
Towards Model-driven Hypermedia Testing for RESTful Systems

Henry Vu, Tobias Fertig and Peter Braun
Faculty of Computer Science, University of Applied Science Würzburg-Schweinfurt,

Sanderheinrichsleitenweg 20, 97074 Würzburg, Germany

Keywords: REST, Hypermedia, RESTful, MDSD, MDT, Model-driven Testing, Hypermedia Testing.

Abstract: Testing RESTful systems is a missing topic within literature. Especially hypermedia testing is not mentioned
at all. We discuss the challenges of hypermedia testing that were discovered within our research. We will
differ between client-side and server-side challenges since REpresentational State Transfer (REST) describes
a client-server system. Therefore, both sides have to be considered. Hypermedia tests for the server have
to ensure that there is no response without hypermedia links. However, the client also has to be hypermedia
compliant. Thus, we propose to simulate a server update to check whether the client breaks. Since we use
Model-driven Software Development (MDSD) to generate RESTful systems we also propose a model-driven
approach for hypermedia testing. This allows us to generate tests for a server based on its underlying model.
Moreover, we can build a crawler to verify our generated servers and to test all hypermedia links for different
user roles. Any modification to the model can result in a server update, which can be used to test hypermedia
clients.

1 INTRODUCTION

In 2015 we presented our project Generating Mobile
Application with RESTful Architecture (GeMARA)
(Schreibmann and Braun, 2015) in which we pro-
posed a model-driven approach for creating REST-
ful APIs. As this project matures, we also explored
the possibility of Model-driven Testing (MDT) (Fer-
tig and Braun, 2015) and realized the lack of informa-
tion about quality assurance for RESTful Systems.

However, the situation has not changed. Informa-
tion about quality assurance of hypermedia systems is
still missing. Therefore, we propose different challen-
ges of hypermedia testing and possible approaches to
overcome them. Since REpresentational State Trans-
fer (REST) is an architectural style for client-server
applications, it is important to cover both: the server-
side as well as the client-side. Manual hypermedia
testing is time-consuming and hard to maintain. Tes-
ting hypermedia APIs requires many similar structure
like test cases, especially when different user roles
and error cases are considered. Therefore, MDT is
a helpful tool.

Due to our Model-driven Software Development
(MDSD) approach we have an existing meta model
that can be used for MDT. We already support functi-
onal testing via MDT (Fertig and Braun, 2015) and
thus, we want to extend our approach to also support

hypermedia testing. Until this point, our project (Ge-
MARA) allows us to generate fully functional REST-
ful systems with functional test cases.

Some may argue that testing generated code does
not make sense. Their main argument is that if the
generators are correct, the produced code will also be
correct. However, MDT is a possible way to achieve
correctness within generators. The test cases will de-
tect possible bugs within the generators that can then
be fixed. Moreover, test cases can verify third-party
components used by our platform code within the
MDSD approach. Third-party libraries or frameworks
can change over time. This requires much effort to
check all dependencies manually. The generated tests
can detect wrong behavior of the system after depen-
dency updates. Finally, performance testing is an ad-
ditional reason why testing generated code does make
sense.

First, we will summarize related work and prove
that there is a lack of information about testing hyper-
media. Afterwards, we will discuss challenges for tes-
ting both: the server-side and the client-side. Further-
more, we will propose our approaches to solve these
challenges. Finally, we will give a short outlook and
discuss our future work.

340
Vu, H., Fertig, T. and Braun, P.
Towards Model-driven Hypermedia Testing for RESTful Systems.
DOI: 10.5220/0006353403400343
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 340-343
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 RELATED WORK

Fielding criticizes in his blog (Fielding, 2008) that
many existing APIs are called RESTful even though
they do not adhere to the hypermedia constraint. Furt-
hermore, development of RESTful APIs is difficult
due to a lack of software frameworks which guide
their implementation (Vinoski, 2008). This circum-
stance leads to a widely-held misconception of RE-
STful API design among the developer community,
subsequently there is a lack of existing RESTful APIs
that adhere to the hypermedia constraint. Since hy-
permedia is not present there is no awareness for tes-
ting it. The common procedure of REST API testing
simply consists of sending an HTTP-request and veri-
fying an expected response (Webber et al., 2010). To
the best of our knowledge, there is a lack of informa-
tion about generating or testing hypermedia systems.

RESTful API Modeling Language (RAML) (He-
very et al., 2017) is also pushing the idea of MDSD.
They offer a formal model based on their Domain-
Specific Language (DSL) for defining RESTful APIs.
The DSL is designed to describe the full API life cy-
cle in a human readable format, which incorporates
many RESTful specifications, such as URIs, autho-
rizations, namespaces, media types and HTTP verbs.
Based on their model a fully functional RESTful API
can be generated and tested. However, their model
does not support the hypermedia aspect, such as na-
vigating the client through the application via hyper-
links. This is why their approach violates Fielding’s
hypermedia constraint.

Choi, Necula and Sen propose a method to trans-
form manual testing into automated testing. (Choi
et al., 2013). The user has to walk through the appli-
cation manually in order to train their machine lear-
ning algorithm. Once the machine learning algorithm
has a slight representation of the application model, it
starts to generate user inputs to visit unexplored states
of the application. The key feature of this algorithm is
to avoid restarting the application. Nevertheless, this
approach is a black-box testing method, since a tester
and later-on the machine learning algorithm have to
navigate exploratively through an application without
any knowledge of the underlying model. Since our
model-driven approach allows white-box testing, this
approach does not meet our requirements.

3 SERVER-SIDE TESTING

According to Fielding (Fielding, 2008) RESTful sy-
stems must be hypertext-driven, in other words these
systems are to be designed as Finite-State Machines

(FSMs). In (Zuzak et al., 2011) and (Hernández and
Garcı́a, 2010) the authors also present their formal
models for specifying RESTful APIs as FSMs based
on their understanding. Our main goal for the server-
side testing is to ensure that any RESTful API that is
generated by our model (GeMARA) is a FSM. Our
model has one dispatcher state and multiple applica-
tion states. The dispatcher state represents the initial
state of the FSM. Every application state is defined by
an HTTP verb and a resource. A client can navigate
from one application state to another via transitions.
A transition is defined by an hyperlink, a mediatype
and a rel type. A rel type is akin to the rel attribute of
HTML link tags. The first challenge is to check whet-
her our generated RESTful API is FSM-compliant.
This allows a client to start from the dispatcher state,
visit every application state and go back to the dispat-
cher state without getting stuck in a dead-end. Figure
1 shows an example FSM with possible states for the
user resource. For the sake of clarity we did not il-
lustrate transitions from states back to the dispatcher
state.

Responses of application states must contain a fi-
nite set of hyperlinks through which the user or au-
tomaton can obtain choices and select actions (Fiel-
ding, 2008). Another challenge of server-side testing
is to check whether the generated RESTful API is de-
livering appropriate hyperlinks based on the client’s
active user role. Assuming our application is an
ecommerce platform: A customer role is allowed to
view items in a shop, whereas a shop admin role can
create, update or delete items in his shop. Each role
is only permitted to see its designated hyperlinks to
navigate through the application, otherwise the aut-
horization concept would be corrupt. This would re-
quire enormous effort if implemented manually for a
system with a dozen roles and hundreds of application
states. However, we can already generate test cases
based on user roles and authorization headers (Fertig
and Braun, 2015), for this purpose we only have to
extend our previous generators.

Since our model already provides concrete infor-
mation about every application state and its possi-
ble transitions, we could perform a static analysis
as a first step to check whether the model is FSM-
compliant. We check whether every application state
has at least one incoming and one outgoing transition.
This ensures that every state is reachable and there
are no dead-ends. The goal of the static analysis is
to identify any error at the highest level of abstraction
before triggering any source code generation. At the
same time the static analysis would make the API
designer aware of any missing transition in his mo-
del. For example the dead-end of the application state

Towards Model-driven Hypermedia Testing for RESTful Systems

341



Dispatcher s0

GET
Users

GET
User

POST
User

DELETE
User

PUT
User

POST
Image

GET
Image

PUT
Password

Figure 1: The finite-state machine for our example user resource. Error cases are not visualized.

GET Image in Figure 1 would be detected.
Once the static analysis is successfully carried out,

the system will generate a functional server. Follo-
wing this, we continue with a dynamical analysis with
an HTTP-crawler. The goal of this step is to guaran-
tee the correct functionality of the generated API. In
addition we also have to ensure that whenever the re-
quest leads to an error the client will be redirected to
its previous state or at least to the dispatcher state.
Moreover, the HTTP-crawler will verify the behavior
for different user roles. The HTTP-crawler will pass
itself off as one of predefined user roles and follows
any given hyperlink and expects only hyperlinks that
are designated to its current user role.

The dynamical analysis is considered successful
when every user role is able to travel and perform all
its permissions by generating at least one proper re-
quest for each permission. This again can be verified
by the underlying model. Furthermore any undesired
behavior can reveal bugs within the generators.

4 CLIENT-SIDE TESTING

Real-world businesses change and so must their un-
derlying systems (Josuttis, 2007). Fielding describes
evolvability as the degree to which a component can
be changed without negatively impacting other com-
ponents (Fielding, 2000). Our server is a component
that will evolve through time which means it is ex-
posed to updates and changes depending on its real-
world needs. These changes will affect its clients and
thus, client-side testing has to ensure that clients are
hypermedia-driven. Hypermedia clients should still
work after a server update. Therefore, clients are not

allowed to make any assumption about URIs (Pres-
cod, 2002). As a result, hypermedia clients are more
robust, adaptable and resilient to server updates which
will reduce the need to versioning and repeated rede-
ployment (Amundsen, 2015).

APIs can be consumed by third-party clients.
Clients that make proper use of hypermedia would
require less manual adaption to server updates than
those that do not. Our motivation is to find out whet-
her a client is hypermedia-driven. If a running client
can handle a simulated server update, then we assume
this client as hypermedia-driven.

In the following we will discuss a few example
changes that have to be considered in order to simu-
late a server update:

First, we take a look at changes concerning URIs.
In case of updating or deleting URIs the client should
still work because hyperlinks are not hard coded. If
new functionalities are added, the client should be
able to work with old functionalities. We assume that
the client cannot deal with new rel types. However,
Amundsen presents another approach for this issue in
his talk (Amundsen, 2015). He proposes that servers
should emit templates in order to enable clients to deal
with new functionalities.

Secondly, changes concerning rel types should be
considered. The client has knowledge about rel ty-
pes within our approach, therefore, renaming rel ty-
pes is not supported without client update. However
other approaches may support renaming (Amundsen,
2015). Clients can not deal with new rel types but
should be able to work with old functionalities. De-
leting rel types causes no problem to the client since
hyperlinks, which contain rel types, are not hard co-
ded.

Lastly, resource representations could change due

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

342



to server updates. There is no general solution to this
issue. Hypermedia clients following Amundsen’s ap-
proach (Amundsen, 2015) can easily adapt to chan-
ges within resource representations due to the emitted
templates. However, other approaches may need ad-
ditional investigation.

The manual effort to simulate a server update
would not be worthwhile. Nevertheless, our model-
driven approach allows us to generate test servers wit-
hout additional effort. The first step of our current
workflow is to define a RESTful API model. After
that our generators use this model to generate a wor-
king server. To simulate a server update we take the
same model and apply server update changes to it. For
this purpose, we need to build a generator that can ap-
ply random changes to an existing model for example
adding, updating and removing URIs. Afterwards, the
modified model will be passed through the generator
again. As a result, the generator will produce a fully
functional updated test server. If the client does not
break after redirecting it to the test server, we assume
the client as hypermedia-driven.

5 CONCLUSION

Our vision is to generate robust RESTful APIs along
with tests to assure Fielding’s hypermedia constraint.
Once the proposed steps above are carried out, we will
gain deeper understanding of generating and testing
hypermedia systems.

This knowledge will be the foundation for us to
start working on test generation at a higher level of ab-
straction. For example, we can generate tests based on
user acceptance criteria. User Acceptance Test (UAT)
is an expensive and time-consuming task (Hambling
and van Goethem, 2013). Our crawler can generate
sequences of inputs to imitate the behavior of a user
to perform general use case scenarios. This would re-
duce the amount of work significantly.

Based on the client-side testing we can derive tes-
ting guidelines for hypermedia clients. Any front-end
developer can follow these guidelines to implement
robust hypermedia clients.

REFERENCES

Amundsen, M. (2015). Learning Client Hypermedia from
the Ground Up. http://amundsen.com/talks/2015-06-

ndcoslo/2015-06-ndcoslo-slides.pdf. Last accessed on
Mar 17, 2017.

Choi, W., Necula, G., and Sen, K. (2013). Guided GUI Tes-
ting of Android Apps with Minimal Restart and Ap-
proximate Learning. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Orien-
ted Programming Systems Languages &#38; Applica-
tions, OOPSLA ’13, pages 623–640, New York, NY,
USA. ACM.

Fertig, T. and Braun, P. (2015). Model-driven Testing
of RESTful APIs. In Proceedings of the 24th In-
ternational Conference on World Wide Web Compa-
nion, WWW ’15 Companion, pages 1497–1502, Re-
public and Canton of Geneva, Switzerland. Internati-
onal World Wide Web Conferences Steering Commit-
tee.

Fielding, R. (2000). REST: Architectural Styles and the De-
sign of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irvine.

Fielding, R. (2008). REST APIs must be hyper-text
driven. http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven. Last accessed on Mar 17,
2017.

Hambling, B. and van Goethem, P. (2013). User Accep-
tance Testing: A Step-by-step Guide. BCS Learning
& Development Limited.

Hernández, A. G. and Garcı́a, M. N. M. (2010). A For-
mal Definition of RESTful Semantic Web Services.
In Proceedings of the First International Workshop on
RESTful Design, WS-REST ’10, pages 39–45, New
York, NY, USA. ACM.

Hevery, M., Musser, J., Rexer, P., Sarid, U., and Lazarov,
I. (2017). RAML. http://raml.org/. Last accessed on
Mar 17, 2017.

Josuttis, N. M. (2007). SOA in Practice - The Art of Distri-
buted System Design. ”O’Reilly Media, Inc.”, Sebas-
topol, 1. aufl. edition.

Prescod, P. (2002). REST and the Real World.
http://www.xml.com/pub/a/ws/2002/02/20/rest.html.
Last accessed on Mar 17, 2017.

Schreibmann, V. and Braun, P. (2015). Model-Driven Deve-
lopment of RESTful APIs. In Proceedings of the 11th
International Conference of Web Information Systems
and Technologies, pages 5–14. INSTICC, SciTePress.

Vinoski, S. (2008). RESTful Web Services Development
Checklist. IEEE Internet Computing, 12(6):96–95.

Webber, J., Parastatidis, S., and Robinson, I. (2010). REST
in Practice - Hypermedia and Systems Architecture.
”O’Reilly Media, Inc.”, Sebastopol.

Zuzak, I., Budiselic, I., and Delac, G. (2011). Web Engi-
neering: 11th International Conference, ICWE 2011,
Paphos, Cyprus, June 20-24, 2011, chapter Formal
Modeling of RESTful Systems Using Finite-State Ma-
chines, pages 346–360. Springer Berlin Heidelberg.

Towards Model-driven Hypermedia Testing for RESTful Systems

343


