed, we create equivalence 

tables in each local information system database 

containing:  

EntityEquiv[id_entities, LocalEntity_TableName, 

CloudEntity_TableName, Obs] 

AttributeEquiv[id_attributes, id_entities, 

LocalAttribute, CloudAttribute, Type, Matched, 

Permissions, UpdatedFrom, Date, Significance, 

Obs] 

where  

Type – is the type of the attribute  

Matched is a logical value, representing whether the 

matching was performed  

Permissions{R, W} representing the permissions 

on the attribute, Read or Write  

Significance is the significance of the Attribute  

Obs = observations  

UpdateList[id_attributes, UpdatedFrom, Date, Obs] 

where  

UpdatedFrom = the source database from which the 

update was performed (via the cloud database)  

Date = the date of the update  

Observations: 

1. Back-ups for local databases are obviously 

recommended. In the cases in which local 

database administrators choose, dedicated tables 

or even databases (copies) may be used for the 

interchange process and then synchronizations 

can be managed locally. 

2. In the case in which more cloud environments 

are used, the id of the cloud database has also to 

be retained.  

The cloud database will contain the following 

equivalence structure: 

CloudEntitiesEquiv[id_ent, source, 

LocalEntity_TableName, CloudEntity_TableName, 

Significance, Obs] 

CloudAttributeEquiv[id_attributes, id_entities, 

LocalAttribute, CloudAttribute, Type, Significance, 

Matched, Permissions, Obs] 

CloudUpdateList[id_attributes, UpdatedFrom, 

Date, Obs] 

// the LocalAttribute with id_entities id is 

updated in the corresponding local database from the 

source specified in UpdatedFrom, at the specified 

Date 

The fields have the same significances as 

described above, but are retained in the cloud 

database. The Date of the update is the date when 

the data is sent into a local database within the 

interchange process. 

Observations:  

1. The cloud table CloudEntitiesEquiv contains an 

entry for each entity / table from the local 

databases which are involved in the interchange 

process. 

2. The cloud table CloudAttributeEquiv contains 

an entry for each atttribute from the local 

databases which are involved in the interchange 

process. 

5 CONCLUSION AND FUTURE 

WORK  

The paper proposes data representation and design 

principles for performing data interchange between 

various information systems databases by means of 

cloud services. 

Simplification and equivalence algorithms are 

used in order to ensure canonical data representation 

in the cloud database and data correspondence in the 

data exchange process. We propose a specific 

structure for the entities / tables and attributes that are 

to be exchanged in the local and cloud databases. 

The generic manner in which we implement 

simplification and equivalence algorithms on various 
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entities, including hierarchical ones, represented at 

database level, ensures generality and applicability in 

various cases. Pattern matching rules and canonical 

representatives are used in the cloud database.  

We reveal the advantages of applying the 

algebraic equivalence algorithm and of applying 

canonical representatives’ properties in solving 

pattern matching problems and designing data 

interchange services.  

The data interchange model we present provides 

important practical advantages for increasing 

organizational competitiveness, with a significant 

societal impact on institutional and entities’ 

cooperation, efficient information access and 

management for various stakeholders. A relevant 

advantage of the solution is its flexibility and 

efficiency in information exchange (only relevant 

data is exchanged), with minimal resources involved 

and significant security benefits.  

Future work is related to further development and 

implementation of the above described techniques. 
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