
Prodeling with the Action Language for Foundational UML

Thomas Buchmann
Chair of Applied Computer Science I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany

Keywords: UML, Java, Model-driven Development, Behavioral Modeling, Code Generation.

Abstract: Model-driven software development (MDSD) – a software engineering discipline, which gained more and
more attention during the last few years – aims at increasing the level of abstraction when developing a soft-
ware system. The current state of the art in MDSD allows software engineers to capture the static structure in
a model, e.g., by using class diagrams provided by the Unified Modeling Language (UML), and to generate
source code from it. However, when it comes to expressing the behavior, i.e., method bodies, the UML offers
a set of diagrams, which may be used for this purpose. Unfortunately, not all UML diagrams come with a
precisely defined execution semantics and thus, code generation is hindered. Recently, the OMG issued the
standard for an Action Language for Foundational UML (Alf), which allows for textual modeling of software
system and which provides a precise execution semantics. In this paper, an integrator between an UML-based
CASE tool and a tool for Alf is presented, which empowers the modeler to work on the desired level of ab-
straction. The static structure may be specified graphically with the help of package or class diagrams, and the
behavior may be added using the textual syntax of Alf. This helps to blur the boundaries between modeling
and programming. Executable Java code may be generated from the resulting Alf specification.

1 INTRODUCTION

Model-driven software development (MDSD) (Völter
et al., 2006) is a software engineering discipline
which receives increasing attention in both research
and practice. MDSD intends to reduce the develop-
ment effort and to increase the productivity of soft-
ware engineers by generating code from high-level
models. To this end, MDSD puts strong emphasis on
the development of high-level models rather than on
the source code. Models are not considered as doc-
umentation or as informal guidelines on how to pro-
gram the actual system. In contrast, models have a
well-defined syntax and semantics. Moreover, MDSE
aims at the development of executable models.

Throughout the years, UML (OMG, 2015b) has
been established as the standard modeling language
for model-driven development. It provides a wide
range of diagrams to support both structural and be-
havioral modeling. To support model-driven develop-
ment in a full-fledged way, it is crucial to derive exe-
cutable code from executable models. However, gen-
erating executable code requires a precise and well-
defined execution semantics for behavioral models.
Unfortunately, not all behavioral diagrams provided
by the UML are equipped with such a well-defined se-
mantics. As a consequence, software engineers nowa-

days need to manually supply method bodies in the
code generated from structural models.

This leads to what used to be called “the code gen-
eration dilemma” (Buchmann and Schwägerl, 2015):
Generated code from higher-level models is extended
with hand-written code. Often, these different frag-
ments of the software system evolve separately, which
may lead to inconsistencies. Round-trip engineering
(Buchmann and Westfechtel, 2013) may help to keep
the structural parts consistent, but the problem is the
lack of an adequate representation of behavioral frag-
ments.

Over the years, the Eclipse Modeling Framework
(EMF) (Steinberg et al., 2009) has been established as
an extensible platform for the development of MDSE
applications, both in the academic community and in
industrial projects. It is based on the Ecore meta-
model, which is compatible with the Object Man-
agement Group (OMG) Meta Object Facility (MOF)
specification (OMG, 2015a). Ideally, software en-
gineers operate only on the level of models such
that there is no need to inspect or edit the actual
source code, which is generated from the models au-
tomatically. However, language-specific adaptations
to the generated source code are frequently neces-
sary. In EMF, for instance, only structure is modeled
by means of class diagrams, whereas behavior is de-

Buchmann, T.
Prodeling with the Action Language for Foundational UML.
DOI: 10.5220/0006353602630270
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 263-270
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

263

scribed by modifications to the generated source code.
The standard for the Action Language for Foun-

dational UML (Alf) (OMG, 2013a), issued by the Ob-
ject Management Group (OMG), provides the defini-
tion of a textual concrete syntax for a foundational
subset of UML models (fUML) (OMG, 2013b). In
the fUML standard, a precise definition of an execu-
tion semantics for a subset of UML is described. The
subset includes UML class diagrams to describe the
structural aspects of a software system.

In this paper, an integration of our Alf editor and
code generator (Buchmann and Rimer, 2016) into the
UML-based CASE tool Valkyrie (Buchmann, 2012)
is presented. The resulting toolchain allows for seam-
less integration of UML modeling and Alf program-
ming (“Prodeling”) by using bidirectional and incre-
mental model transformations which operate on the
abstract syntaxes of both tools. In the integrated en-
vironment, Valkyrie may be used for structural mod-
eling and behavior may be specified using Alf. Fully
executable Java code may then be generated from the
resulting Alf model.

The paper is structured as follows: Related work
is discussed in Section 2. In Section 3, a brief
overview of Alf is presented. The integration of Alf
into our UML-based modeling environment Valkyrie
is described in Section 4. Furthermore, an example
demonstrating the use of the integrated tool is pre-
sented in Section 5. Section 6 concludes the paper.

2 RELATED WORK

Many different tools and approaches have been pub-
lished in the last few years, which address model-
driven development and especially modeling behav-
ior. The resulting tools rely on textual or graphical
syntaxes, or a combination thereof. While some tools
come with code generation capabilities, others only
allow to create models and thus only serve as a visu-
alization tool.

The graphical UML modeling tool Papyrus
(Guermazi et al., 2015) allows to create UML, SysML
and MARTE models using various diagram editors.
Additionally, Papyrus offers dedicated support for
UML profiles, which includes customizing the Pa-
pyrus UI to get a DSL-like look and feel. Papyrus is
equipped with a code generation engine allowing for
producing source code from class diagrams (currently
Java and C++ is supported). Future versions of Pa-
pyrus will also come with an Alf editor. A preliminary
version of the editor is available and allows a glimpse
on its provided features. The textual Alf editor is inte-
grated as a property view and may be used to textually

describe elements of package or class diagrams. Fur-
thermore, it allows to describe the behavior of activi-
ties. The primary goal of the Papyrus Alf integration
is round-tripping between the textual and the graphi-
cal syntax and not executing behavioral specifications
by generating source code. While Papyrus strictly fo-
cuses on a forward engineering process (from model
to source code), the approach presented in this paper
explicitly addresses round-trip engineering.

Xcore1 recently gained more and more attention
in the modeling community. It provides a textual con-
crete syntax for Ecore models allowing to express the
structure as well as the behavior of the system. In con-
trast to Alf, the textual concrete syntax is not based
on an official standard. Xcore relies on Xbase - a
statically typed expression language built on Java -
to model behavior. Executable Java code may be gen-
erated from Xcore models. Just like the realization
of Alf presented in this paper, Xcore blurs the gap
between Ecore modeling and Java programming. In
contrast to Alf, the behavioral modeling part of Xcore
has a strongly procedural character. As a consequence
an object-oriented way of modeling is only possible to
a limited extent. E.g. there is no way to define object
constructors to describe the instantiation of objects of
a class. Since Xcore reuses the EMF code genera-
tion mechanism (Steinberg et al., 2009), the factory
pattern is used for object creation. Furthermore, Alf
provides more expressive power, since it is based on
fUML, while Xcore only addresses Ecore.

Another textual modeling language, designed for
model-oriented programming is provided by Umple2.
The language has been developed independently from
the EMF context and may be used as an Eclipse plu-
gin or via an online service. In its current state, Umple
allows for structural modeling with UML class dia-
grams and describing behavior using state machines.
A code generation engine allows to translate Umple
specifications into Java, Ruby or PHP code. Umple
scripts may also be visualized using a graphical no-
tation. Unfortunately, the Eclipse based editor only
offers basic functions like syntax highlighting and a
simple validation of the parsed Umple model. Umple
offers an interesting approach, which aims at assisting
developers in rasing the level of abstraction (“umpli-
fication”) in their programs (Lethbridge et al., 2010).
Using this approach, a Java program may be stepwise
translated into an Umple script. The level of abstrac-
tion is raised by using Umple syntax for associations.

PlantUML3 is another tool, which offers a textual
concrete syntax for models. It allows to specify class

1http://wiki.eclipse.org/Xcore
2http://cruise.site.uottawa.ca/umple
3http://plantuml.com

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

264

diagrams, use case diagrams, activity diagrams and
state charts. Unfortunately, a code generation engine,
which allows to transform the PlantUML specifica-
tions into executable code is missing. PlantUML uses
Graphviz4 to generate a graphical representation of a
PlantUML script.

Fujaba (The Fujaba Developer Teams from
Paderborn, Kassel, Darmstadt, Siegen and Bayreuth,
2005) is a graphical modeling language based on
graph transformations, which allows to express both
the structural and the behavioral part of a software
system on the modeling level. Furthermore, Fujaba
provides a code generation engine that is able to trans-
form the Fujaba specifications into executable Java
code. Behavior is specified using Story Diagrams.
A story diagram resembles UML activity diagrams,
where the activities are described using Story Pat-
terns. A story pattern specifies a graph transformation
rule where both the left hand side and the right hand
side of the rule are displayed in a single graphical no-
tation. While story patterns provide a declarative way
to describe manipulations of the runtime object graph
on a high level of abstraction, the control flow of a
method is on a rather basic level as the control flow
in activity diagrams is on the same level as data flow
diagrams. As a case study (Buchmann et al., 2011) re-
vealed, software systems only contain a low number
of problems, which require complex story patterns.
The resulting story diagrams nevertheless are big and
look complex because of the limited capabilities to
express the control flow.

3 THE ACTION LANGUAGE FOR
FOUNDATIONAL UML

3.1 Overview

Alf (OMG, 2013a) is an OMG standard, which ad-
dresses a textual surface representation for UML
modeling elements. It provides an execution seman-
tics by mapping the Alf concrete syntax to the abstract
syntax of the OMG standard of Foundational Subset
for Executable UML Models also known as Founda-
tional UML or just fUML (OMG, 2013b).

The primary goal is to provide a concrete textual
syntax allowing software engineers to specify exe-
cutable behavior within a wider model, which is rep-
resented using the usual graphical notations of UML.
A simple use case is the specification of method bod-
ies for operations contained in class diagrams. To this

4http://www.graphviz.org

end, it provides a procedural language, whose under-
lying data model is UML. However, Alf also provides
a concrete syntax for structural modeling within the
limits of the fUML subset. Please note that in case the
execution semantics are not required, Alf is also us-
able in the context of models, which are not restricted
to the fUML subset. The Alf specification comprises
both the definition of a concrete and an abstract syn-
tax, which are briefly presented in the subsequent sub-
sections.

3.2 Concrete Syntax

The concrete syntax specification of the Alf stan-
dard is described using a context-free grammar in
Enhanced-Backus-Naur-Form (EBNF)-like notation.
In order to indicate how the abstract syntax tree is
constructed from this context-free grammar during
parsing, elements of the productions are further an-
notated.

1 ClassDeclaration(d: ClassDefinition) = ["

abstract" (d.isAbstract=true)] "class"

ClassifierSignature(d)

Listing 1: Alf production rule for a class (OMG, 2013a).

Listing 3.2 shows an example for an EBNF-like
production rule, annotated with additional informa-
tion. The rule produces an instance d of the class
ClassDefinition. The production body (the right
hand side of the rule) further details the ClassDefini-
tion object: It consists of a ClassifierSignature and
it may be abstract (indicated by the optional keyword
“abstract”).

3.3 Abstract Syntax

Alf’s abstract syntax is represented by an UML class
model of the tree of objects obtained from parsing an
Alf text. The Alf grammar is context-free and thus,
parsing results in a strictly hierarchical parse tree,
from which the so called abstract syntax tree (AST)
is derived. Figure 1 gives an overview of the top-
level syntax element classes of the Alf abstract syn-
tax. Each syntax element class inherits (in)directly
from the abstract base class SyntaxElement. Simi-
lar to other textual languages, the Alf abstract syntax
tree contains important non-hierarchical relationships
and constraints between Alf elements, even if the tree
obtained from parsing still is strictly hierarchical with
respect to containment relations. These cross-tree re-
lationships may be solely determined from static anal-
ysis of the AST. Static semantic analysis is a common
procedure in typical programming languages and it is
used, e.g., for name resolving and type checking.

Prodeling with the Action Language for Foundational UML

265

Figure 1: Cutout of the abstract syntax definition of Alf (OMG, 2013a).

4 PRODELING WITH Alf

Figure 2 depicts our approach of integrating UML
and Alf models. In the context of the Valkyrie
project (Buchmann, 2012), we developed a UML-
based CASE tool, which puts special emphasis on
code generation. Recently, a stand-alone Alf pro-
gramming environment was added (Buchmann and
Rimer, 2016). This paper describes the integration of
both tools.

The UML-based CASE tool Valkyrie provides
graphical editors for the following kinds of UML dia-
grams: package diagrams, class diagrams, object dia-
grams, use case diagrams, activity diagrams and state
machine diagrams. The Graphical Modeling Frame-
work (GMF) (Steinberg et al., 2009) was used to im-
plement the editors. User interactions with the di-
agram editor are automatically translated into com-
mands which modify the abstract UML syntax by the
GMF runtime.

On the other hand, the editor for the textual con-
crete syntax of Alf was implemented using the Xtext 5

framework, which aids the development of program-
ming languages and domain-specific languages. All
aspects of a complete language infrastructure are cov-
ered by Xtext including parsing, scoping, linking, val-
idation and code generation. It is tightly integrated
into the Eclipse IDE, providing features like syntax
highlighting, code completion, quick fixes, and many
more. The user interacts with the text-based editor for
Alf code. The generated parser creates an in-memory
Ecore-based representation of the abstract syntax of
the Alf language.

As stated above, Alf primarily was designed to

5http://www.eclipse.org/Xtext

provide means of specifying behavior in UML mod-
els. The current state of our Alf editor allows for the
textual specification of both structural and behavioral
models. I.e., the user may specify the static structure
of a software system using packages, classes and as-
sociations as well as the behavior which is expressed
in method bodies. However, textually specifying the
structure of a software system may be odd, especially,
when UML-based CASE tools are available, which
are optimized for graphical modeling of package and
class diagrams.

To this end, our integrator, which is presented in
this paper, allows for getting the best out of both
worlds. The user may specify package and class di-
agrams in Valkyrie (as long as they comply to the
fUML (OMG, 2013b) subset) and then transform the
(f)UML model to a corresponding Alf representation.
In the Alf editor, the user may supply the method bod-
ies to implement the desired behavior of the software
system. The transformation works in an incremen-
tal way of operation. I.e., once structural elements
are added or changed in the Alf model, these changes
may be propagated back to the (f)UML model. Please
note that the user supplied method bodies are retained
on subsequent transformations. To this end, the corre-
sponding textual Alf fragments of the method bodies
are added as comments to the respective UML oper-
ations. This allows for preserving the method imple-
mentations, even if methods are moved to different
classifiers. In order to generate executable Java source
code, the Alf code generator is used, which is briefly
introduced in (Buchmann and Rimer, 2016).

The bidirectional transformation between the
(f)UML model and the Alf model is achieved by
a hand-crafted triple graph transformation system

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

266

UML
Diagram
Editors
(GMF-
based)

ALF Code
(Xtext-
based
Editor)

User Interaction

Integration of UML and ALF

ALF
Abstract
Syntax

(Ecore-based)

Bidirectional
Transformation

Parser

edit edit

UML Model
(Ecore-based)

GMF
Runtime

Figure 2: Integration of UML and Alf models.

(TGTS). The TGTS is written in the Xtend6 program-
ming language. Implementation details of the TGTS
are given in (Buchmann and Greiner, 2016), where
it was used in a different application scenario. For
the integration of (f)UML and Alf, the rules for for-
ward and backward transformations had to be ad-
justed. The correspondence model and the code re-
sponsible for the incremental way of operation could
be reused without modifications. In its current state,
the following restrictions for the integrator hold:

• Only package and class diagrams are allowed on
the UML side

• Class diagrams must conform to the fUML re-
strictions. In particular, the usage of interfaces
and derived attributes is forbidden

• When transforming from (f)UML to Alf, the text
formatting information is lost.

While the latter one is a technical issue related to
Xtext, the second issue may be tackled by transform-
ing interfaces to abstract classes and by generating
getter methods for derived attributes without adding
a field in the Alf model.

5 EXAMPLE

In this section, we briefly show a workflow of creat-
ing an executable software system, starting with struc-
tural modeling in Valkyrie and supplying behavior in
form of method bodies in Alf. Finally, executable
code is generated from the resulting Alf specification.

As an example, we use a mobile banking applica-
tion in this section. The static structure of the system
is modeled using package and class diagrams. The
package diagram is shown in Figure 3, and one of the
class diagrams is depicted in Figure 4.

6http://www.eclipse.org/xtend

The integrator presented in this paper is used to
transform the static structure modeled with UML into
a corresponding Alf document which is enriched with
method bodies specifying the desired behavior of the
mobile banking app.

The mobile banking system allows to perform var-
ious actions on bank accounts. The execution of
these actions is realized using the Command-pattern
(Gamma et al., 1994). The usage of this pattern al-
lows for decoupling between the caller (an instance
of the class BankingAndroidApp, c.f., Figure 3) and
the actual execution of the command.

Different types of commands within the mobile
banking system are encapsulated in different classes
which are specializations of the abstract base class
BankingTransactionCommand (c.f., Figure 3). The
actual execution of the commands is delegated to an
instance of the class BankingPortalHandler. The
handler manages a set of bank accounts and executes
commands on the proper account taking into account
the supplied bank account number.

Listing 5 depicts a cutout of the Alf pro-
gram that is used to implement the mobile bank-
ing system. The class declarations for Bank, Cus-
tomer, and BankingAccount belonging to the pack-
age bankModel are shown, as well as the associ-
ations BankHasCustomer and CustomerHasAc-
count. The code shown in Listing 5 is created after
executing the transformation provided by our integra-
tor starting with the UML model as input.

1 package mbs{
2 package bankModel {
3 public class Bank { ... }
4

5 public class Customer { ... }
6

7 public class BankingAccount {
... }

8

9 public assoc BankHasCustomer {

Prodeling with the Action Language for Foundational UML

267

Figure 3: Package diagram of the mobile banking system example.

Figure 4: Cutout of the class diagram of the mobile banking system example.

10 public bank : Bank[1];
11 public customer : Customer

[1..*];
12 }
13

14 public assoc CustomerHasAccount
{

15 public customer : Customer[1];
16 public accounts :

BankingAccount[1..*];
17 }
18 }
19 }

Listing 2: Cutout of the Alf program after the transforma-
tion from (fUML) to Alf.

Listing 5 depicts the implementation of the oper-
ation responsible for creating the information associ-
ated with a certain account in the class BankingPor-
talHandler. The information is retrieved based on the
account number which is passed as an input parameter
in the method head. The implementation uses control
structures like loops (c.f., line 8 in Listing 5) or con-

ditional statements (c.f., line 9). The Alf code was
supplied with the corresponding Alf editor.

1 public createAccountInformation(in
passedAccNr:Integer):String {

2 let result:String = "Account: ";
3 let ownerName:String = "";
4 let ownerSurname:String = "";
5 let balance:Double = 0.0;
6 let accNr:Integer = 0;
7

8 for (BankingAccount acc: this.
accs) {

9 if (acc != null && acc.accNr ==
passedAccNr) {

10 balance = acc.accBalance;
11 accNr = acc.accNr;
12 let accOwner:Customer =

CustomerHasAccount::
customer(acc);

13 if (accOwner != null) {
14 ownerName = accOwner.name;
15 ownerSurname = accOwner.

surname;

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

268

16 }
17 }
18 }
19

20 result += accNr + ":\n";
21 result += ownerName + " " +

ownerSurname + "\n";
22 result += "Balance:" + balance;
23 return result;
24 }

Listing 3: Example of a supplied method body in Alf.

In case structural modifications are required while
supplying the method bodies, the user has the choice
of performing these changes in the UML model or in
the Alf code. In case the user decides for the first
option, the backward transformation supplied with
our integrator needs to be invoked. The execution of
the transformation results in an update of the UML
model, where the user supplied method bodies of the
Alf specification are added to comments of the corre-
sponding operations in the UML model. Afterwards,
the user may perform the structural changes in the re-
spective diagram editors of the Valkyrie tool. Once
he finished this task, the forward transformation of
our integrator may be invoked and the Alf model gets
updated accordingly.

After all method bodies have been supplied, the
user may invoke the code generator of our Alf editor
in order to generate fully executable Java code. The
resulting Java source code is not shown in this paper
due to space restrictions.

6 CONCLUSION AND FUTURE
WORK

In this paper, an approach to providing tool support
for unifying modeling and programming has been
presented. The OMG Alf specification (OMG, 2013a)
describes a textual concrete syntax for a subset of
UML (fUML) (OMG, 2013b). In previous projects,
a UML-based CASE tool (Buchmann, 2012) and an
implementation of the Alf specification (Buchmann
and Rimer, 2016) have been created. The work pre-
sented in this paper integrates both tools by means of
a bidirectional and incremental transformation, which
allows for seamless integration where the user may
work either with graphical diagrams or textual code
to specify the static structure of the system. Behavior
may only be supplied in the textual syntax. In order
to execute the resulting software systems, a Java code
generator from the Alf editor may be used, which
allows for the creation of fully executable Java pro-
grams.

Future work comprises case studies in order to
evaluate our approach. Furthermore, we are aiming
at a tighter integration of Valkyrie and Alf, where the
user of the Alf editor is working in a local context, i.e.
directly on the method without having to deal with the
complete Alf code resulting from the UML model. In
addition, we are investigating fall-back mechanisms,
which will be applied in case the UML model does
not conform to the fUML subset.

ACKNOWLEDGMENTS

The author wants to thank Johannes Schröpfer for im-
plementing parts of the Alf integrator in his Bache-
lor thesis. Further acknowledgments go to Bernhard
Westfechtel for his valuable and much appreciated
comments on the draft of this paper.

REFERENCES

Buchmann, T. (2012). Valkyrie: A UML-Based Model-
Driven Environment for Model-Driven Software En-
gineering. In Proceedings of the 7th International
Conference on Software Paradigm Trends (ICSOFT
2012), pages 147–157, Rome, Italy. SciTePress.

Buchmann, T. and Greiner, S. (2016). Handcrafting a triple
graph transformation system to realize round-trip en-
gineering between UML class models and java source
code. In Maciaszek, L. A., Cardoso, J. S., Ludwig,
A., van Sinderen, M., and Cabello, E., editors, Pro-
ceedings of the 11th International Joint Conference
on Software Technologies (ICSOFT 2016) - Volume
2: ICSOFT-PT, Lisbon, Portugal, July 24 - 26, 2016.,
pages 27–38. SciTePress.

Buchmann, T. and Rimer, A. (2016). Unifying Modeling
and Programming with ALF. In Kaindl, H. and Meli,
R., editors, Proceedings of the 2nd International Con-
ference on Advances and Trends in Software Engi-
neering (SOFTENG 2016), page 6. IARIA.

Buchmann, T. and Schwägerl, F. (2015). On A-posteriori
Integration of Ecore Models and Hand-written Java
Code. In Pascal Lorenz, M. v. S. and Cardoso, J.,
editors, Proceedings of the 10th International Con-
ference on Software Paradigm Trends, pages 95–102.
SciTePress.

Buchmann, T. and Westfechtel, B. (2013). Towards Incre-
mental Round-Trip Engineering Using Model Trans-
formations. In Demirors, O. and Turetken, O., edi-
tors, Proceedings of the 39th Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA 2013), pages 130–133. IEEE Conference Pub-
lishing Service.

Buchmann, T., Westfechtel, B., and Winetzhammer, S.
(2011). The added value of programmed graph trans-
formations - A case study from software configura-
tion management. In Schürr, A., Varró, D., and Varró,

Prodeling with the Action Language for Foundational UML

269

G., editors, Applications of Graph Transformations
with Industrial Relevance - 4th International Sympo-
sium, AGTIVE 2011, Budapest, Hungary, October 4-
7, 2011, Revised Selected and Invited Papers, volume
7233 of Lecture Notes in Computer Science, pages
198–209. Springer.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Upper
Saddle River, NJ.

Guermazi, S., Tatibouet, J., Cuccuru, A., Seidewitz, E.,
Dhouib, S., and Gérard, S. (2015). Executable mod-
eling with fuml and alf in papyrus: Tooling and ex-
periments. In Mayerhofer, T., Langer, P., Seide-
witz, E., and Gray, J., editors, Proceedings of the 1st
International Workshop on Executable Modeling co-
located with ACM/IEEE 18th International Confer-
ence on Model Driven Engineering Languages and
Systems (MODELS 2015), Ottawa, Canada, Septem-
ber 27, 2015., volume 1560 of CEUR Workshop Pro-
ceedings, pages 3–8. CEUR-WS.org.

Lethbridge, T. C., Forward, A., and Badreddin, O. (2010).
Umplification: Refactoring to incrementally add ab-
straction to a program. In Reverse Engineering
(WCRE), 2010 17th Working Conference on, pages
220–224. IEEE.

OMG (2013a). Action Language for Foundational UML
(ALF). Object Management Group, Needham, MA,
formal/2013-09-01 edition.

OMG (2013b). Semantics of a Foundational Subset for Ex-
ecutable UML Models (fUML). Object Management
Group, Needham, MA, formal/2013-08-06 edition.

OMG (2015a). Meta Object Facility (MOF) Version 2.5.
OMG, Needham, MA, formal/2015-06-05 edition.

OMG (2015b). Unified Modeling Language (UML). Object
Management Group, Needham, MA, formal/15-03-01
edition.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Boston, MA, 2nd
edition.

The Fujaba Developer Teams from Paderborn, Kassel,
Darmstadt, Siegen and Bayreuth (2005). The Fujaba
Tool Suite 2005: An Overview About the Develop-
ment Efforts in Paderborn, Kassel, Darmstadt, Siegen
and Bayreuth. In Giese, H. and Zündorf, A., editors,
Proceedings of the 3rd international Fujaba Days,
pages 1–13.

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

270

