
A Change Impact Analysis Model for Aspect Oriented Programs

Fabrice Déhoulé, Linda Badri and Mourad Badri
Department of Mathematics and Computer Science, University of Quebec, Trois-Rivières, Canada

Keywords: Software Evolution, Aspect-Oriented Programming, Change, Ripple Effect, Impact Analysis, Predictive
Analysis, Model, Impact Rules, Empirical Analysis.

Abstract: Software change impact analysis (IA) plays a crucial role in software evolution. IA aims at identifying the
possible effects of a source code modification. It is often used to evaluate the effects of a change after its
implementation. However, more proactive approaches use IA to predict the potential effects of a change
before it is implemented. In this way, IA provides useful information that can be used, among others, to
guide the implementation of the change and to support regression tests selection. This paper aims at
proposing a change impact analysis model for AspectJ programs. Aspect-Oriented Programming (AOP) is a
natural extension of Object-Oriented Programming (OOP). It particularly promotes improved separation of
crosscutting concerns into single units called aspects. The IA techniques proposed for object-oriented
programs are not directly applicable for aspect-oriented programs due to the new dependencies introduced
by aspects. The proposed model was designed to particularly support predictive IA. The model includes
several impact rules based on the AspectJ language constructs. We performed an empirical evaluation of the
model using several AspectJ programs. In order to assess the model prediction quality, we used two
traditional measures: precision and recall. The reported results show that the model is able to achieve high
accuracy.

1 INTRODUCTION

As software systems are used for a long period of
time, software evolution is inevitable. Indeed,
software systems need to continually evolve for
various reasons, including: adding new features to
satisfy user requirements, changing business needs,
introducing novel technologies, correcting faults,
improving quality, and so forth. So, as software
evolves, the changes made to the software must be
carefully managed. It is particularly important to
ensure that modified software still verifies its
specification and whether new errors were
introduced inadvertently (Kung et al., 1995;
Rothermel and Harrold, 1997; Harrold et al., 2001;
Hunt et al., 2008). It is, therefore, crucial to find
where changes occur and to identify parts of the
software that are possibly affected by the changes,
parts that must be correctly retested. Indeed, for
obvious reasons, retesting all the software after
instantiating a change is inefficient, costly and
unacceptable in practice (Rothermel and Harrold,
1996). In the software life cycle, maintenance plays
a fairly important role (Lehman et al., 1997). It is

during this step that we can change a program to
improve it, adapt it to new specifications, or prevent
any errors (Law and Rothermel, 2003; Lehnert,
2011). Its importance is even more increased by the
fact that the systems produced nowadays are
becoming more complex and voluminous (Lehman
et al., 1997).

Software evolution faces many challenges
(Lehman, 1980; Lehman et al., 1997; Ebert and De
Man, 2005; Mens et al., 2008). Software
maintenance is, in this context, a vital activity
(Bennett and Rajlich, 2000). It is, however, costly
(Grubb and Takang, 2003; Abran et al., 2004).
Several experts agree that two of the most important
activities of software maintenance are:
understanding the software and evaluating the
potential effects of a change (Barros et al., 1995;
Aggarwal et al., 2002; Riaz et al., 2009; Baggen et
al., 2011; Cho et al., 2011). The second activity is
closely related to the first one. Indeed, to understand
the effects of a given change, it is necessary to
understand the system beforehand (Lee et al., 2000).
The software design, particularly the dependencies
between its components, can make this task difficult.

144
Déhoulé, F., Badri, L. and Badri, M.
A Change Impact Analysis Model for Aspect Oriented Programs.
DOI: 10.5220/0006350701440157
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 144-157
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

A change to a system, even minor, can lead to
several unintended effects (ripple-effect). One
effective way to deal with this important issue is to
develop models (and techniques) that can be used to
support the evaluation of the potential effects of a
change. This can be used to guide the decision-
making of software development managers seeking
to produce high quality software.

Software change impact analysis (IA) plays a
crucial role in software evolution. Bohner and
Arnold (1996) defined change impact analysis as
“the process of identifying the potential
consequences of a change, or estimate what need to
be modified to accomplish a change”. IA allows,
indeed, developers assessing the possible effects of a
given source code modification (Yau and Collofello,
1980; Li and Henry, 1995; Li and Offutt, 1996;
Bohner and Arnold, 1996; Briand et al., 1999; Lee et
al., 2001; Chaumun et al., 2002; Law and
Rothermel, 2003; Ren et al., 2004; Ackermann and
Lindvall, 2006; Li et al., 2012). IA can be used to
support various maintenance tasks such as: planning
changes, assessing the cost of changes,
implementing changes, tracking the effects of
changes and regression tests selection (Law and
Rothermel, 2003; Orso et al., 2003; Orso et al.,
2004; Ackermann and Lindvall, 2006).

Aspect-Oriented Software Development (AOSD)
is a promising new software engineering paradigm
(Sabbah, 2004; Dong, 2011). AspectJ, as an aspect-
oriented programming language, represents an
interesting extension of Java (Przybylek, 2011). In
fact, existing object-oriented programming
languages suffer from a serious limitation in
modularizing adequately crosscutting concerns
(Przybylek, 2011). Many concerns crosscut several
classes in an object-oriented program. Crosscutting
is a structure that goes beyond hierarchy as stated in
(Bernardi and Di Lucca, 2007; Bernardi et al., 2009;
Przybylek, 2011). The code related to a crosscutting
concern is generally duplicated within several
classes in an object-oriented program. Consequently,
these classes would be difficult to understand,
maintain and reuse. Aspect-Oriented Programming
(AOP) deals with scattered and tangled code related
to crosscutting concerns. It particularly promotes
improved separation of crosscutting concerns into
single units called aspects (Zhao, 2004; Baggen et
al., 2011; Przybylek, 2011).

Although AOP was introduced to separate
concerns and improve software modularity,
modifying aspect-oriented programs will lead to
more complex impacts than in object-oriented
programs (Zhang et al., 2008; Burrows et al., 2010).

Storzer (2007) indicates that the aspects and the base
code are decoupled at syntax and that we need to
know the relationships between classes and aspects
of the program. He also indicates that aspects can
interfere with each other, interference that may be
difficult to resolve. It is important to mention that
the evolution of the base object code may change or
break the aspects’ semantic, since they are based on
the object code.

With an aspect-oriented program, there will be
four impact possibilities: (i) impacts of changes
introduced into the object-code part on itself (Object
- Object), (ii) impacts of changes made in the object
code part on the aspect part (Object - Aspect), (iii)
impacts of changes in the aspect code (Aspect -
Aspect), and (iv) impacts of changes made into the
aspect part on the object part (Aspect - Object). Our
work focuses on the last three types of impacts. The
first type of impacts concerns only object-oriented
programs and has been addressed in our previous
work (Badri et al., 2015).

We present, in this paper, a new static change
impact analysis model for AspectJ programs. The
model, including several impact rules based on the
AspectJ language constructs, was designed to
support predictive impact analysis. We performed an
empirical evaluation of the model using several
AspectJ programs. We considered in the study
different types of changes. In order to assess the
model prediction quality, we used two traditional
measures: precision and recall. In addition, we
evaluated the proposed approach using the
properties of the Framework proposed by Li et al.
(2012) characterizing impact analysis techniques.
The proposed model complements, in fact, the
Change Impact Model for Java programs (CIMJ)
that we developed in our previous work (Badri et al.,
2015).

The rest of the paper is organized as follows:
Section 2 presents an overview of the main related
work. Section 3 provides a brief overview of aspect-
oriented programming (AOP). Section 4 introduces
the impact analysis model we propose. Section 5
presents the empirical study we conducted in order
to assess the performance on the proposed model.
Section 6 gives a conclusion and some future work
directions.

2 RELATED WORK

Change impact analysis aims to predicting which
parts of the code will be affected following a
modification (Ackermann and Lindvall, 2006). IA

A Change Impact Analysis Model for Aspect Oriented Programs

145

3

allows identifying the consequences of a change, or
estimating the parts to modify in a program to ensure
that the change is made correctly (Ali et al., 2012).
IA is very important because it allows, among
others, to help change management, and keeping the
system stable (Arnold and Bohner, 1993; Ali et al.,
2012).

Many criteria have been proposed in the
literature for classifying existing IA techniques
(Kilpinen, 2008; Lehnert, 2011; Li et al., 2012; Sun
et al., 2014). These techniques addressed, in fact,
various specific tasks of software maintenance.
Existing IA techniques can be static and/or dynamic
(Lee et al., 2000; Law and Rothermel, 2003; St-
Yves, 2007; Petrenko and Rajlich, 2009; Zhou et al.,
2011; Acharya and Robinson, 2012; Li et al., 2012),
based on the source code of the program and/or on
models (St-Yves, 2007; Petrenko and Rajlich, 2009).
Static IA techniques include structural static
analysis, textual analysis, and historical data analysis
(Zimmermann et al., 2005; Petrenko and Rajlich,
2009; Gethers and Poshyvanyk, 2010; Sun et al.,
2014). Static analysis techniques are based on the
syntax and semantic dependencies of the program.
These techniques use most of the time system
representations such as call graphs, control flow
graphs, etc. Dynamic analysis techniques are based
on information gathered during the execution of the
program (Sun et al., 2010).

Impact analysis techniques can be divided in two
major classes: impact analysis techniques that
support predictive analysis - pre-change (Chaumun
et al., 2000; Badri et al., 2005; St-Yves, 2007; Abdi
et al., 2007; Badri et al., 2015) and impact analysis
techniques that support retrospective analysis - post-
change (Kabaili et al., 2001; Ren et al., 2004).
Predictive impact analysis techniques are used
before the change is implemented, and aim mainly at
predicting the potential effects of a change, which
allows assessing the effort required for its
implementation. Retrospective impact analysis
techniques are used after a change has been
implemented. These techniques aim mainly at
supporting the correction of potential errors that are
introduced by changes, and regression testing
(Kabaili et al., 2001; Orso et al., 2003; Orso et al.,
2004; Ren et al., 2004; Li et al., 2012).

Different approaches have been proposed to
predict the impact of changes made on aspect-
oriented programs. Bernardi and Di Lucca (2007)
developed an Inter-procedural Aspect Control Flow
Graph. This graph shows the relationships between
class’s methods and advices in aspect code, and also
indicates where the advice code will be inserted in a

method during weaving. One of the benefits of the
graph, according to the authors, is to save time
during maintenance steps, about 20% less time. The
graph do not take into account neither exception
management, nor inter-type declarations and static
initializers, and the result may be a large number of
nodes, making the analysis a little more complex.
The authors have addressed the static analysis of the
code, even if the graph is also able to manage the
dynamic analysis.

Shinomi and Tamai (2005) developed an
algorithm that aims to list the impacts. This
algorithm successively generates a syntactic abstract
tree, a control flow graph, a call graph of methods or
advices and finally a dependency graph for each
method. Once all these graphs are obtained, the
algorithm establishes a starting point of impact list
for each aspect. Then, from each starting point of
impact corresponding to an aspect (weaving point),
the parts affected by aspects are marked. This impact
analysis is done after the weaving and concerns only
impacts on object code after changes made in aspect
code.

The impact analysis technique proposed by
Zhang et al. (2008) identifies the parts of the source
program and the tests affected by a change. This
technique relies on atomic changes that capture the
semantic differences between two versions of a
program. These atomic changes are at the level of
the source program, but also in the aspect code.
Atomic change transactions are meant for an
addition / deletion / modification of method, aspect,
pointcut, class or attribute. Thus, to determine which
parts of the program may be affected by a change
(atomic change), the authors list the changes. Then,
a program call graph is generated. The code
fragments affected by a change will be the nodes of
the graph that are linked to the modified node. This
is the transitive closure of each modified node. This
impact analysis technique has the disadvantage of
not being predictive since it is necessary that the
modifications were made before determining which
pieces of the code are affected.
Zhao (2002) operates on a slicing aspect oriented
system dependency graph (Aspect-Oriented System
Dependence Graph) made of several modules
dependencies graphs (Module Dependence Graph)
interconnected.

3 ASPECTJ: BASIC CONCEPTS

Designed by G Kiczales (Kiczales et al., 2001),
AspectJ is an aspect-oriented extension to the Java

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

146

language (Gradecki and Lesiecki, 2003). With
AspectJ, the aspect code will be incorporated into
the basic program through weaving when compiling
the code. AspectJ introduces several new language
constructs (aspect members) such as: aspect, join
points, pointcuts, advice as well as inter-type
declarations (Kiczales et al., 2001; Dong, 2011).
These various elements allow an aspect expressing a
concern that crosscut several basic classes. Aspects
are built like object classes, in which all elements
related to an aspect are defined. A join point
represents well-defined points in the program flow
where the aspects will be weaved; such as method
calls, exceptions, interfaces or other instructions of
the basic object classes. Pointcuts describe join
points and context to expose. An advice is a method-
like abstraction that defines code to be executed
when a join point is reached. Pointcuts are used in
the definition of an advice. Inter-type declarations
define how AspectJ modifies a program's static
structure, namely, the members and the relationships
between components. Inter-type declarations alter
the structure of the object program by adding
methods or attributes to an object class, changing the
inheritance of a class, or by specifying that a class
implements one or more interfaces. Pointcuts and
advices dynamically affect program flow, and inter-
type declarations statically affect a program's class
hierarchy. For further information on AspectJ
mechanisms, one can see (Kiczales et al., 2001;
Przybylek, 2011).

4 IMPACT MODEL

4.1 Objectives

We present, in this section, the Impact Analysis
Model that we defined for Changes in AspectJ
programs. Our model aims to predicting the different
parts of an aspect-oriented application that will be
affected due to a change in the program. An aspect-
oriented program contains object code and aspect
code, so there will be changes that may affect both
parts. The model specifies for each type of change a
set of impacts which provide useful information
allowing taking into account cascading impact. The
model includes various atomic changes. An atomic
change is the smallest unit of change that cannot be
decomposed into other changes. Atomic changes are
divided in two distinct groups: structural and non-
structural changes. Our Aspect Oriented Change
Impact Model (AOCIM) complements the CIMJ
(Badri et al., 2015), developed in our previous work

for Java programs, and will be used in a predictive
analysis context.

Change Impact Model for Java (CIMJ) was
developed by N. Joly et al. (Joly, 2010; Badri, et al.,
2015). The impact model considers the impact of
object code to object code. As mentioned, the CIMJ
allows a predictive impact analysis and a post-
analysis. However, the emphasis was on predictive
analysis. It is an impact model that allows a cascade
impact analysis, responding to the problem of the
ripple effect of change impacts. The MICJ is limited
only to the object-oriented programs. Indeed, it only
considers the impacts that will occur in the object-
oriented code following the changes made on the
same object-oriented code. To extend the CIMJ to
the aspect part of the program, we have introduced
three impacts categories:

Impacts - object to aspect: Here, we will see the
impact of any changes in the classes, methods,
attributes on the aspect code. These changes will
also involve exceptions and inheritance
relationships.

Impacts - aspect to aspect: This category of
impacts will be located only in the aspect code. We
deal here with the consequences that will occur on
the remaining aspect code following the changes
performed at portions such as a pointcut or
intertypes declarations.

Impacts - aspect to object: When changing the
aspect part of a program, this could affect the object
code. Therefore, it is about to determine which parts
of the object code will be impacted.

4.2 Relationships in an Aspect-oriented
Program

Three types of relationships in an aspect-oriented
program were considered in the impact model.

Association: a module referring to another (Kumar
et al., 2007). An association relationship is created
between an aspect and one or more classes through
joinpoints or by inter-type statements. The
association is also created at the level of the advices
when an object of a class is instantiated in an advice.
Finally, there will be an association between an
aspect and a class when a method at the aspect level
will take as parameter object type of the class.

Inheritance: an inheritance link created between
two modules leads child to benefits from the
properties of the parent module (Kumar et al., 2007).
An aspect S can inherit from a class A but also from
another aspect P.

A Change Impact Analysis Model for Aspect Oriented Programs

147

5

Local pseudo-relationships: some impacts may
occur inside the aspect in which the change takes
place (Kumar et al., 2007). This happens for
example when the parameters of a pointcut are
changed. Therefore, it will also change the
parameters of advices related to this pointcut.

4.3 Structural and Non-structural
Changes

A structural change is a change that alters the
structure of a class or an aspect. These changes can
be for example a removal of a pointcut, an addition
or deletion of a class, a method, an attribute. We
have counted a total of 61 structural changes, 22 at
the object code level and 39 at the aspect code level
(see annex 1). As shown in Figure 1, removing the
pointcut setter (in bold) would be a structural change
since it changes the structure of the appearance of
the aspect.

Figure 1: Structural change.

Figure 2: Non-structural change.

Non-structural changes will not alter the program
structure. They are within a method or a cup or an
advice. One example of no structural change is
removing a method call. In the example given in
Figure 2, there will be no structural impact at the
after-advice in which the call of addkeyListener
method is deleted (in bold in the example).

4.4 Concept of Certainty

The AOCIM model uses the notion of certainty, a
concept which also exists in the CIMJ model. The
notion of certainty allows basically mitigating the
information provided by the impact analysis using
the AOCIM model. To illustrate this concept, let us
consider two simple examples. As a first example,
let us consider the atomic change “deleting a
pointcut". This removal will impact all uses of this
pointcut. To compile the code after removing the
pointcut, we must also remove all its uses (advices
attached to it). In this case, we are talking about an
impact that is certain (certainty of the impact). Let
us take as a second example the atomic change "add
of joinpoint to a pointcut". Normally, if we add a
joinpoint to a pointcut, it is that we intend to use it.
Otherwise, it would be an unnecessary change, but
which nevertheless remains possible. So, we can
expect an impact related to the addition of the use of
this joinpoint. In this case, we are talking about an
impact that is uncertain (uncertainty of the impact).
The AOCIM model is based on several impact rules,
which make the distinction between the impacts that
are certain and the impacts that are uncertain. So, the
model makes a difference between what will be
impacted and what could possibly be impacted.

4.5 Impact Rules

A total of 41 impact rules have been defined. We
classified these impact rules based on the three
impact categories we mentioned above, which are
the impacts of the object part on the aspect part (17
rules), impacts occurring in the aspect code
following a change in the aspect code (23 rules), and
the impact of the aspect code on the object code (1
rule) (see annex 2). For the first two impact
categories, the targeted elements are located only at
the aspects level. The last impact category, aspect on
object impact, will target only elements in classes.
The rules presented in our model take into account
all possible impacts that are related to AOP. To a
better understanding of how the model we developed
works, we will take few examples.

4.6 Cases of Objet Code Impacts on
Aspects

When changes are made on the object code of an
aspect-oriented program, the impacts could occur in
the aspect code. Our model presents 17 rules to
identify these impacts.

pointcut setter(Point p): call(void Point.set*(*)) &&
target(p);

void around(Point p): setter(p) {
 String
propertyName=thisJoinPointStaticPart.getSignature().ge
tName().substring("set".length());
 int oldX = p.getX();
 int oldY = p.getY();
 proceed(p);
 if (propertyName.equals("X"))
 {
 firePropertyChange(p, propertyName, oldX,
p.getX());
 } else {
 firePropertyChange(p, propertyName, oldY,
p.getY());
 }
}

after () returning (Player player): call
(Player+.new(..)) {
 Enumeration elements = DISPLAYS.elements();
 while (elements.hasMoreElements()) {
 Display display =
(Display)elements.nextElement();
 display.addKeyListener(player);
 }
 }
}

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

148

4.6.1 Removing a Method

As a first example, we will take the removal of a
method in a class (void calculate()). The relationship
between aspects and classes will be done through
joinpoints. Following the deletion of a method in a
class, the joinpoint associated with this method is
automatically affected.

Figure 3: Class to aspect relationship.

Figure 3 shows how a method is referenced by a
joinpoint in an aspect. This joinpoint belongs to a
pointcut called " pcCalculateCircle " (bold text).
And finally, an advice is linked to this pointcut in
order to execute a code. Thus, when the method in
question will be removed, first, there will be an
impact on the joinpoint, then on the pointcut
containing that joinpoint, and finally on the advice
related to that joinpoint. So, we have the following
impact rule:

Mr -> JPr + PCm + ADVm

"M" refers to a method, "JP" for a joinpoint, "PC"
for pointcut and finally "ADV" for advice. The letter
"r" means that the item is removed and the letter "m"
means that the item is modified. The rule is read as
follows: The suppression of a method (Mr) causes (-
>) the suppression of the referring joinpoint (JPr),
followed by the modification of the pointcut
containing the joinpoint (PCm) and finally the
modification of the advice associated to the pointcut
(ADVm).

4.6.2 Distinctive Feature of the Removal of a
Class

In an aspect, multiple joinpoint and several intertype
statements can be defined. These joinpoints and

intertype declarations can be linked to different
classes as shown in Figure 4.

In this example, the aspect "Logging Aspect" is
related to the "Client" and "Article" classes. By
removing the Client class, only the advice and the
method associated with the class Client (bold an
italic text in the figure) will be affected, not
forgetting the import of Client class (bold and
underlined text in Figure 4).

To increase the accuracy of the impact rule
concerning the suppression of a class, we added a
variable indicating the class concerned by the
deletion. This will result to focus only on the
elements of the aspect having a link with the deleted
class. Thus, we have the following impact rule:

Figure 4: Aspect related to several classes.

Impact rule: Cr(Class) -> JPr + [PCm || PCr] +
[ADVr|| ADVm] + I-TYr + DCLm + Mm + IMPr

Removing of class in brackets (Cr (Class)) implies
the removal of the joinpoints (JPr) potentially
followed by (represented by the brackets) the
suppression or the modification of the pointcut

public class Circle extends Figure
{
 private double radius;

 public void calculate()
 {
 circumference =2*3.14*radius;

}
}

public aspect AspectFigure
{

public pointcut pcCalculateCircle():
 execution (void Circle.calculate());

before():pcCalculateCircle()
{
 System.out.println("Circumference calculation");
}

}

import ca.uqtr.gl.entities.Article;
import ca.uqtr.gl.entities.Client;

public aspect LoggingAspect {
 private Logger logger =
Logger.getLogger("trace");

 pointcut addClientMethod():
 call(void addClient(..));

 pointcut addArticleMethod():
 call(void addArticle(..));

 after() returning() : addClientMethod() {
 Object[] paramValues =
thisJoinPoint.getArgs();
 String lastName = (String) paramValues[0];
 String firstName = (String) paramValues[1];

Client client = new Client(lastName,
firstName);

 logger.logp(Level.INFO, null, null, "\n "
 + "New CLIENT\n" + getLogClient(client)
);
 }

 private String getLogClient(Client c) {

String log = "Full name: " + c.getFirstName()
+ " " + c.getLastName();
return log;

 }

 after() returning() : addArticleMethod() {
 Object[] paramValues =
thisJoinPoint.getArgs();

 Article a = new Article();

 a.setCode((String) paramValues[0]);
 a.setDescription((String) paramValues[1]);

logger.logp(Level.INFO, null, null, "\n "+
"New ARTICLE\n"+ getLogArticle(a));

 }

 private String getLogArticle(Article a) {

i l " d " d () "\ "

A Change Impact Analysis Model for Aspect Oriented Programs

149

7

([PCm || PCr]). Then, the possible removal or
modification of an advice ([ADVr ||ADVm]), the
removal of inter-type declarations (I-TYr), and the
modification of the declarations (DCLm). Finally,
we have the modification of the methods using the
class (Mm) and the suppression of import of the
class in question in the aspect (IMPr).

Applying this impact rule to our example, the
advice and the method using the Client class are well
indicated by the impact rule and the import will be
also deleted.

4.7 Cases of Aspect Impacts to Aspect
Code

Aspects include various elements such as advices
and pointcuts, but also attributes and methods. In
addition, several aspects are interlinked through
inheritance. Our model allows knowing which parts
of the aspect will be impacted after an element of the
aspect is changed. Our model presents 23 rules for
this category of impacts.

4.7.1 Removing a Pointcut

Deleting a pointcut will give the following impact
rule:

PCr -> PJr + ADVr + PCm(L) + PCr(H) +
PJr(H) + ADVr(H)

Removing a pointcut (PCr) automatically leads to
the suppression of joinpoints (PJR) and the removal
of the advices attached to them (ADr). Also,
pointcuts referencing the deleted pointcut will be
modified (PCm (L)). All pointcuts redefining the
deleted pointcut in a child aspect will be also deleted
(PCr (H)) as well as joinpoints and advices of this
child aspect (PJr(H) + ADVr(H)).

In this impact rule, the "L" indicates that the
change is made at the aspect, that is to say locally.
Meanwhile, the "H" indicates that impacts occur in
aspect inheriting from the aspect where the
modification has been made.

As shown in Figure 5, pointcut "xSet" (in bold in
Figure 5) is related to an "after" advice and is also
referenced by another pointcut, the pointcut "Set"
(underlined and bold in Fugure 5). When we remove
pointcut xSet, the advice related to it is no longer
useful, so we can remove it. Also, in the pointcut
Set, an impact will occur because we have to remove
the reference to that pointcut xSet.

Before removal of pointcut

After removal of pointcut

Figure 5: Example of impact rule: removal of pointcut.

4.7.2 Deleting a Method in an Aspect

Modification or deletion of a method in the aspect
code will impact the elements using this method in
this aspect, but also the child aspects. So we have
the impact rule:

Mr -> ADVm + Mm(L) + Mm(H)

The removal of a method (Mr) will cause the
modification of advices using this method (ADVm).
There will also be an impact on the methods using
the method deleted not only locally (Mm (L)) but
also at the level of child aspects of that modified
aspect (Mm (H)).

Figure 6 shows an example of removing a method in
an aspect. After removing the loggedAllCatalogues
method (bold text in the figure), the advices using
the method (italic and underlined text in the figure)
will be impacted.

public aspect Intro
{

pointcut xSet():
set(int Point.x);

after(): xSet()
{

System.out.println("Attribute X modified");
}

pointcut ySet():
 set(int Point.y);

pointcut Set():
 xSet()||
 ySet();

after(): Set()
{

System.out.println("X and Y modified");
}

}

public aspect Intro
{

pointcut xSet():
set(int Point.x);

after(): xSet()
{

System.out.println("Attribute X modified");
}

pointcut ySet():
 set(int Point.y);

pointcut Set():
 xSet()||
 ySet();

after(): Set()
{

 System.out.println("X and Y modified ");
}

}

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

150

Figure 6: Example of an aspect impact on object code.

4.8 Cases of Aspect Impacts on Object
Code

In the relationship between object classes and
aspects, aspects depend on object classes. In
addition, adding an aspect does not affect the object
code in a static point of view (before weaving).
Thus, any modification, addition or deletion of
joinpoint, pointcut or advice in an aspect will have
no impact on the object code which that aspect is
attached to.

However, there will be an impact of the aspect
code on the object code at the intertype declaration
level. Indeed, any declaration inserted into the aspect
code can be used in the object code. Thus, any
modification or deletion of these intertype
statements will affect the object code. Therefore, one
only rule was developed for this type of impact:

I-TYr | I-TYm-> Mm

Any deletion or modification of an intertype
declaration will result to impacts on the object code
methods (Mm) where intertype declaration is
invoked.

Figure 7 shows that in the aspect
"Aspect_Limousine", an attribute is introduced in
the "Drivers" class with an intertype declaration
(bold text). This attribute appears in the two methods
of the "Drivers" class. If we delete this attribute in
the aspect, the reference to it in both methods will no
longer exist, causing an impact in those methods.
We will then have to modify the code of the
methods to keep the code errorless.

Figure 7: Example of impact from aspect code to object
code.

4.9 Cascading Analysis

Our model is able to perform a cascading analysis.
Thus, when a change is made, we can see the
consequence of this modification on the rest of the
program. Cascading analysis means change impact
analysis of impacts (Badri et al., 2015). This is the
ripple effect of a change made on the rest of the
program. Using the cascading analysis, programmers
will have a good idea on the ripple effect following a
change. We will take an example to illustrate this
type of analysis.

In Figure 8, the "BoundPoint" aspect contains an
intertype declaration that introduces in "Point" class
an attribute named "support" of type
"PropertyChangeSupport" (bold text in Figure 8).
Plus, there is a pointcut named "setter" (italic
underlined text in Figure 8) related to that "Point"
class. If the "Point" class is deleted, there will be
direct impacts on the "BoundPoint" aspect as the
pointcut "setter" and the intertype declaration

pointcut loggedDelete(Object elem) :
call(*Catalogue*.delete*(..)) &&
args(elem)&&!withincode(* *Test.*(..));

 after(Object elem) : loggedDelete(elem)
 {
 String msg = "Element deleted";
 loggedAllCatalogue(msg, elem,thisJoinPoint);
 }

 private void loggedAllCatalogue(String
msgLog,Object elem,JoinPoint thisjoinpoint)
 {
 if(elem instanceof Client)
 {
 elem = (Client)elem;
 }
 else if(elem instanceof Article)
 {
 elem = (Article)elem;
 }

 msgLog = elem.getClass().getName().toString())

+ “ ” + elem.toString();

 logger.info("\n\t"+msgLog);
 }

public aspect Aspect_Limousine
{
 int Drivers.iNbMaxRun = 100;

 public pointcut pcNewRun():

initialization(Run.new(String, int,
Limousine));

 after(): pcNewRun() {

System.out.println("New run created");
 }
0

public class Drivers {
 private Run aRun[];
 private int iNbRun, iYearOfHiring;
 private String sLastName;
 private String sFirstName;
 private String sAddress;
 private boolean bAvailable;

public Drivers(int yearOfHiring, String lastName,
String firstName, String address)
{

 iNbRun = -1;
 iYearOfHiring = yearOfHiring;
 sLastName = lastName;
 sFirstName = firstName;
 sAddress = address;
 bAvailable = true;
 aRun = new Run[iNbMaxRun];
 }
 public void addRun(Run r)

{
if((bAvailable == true) && (iNbRun < iNbMaxRun -
1))
{
 bAvailable = false;
 iNbRun ++;
 aRun [iNbRun] = r;
System.out.println("Run created");

}
else
{
System.out.println("Impossible to add this

run");

A Change Impact Analysis Model for Aspect Oriented Programs

151

9

introducing the "support" attribute should be
removed from the code.

Figure 8: Example of cascading analysis.

However, the pointcut "setter" is linked with an
advice around (italic text in Figure 8) and the
attribute "support" is used in the
"firePropertyChange" method (bold, italic and
underlined text in Figure 8). Therefore, given that
the attribute "support" and the pointcut "setter" are
going to be removed due to the impact caused by the
deletion of class "Point", the "firePropertyChange"
method and the around advice are going to be also
impacted.

5 EMPIRICAL EVALUATION

In order to evaluate the ability of the AOCIM model
to accurately predict the impact of changes, we
conducted an empirical study. We have developed
different programs using AspectJ and used projects
developed by students in the Department of
mathematics and computer science (University of
Quebec at Trois-Rivières) (see Table 1).

Table 1: List of tested programs.

Projects # classes # aspects

Bean 3 1
Introduction 1 3
Observer 6 2
Spacewar 17 10
Telecom 10 3
TJP 1 1
Tracing (version 1) 5 3

Bank 2 1

Living beings 6 2

Figure 4 2

Matrix handling 3 1

Limousine 5 1

QuickSort 2 1

Stack 2 1

Soft. Eng. project 1 49 3

Store management 58 2

Soft. Eng. project 2 45 3

TOTAL 219 40

For some programs, we added a second aspect
that inherits from another. Also, we used the
programs contained in the file of the supplied
examples provided with the AspectJ compiler to
achieve our tests. In order to measure objectively the
performance of the model, we used in this study two
traditional measures: precision and recall. We
considered the following types of changes: removal
of class or aspect - rename of classes, aspects,
methods and attributes - addition, modification and
removal of methods, attributes - modification of
pointcuts and removal of inheritance link. For each
change, we introduced in a program, we observed
the consequences.

5.1 Metrics

We used two well-known measures to evaluate the
quality of the prediction of the impact analysis
model: precision and recall. Impact analysis may
have some false positives (elements in the impact set
which aren’t really impacted) and false negatives
(elements really impacted which aren’t identified in
the impact analysis) (Li et al., 2012). During the
evaluation, we obtained three types of results: the
number of actual impacts due to a given change, the
number of impacts predicted by the model and the
number of impacts correctly predicted by the model.
The recall, which is an inverse measure of false
negatives, is the ability of the model to predict all
real impacts (% of actual impacts). This allows
assessing whether the rules of the impact model

aspect BoundPoint
{

private PropertyChangeSupport Point.support = new
PropertyChangeSupport(this);

public void
Point.addPropertyChangeListener(PropertyChangeList
ener listener)
{

 support.addPropertyChangeListener(listener);
}

pointcut setter(Point p): call(void Point.set*(*))
&& target(p);

void around(Point p): setter(p) {

String propertyName =
thisJoinPointStaticPart.getSignature().getName
().substring("set".length());
int oldX = p.getX();
int oldY = p.getY();
proceed(p);
if (propertyName.equals("X"))

 {
FirePropertyChange (p, propertyName, oldX,
p.getX());

 }
 else
 {

FirePropertyChange (p, propertyName, oldY,
p.getY());

}
 }

void firePropertyChange(Point p,String
property,double oldval, double newval)
{

p.support.firePropertyChange(property, new
Double(oldval), new Double(newval)) ;

}
}

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

152

predict all real impacts. The precision, which is an
inverse measure of false positives, is the ability of
the model to predict correctly the impacts (% of
predicted impacts corresponding to reality). This
indicates whether the model is accurate enough to
predict only the real impacts and also validate the
recall. If it is too high than the precision, this means
that the model predicts too many impacts. A perfect
model would be a model having a recall of 100%
and a precision of 100 %. The model succeeds in
this case only to predict the actual impacts and to
predict them all.

5.2 Evaluation Procedure

To conduct our experiments, we have made changes
to the used aspect-oriented programs. These changes
were made both in the object code and in the aspect
code. For example, we deleted classes, renamed
methods, changed the scope of an attribute or
modified pointcuts. These changes are made without
considering the impact given by the rules of the
proposed model. Once these changes were made, we
identified the different impacts that occurred. To do
so, we went through the program and searched every
part of the code related to the change we made.
Some impacts were highlighted by the IDE we used
(Eclipse), and others were about relationships (i.e.
inheritance, association). This step allowed us to
determine the number of real impacts on each
modified program. Then, we toke each of the
changes and identify the impacts that our model has
predicted. Finally, a comparison of the results was
carried out after the previous phases. We were then
able to determine: (1) the ratio of impacts predicted
by the model which actually occurred compared to
observed impacts (precision), and (2) the percentage
of real impacts predicted by the model compared to
the set of predicted impacts by the model in relation
with the change made (recall).

5.3 Results and Discussion

Table 2 presents a summary of the results obtained
during the experiments. As it can be seen, we have
an accuracy of 98% and a recall of 86.6%. Our
impact model is able to detect almost all the impacts
that will occur following a change in the aspect-
oriented program. For Object impacts to Aspect, we
have an accuracy of 100%. However, for Aspect
impacts to Aspect, we have an accuracy of 95%.
Impacts from aspects to object code present a recall
and an accuracy of 100%. This is explained by the
fact that there is only one impact rule for this impact

category, and only methods will be impacted after
changing an intertype declaration. Recalls of 93%
and 77.8% respectively for the impacts from object
to aspect and aspect to aspect are due to the fact that,
in certain situations, the model can identify more
impacts than those observed after a change because
of the uncertain impacts. Indeed, it may happen that
the impacts are not reported (following an effective
change) because they do not affect the program run.
It will be left up to the programmer's discretion to
consider these impacts in order to keep consistency
in the maintenance of the current program.

Table 2: Summary of the results.

Impacts

predicted
by the
model

Observed
Impacts

Real
impacts

predicted
by the
model

Precision Recall

Object
impacts
to aspect

40 37 37 100% 93%

Aspect
impacts
to aspect

27 22 21 95% 77,8%

Aspect
impacts
to object

3 3 3 100% 100,0%

TOTAL 67 59 58 98% 86,6%

5.4 Limits of the Model

The model we propose is a static impact analysis
model and focuses only on the syntactic aspects of
the code. Some semantic aspects of the code are
unfortunately not taken into account in the current
version of the model. An example of semantic
aspects, which have not been considered in our
model, is the use of wildcards and pointcuts
designators (Kiczales et al., 2001) in the aspect
code. In fact, those wildcards can refer to any class
or method in the Java code and pointcuts designators
determine the moment the joinpoints are reached at
runtime (call, execution, etc.). However, if a class or
a method is modified, the wildcard is not impacted
from a syntactic point of view as the program is still
consistent and able to run. But from a semantic point
of view and during execution of the program, there
may be an impact as the join point related to the
change is never reached.

6 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a predictive change
impact analysis model for aspect-oriented programs.
Three change impact categories were identified:

A Change Impact Analysis Model for Aspect Oriented Programs

153

11

object code impacts on aspect code, aspect code
impacts on aspect code and aspect code impacts on
object code. The model includes 41 impact rules.

Experiments were conducted on several aspect-
oriented programs in order to show the effectiveness
of the model. Two prediction quality measures were
used: precision and recall. The results show that our
model is quite effective in predicting impacts.
Although some rules indicate uncertain impacts,
they still allow the programmer to have a good idea
on the changes to be done to keep the program
consistent. Combined with the CIMJ model, which
we developed in our previous work for Java
programs, our impact analysis model could be very
useful during program maintenance stages.
Moreover, the proposed approach allows a better
support for cascading impact analysis. Furthermore,
the approach satisfies five of the seven properties of
the Framework proposed by Li et al. (2012)
characterizing impact analysis techniques. These
properties are: object- the change set and the source
analysis, impact set- the impacted elements of the
system, type of analysis- static analysis or dynamic
analysis, intermediate representation, language
support- support various programming paradigms,
tool support, and empirical evaluation. Our work
could also help solving the pointcut fragility
problem mentioned in some studies in the literature.

The work presented in this paper should be
viewed as exploratory rather than conclusive. The
model we proposed has some limitations that will be
addressed in our future work. In addition, the study
should be replicated on many other aspect-oriented
programs in order to draw more general conclusions.
As future work, we plan: (1) to address the
limitations of the model, particularly by taking into
account semantic relationships in aspect-oriented
programs, (2) to develop a tool supporting the
proposed technique, which should allow us to
experiment the model on large aspect-oriented
programs, (3) to improve the accuracy of our model,
and (4) to perform other tests on many other aspect-
oriented applications in order to have more general
conclusions.

REFERENCES

Abdi M.K, Lounis H. and Sahraoui H., 2007: Analyse et
prédiction de l’impact de changements dans un
système à objets : Approche probabiliste. In
proceedings of LMO 2009.

Abran A., April A., Dumke R., 2004: SMCMM Model to
Evaluate and Improve the Quality of the Software

Maintenance Process, 8th European Conference on
Software Maintenance and Reengineering.

Acharya M., Robinson B., 2012: Practical Change Impact
Analysis Based on Static Program Slicing for
Industrial Software Systems, SIGSOFT’12/FSE-20,
ACM, November 11–16, Cary, NC, USA.

Ackermann C., Lindvall M., 2006: Understanding Change
Requests to Predict Software Impact, 30th Annual
IEEE/NASA Software Engineering Workshop, pages
66 - 75, Columbia, MD, USA.

Aggarwal K.K., Singh Y. and Chhabra J.K., 2002: An
integrated measure of software maintainability,
Proceedings of the 2002 Reliability and
Maintainability Symposium, pp. 235-241.

Ali H.O., Abd Rozan M.Z.A., Sharif A.M., 2012:
Identifying Challenges of Change Impact analysis for
software projects, International Conference on
Innovation Management and Technology Research,
pages 407-411.

Arnold R.S. and Bohner S.A., 1993: Impact analysis -
towards a framework for comparison, In Proceedings
of the International Conference on Software
maintenance (CSM '93), pp. 292-301, Canada.

Badri L., Badri M., and St-Yves D., 2005: Supporting
Predictive Change Impact Analysis: A Control Call
Graph Based Technique, In Proceedings of the 12th
Asia-Pacific Software Engineering Conference
(Apsec'05) - APSEC. IEEE Computer Society, 167-
175.

Badri L., Badri M., Joly N., 2015: Towards a Change
Impact Analysis Model for Java Programs: An
Empirical Evaluation, Journal of Software, vol. 10, no.
4, pp. 441-453.

Baggen R., Correia J. P., Schill K and Visser J, 2011:
Standardized code quality benchmarking for
improving software maintainability, Software Quality
Journal - © Springer Science+Business Media.

Barros S., Bodhun Th., Escudie A., and Voidrot J.P.,
1995: Supporting Impact Analysis: A semi-automated
technique and associated tool, Proceedings of the 1995
IEEE Conference on Software Maintenance, pp. 42-
51, Piscataway, NJ.

Bennett K. and Rajlich V., 2000: Software maintenance
and evolution: a roadmap, in Proceedings of the
Conference on the Future of Software Engineering, pp.
73–87, ACM, New York, NY, USA.

Bernardi M. L., Di Lucca G. A., Ceccato M., 2009:
Workshop on Maintenance of Aspect Oriented
Systems, 13th European Conference on Software
Maintenance Reengineering, pages 273-274,
Kaiserslautern, Germany.

Bernardi M.L., Di Lucca G.A, 2007: An Interprocedural
Aspect Control Flow Graph to Support the
Maintenance of Aspect Oriented Systems. IEEE
International Conference on Software Maintenance,
pages 435-444, Paris, France.

Bohner S.A. and Arnold R., 1996: Software Change
Impact Analysis, IEEE Computer Society Press, Los
Alamitos, CA, USA.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

154

Briand L.C., Wust J., and Lounis H., 1999: Using coupling
measurement for impact analysis in object-oriented
systems, Proceedings of the IEEE International
Conference on Software Maintenance (ICSM '99), pp.
475 – 482.

Burrows R., Ferrari F. C., Lemos O. A.L., Garcia A.,
Taïani F., 2010: The Impact of Coupling on the Fault-
Proneness of Aspect-Oriented Programs: An Empirical
Study, IEEE 21st International Symposium on
Software Reliability Engineering, pages 329-338, San
Jose, CA, USA.

Chaumun M. A., Kabaili H, Keller R. K., Lustman F. and
Saint-Denis G., 2000: Design properties and object-
oriented software changeability, in Proceedings of the
Fourth Euromicro Working Conference on Software
Maintenance and Reengineering, pages 45-54, Zurich,
Switzerland, IEEE.

Chaumun M. A., Kabaili H., Keller R. K. and Lustman F.,
2002: A change impact model for changeability
assessment in object-oriented software systems,
Science of Computer Programming, Volume 45,
Issues 2-3, pp. 155-174.

Cho H., Gray J., Cai Y, Wong S. and Xie T., 2011: Model-
Driven Impact Analysis of Software Product Lines, in
Model-Driven Domain Analysis and Software
Development: Architectures and Functions, Chapter
13, IGI Global.

Déhoulé F., 2014: Analyse de l’impact dans les systèmes
orientés aspect (SOA) : Élaboration d’un modèle
d’impact, M. Sc., Université du Québec à Trois-
Rivières, Québec, Canada.

Dong Z., 2011: Aspect Oriented Programming
Technology And The Strategy Of Its Implementation,
International Conference on Intelligence Science and
Information Engineering, pages 457-460, Wuhan,
Chine.

Ebert C., and De Man, J., 2005: Requirements uncertainty:
Influencing factors and concrete improvements,
Proceedings of the 27th International Conference on
Software Engineering.

Gethers M., Poshyvanyk D., 2010: Using relational topic
models to capture coupling among classes in object-
oriented software systems, In Proceedings of the 2010
IEEE International Conference on Software
Maintenance, pp. 1–10.

Gradecki J. D., Lesiecki N., 2003: Mastering AspectJ,
Aspect Oriented Programming in Java. Indianapolis,
Indiana, USA.

Grubb P., Takang A. A., 2003: Software Maintenance:
Concepts and Practice, Publisher: World Scientific
Publishing Company. ISBN: 9812384251.

Harrold M. J., Jones J. A., Li T. et al., 2001: Regression
test selection for Java software, in Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA ’01).

Hunt B., Turner B., McRitchie K., 2008: Software
Maintenance Implications on Cost and Schedule,
Aerospace Conference, Big Sky, MT.

Joly N., 2010: Towards a Change Impact Analysis Model
for Java Programs: An Empirical Evaluation, Mémoire

de maîtrise, Université du Québec à Trois-Rivières,
Canada.

Kabaili H, Keller R. K. and Lustman F., 2001: A change
impact model encompassing ripple effect and
regression testing, in Proceedings of the Fifth
International Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, pages 25-33,
Budapest, Hungary, June.

Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J.,
and Griswold W. G., 2001: An Overview of AspectJ,
In J. Lindskov Knudsen, editor, European Conference
on Object-oriented Programming, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer.

Kilpinen M., 2008: The Emergence of Change at the
Systems Engineering and Software Design Interface –
An Investigation of Impact Analysis, PhD thesis,
Cambridge University, Engineering Department.

Kumar A., Kumar R., Grover P.S., 2007: An Evaluation of
Maintainability of Aspect-Oriented Systems: a
Practical Approach, International Journal of Computer
Science and Security (IJCSS), Pages - 1 - 9, Kuala
Lumpur, Malaysia.

Kung D. C., Gao J., Hsia P., Lin J., and Toyoshima Y.,
1995: Class firewall, test order, and regression testing
of object-oriented programs, Journal of Object-
Oriented Programming, vol. 8, no. 2, pp. 51–65.

Law J., Rothermel G., 2003: Whole Program Path-Based
Dynamic Impact Analysis, Proc. of the International
Conference on Software Engineering, pp. 308-318.

Lee M, Offutt A. J. and Alexander R. T., 2000:
Algorithmic Analysis of the Impacts of Changes to
Object-Oriented Software, 34th International
Conference on Technology of Object-Oriented
Languages and Systems (TOOLS USA '00), pages 61-
70, Santa Barbara, CA, August.

Lehman M. M., 1980: On Understanding Laws, Evolution,
and Conservation in the Large-Program Life Cycle,
Journal of Systems and Software, vol. 1, no. 3.

Lehman M. M., Ramil J. F., Wernick P. D., Perry P. E.,
and Turski W. M., 1997: Metrics and Laws of
Software Evolution – The Nineties View, Proceedings
of the 4th International Software Metrics Symposium,
pp. 20-32.

Lehnert S., 2011: A Taxonomy for Software Change
Impact Analysis, IWPSE-EVOL’11, September 5–6,
Szeged, Hungary, ACM.

Li W. and Henry S., 1995: Maintenance support for
object-oriented programs, The Journal of Software
Maintenance, Research and Practice, 7(2):131-147,
March-April.

Li B., Sun X., Leung H. and Zhang S., 2012: A survey of
code-based change impact analysis techniques,
Software testing, Verification and Reliability; 23:613-
646, Wiley Online Library.

Li L. and Offutt A. J., 1996: Algorithmic analysis of the
impact of changes to object-oriented software,
Proceedings of the IEEE International Conference on
Software Maintenance, CA, USA, pp 171-184.

A Change Impact Analysis Model for Aspect Oriented Programs

155

13

Mens T., Fernandez-Ramil J., and Degrandsart S., 2008:
The Evolution of Eclipse, Proceedings of the IEEE
International Conference on Software Maintenance
(ICSM), pp. 386-395.

Orso A., Apiwattanapong T., and Harrold M.J., 2003:
Leveraging field data for impact analysis and
regression testing, Proceedings of the European
Software Engineering Conference, and ACM
SIGSOFT Symposium on the foundations of software
Engineering (ESEC/FSE’03), Helsinki, Finland.

Orso A., Apiwattanapong T., J. Law, Rothermel G., and
Harrold M.J., 2004: An Empirical Comparison of
Dynamic Impact Analysis Algorithms, Proceedings of
the International Conference on Software Engineering
(ICSE’04), pp. 491-500, Edinburg, Scotland.

Petrenko M., Rajlich V., 2009: Variable granularity for
improving precision of impact analysis, Proceedings
of the International Conference on Program
Comprehension, pp. 10–19.

Przybylek A., 2011: Impact of aspect-oriented
programming on software modularity, 15th European
Conference on Software Maintenance and
Reengineering, pages 369-372, Oldenbourg,
Allemagne, 1-4.

Ren X., Shah F., Tip F., Ryder B. G. and Chesley O.,
2004: Chianti: A tool for change Impact analysis of
Java Programs, OOPSLA’04. Proceedings of the 19th
annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and
Applications.

Riaz M., Mendes E. and Tempero E., 2009: A systematic
review of software maintainability prediction and
metrics, Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and
Measurement.

Rothermel G. and Harrold M. J., 1996: Analyzing
regression test selection techniques, IEEE
Transactions on Software Engineering, vol. 22, no. 8,
pp. 529–551.

Rothermel G. and Harrold M. J., 1997: A safe, efficient
regression test selection technique, ACM Transactions
on Software Engineering and Methodology, vol. 6, no.
2.

Ryder B. G. and Tip F., 2001: Change Impact Analysis for
object-Oriented Programs. In ACM SIGPLAN-
SIGSOFT.

Sabbah D., 2004: From Promise to Reality, Proceedings of
the 3rd international conference on Aspect-oriented
software development (AOSD’04).

Shinomi I., Tamai T., 2005: Impact Analysis of Weaving
in Aspect-Oriented Programming, Proceedings of the
21st IEEE International Conference on Software
Maintenance, pages 357-660.

Störzer M., 2007: Impact Analysis for AspectJ, A Critical
Analysis and Tool-Based Approach to AOP,
Dissertation, Passau.

St-Yves D., 2007: Dépendances et gestion des
modifications dans les systèmes orientés objet:
utilisation des graphes de contrôle, Thèse de maîtrise,
Université du Québec à Trois-Rivières, Canada.

Sun X., Leung H., Li B., Li B., 2014: Change impact
analysis and changeability assessment for change
proposal: An empirical study, Journal of Systems and
Software, 96, pp. 51-60, Elsevier.

Sun X., Li B., Tao C., Wen W., Zhang S., 2010: Change
Impact Analysis Based on a Taxonomy of Change
Types, 2010 IEEE 34th Annual Computer Software
and Applications Conference, pages 373-382, Seoul.

Yau S.S., Collofello J. S., 1980: Some Stability Measures
for software maintenance. IEEE Transactions on
Software Engineering, 6(6): pp. 545-552.

Zhang S, Gu Z, Lin Y, Zhao J., 2008: Change Impact
Analysis for AspectJ Programs, IEEE International
Conference on Software Maintenance, pages 87-96,
Beijing.

Zhao J., 2002: Change Impact Analysis for Aspect-
Oriented Software Evolution, Proceedings of the
International Workshop on Principles of Software
Evolution, New York, NY, USA.

Zhao J., 2004: Measuring Coupling in Aspect-Oriented
Systems, Information Processing Society of Japan
(IPSJ), pages 14-15, Japon.

Zhou X., Jiang Y., Wang H., 2011: Method on change
Impact Analysis for Object-oriented Program, 2011
Fourth International Conference on Intelligent
Network and Intelligent Systems, IEEE.

Zimmermann T., Zeller M.A., Weissgerber, P., Diehl, S.,
2005: Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31 (6), pp. 429–445.

ANNEX 1: PARTIAL LIST OF
CHANGES (DÉHOULÉ, 2014).

Change Meaning
Aspect level

ASr Remove an aspect
ASnm Change name of an aspect
AStan Type : abstract to non-abstract
ASha Inheritance : add
AShr Inheritance :remove
Asia Interface : add
Asir Interface : remove
IMPr Import : remove

Class level

Cr Remove a class

Cnm Change name of a class

Chr Remove of inheritance

Cir Remove of interface

Mr Remove a method

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

156

ANNEX 2: PARTIAL LIST OF
IMPACT RULES (DÉHOULÉ,
2014).

Change Impact rule

Cr Cr(Class) -> JPr + [PCm || PCr] + [ADVr ||
Cnm Cr -> JPr + [PCr] + [ADVr || ADVm] + I-
Chr Chr -> Mpm(L) + Mm(L) + JPm + PCm +
Cir Cir -> [Mr + JPr + PCr || PCm + ADVr ||
Mr Mr -> JPr + PCm + ADVm

Mnm Mnm -> JPm + PCm + ADVm

Mpa
Mpa | Mpm | Mpr -> JPpm + PCm +ADVm Mpm

Mpr
Mtrm Mtrm -> JPm + PCm + ADVm
Mvm Mvm-> [JPm + PCm + ADVm]
Mtsn

Mtsn | Mtns -> [JPm + PCm + ADVm]
Mtns
Ar Ar -> JPr{dg} || JPr{mu} +PCm + ADVm

Anm Anm -> JPm{dg} || JPm{mu} +PCm +
ADVAtm Atm ->Mpm{mu} + Mtrm{ac} + JPm +

Avm Avm -> JPm + PCm + ADVm + Mm{AS}
Atsn Atsn | Atns -> JPm{dg} || JPm{mu} +PCm +

ADVm Atns
Atfn Atfn | Atnf -> JPm{dg} || JPm{mu} +PCm +

ADVm Atnf
Nrtc Nrtc -> JPr + PCr + ADVr

A Change Impact Analysis Model for Aspect Oriented Programs

157

