fgssjoin: A GPU-based Algorithm for Set Similarity Joins

Rafael D. Quirino, Sidney R. Junior, Leonardo A. Ribeiro and Wellington S. Martins

Instituto de Informatica, Universidade Federal de Goias (UFG), Alameda Palmeiras, Quadra D, Campus Samambaia,
CEP 74001-970, Goiania, Goias, Brazil

Keywords:

Abstract:

Advanced Query Processing, High Performance Computing, Parallel Set Similarity Join, GPU.

Set similarity join is a core operation for text data integration, cleaning and mining. Most state-of-the-art

solutions rely on inherently sequential, CPU-based algorithms. In this paper we propose a parallel algorithm
for the set similarity join problem, harnessing the power of GPU systems through filtering techniques and
divide-and-conquer strategies that scales well with data size. Experiments show substantial speedups over the

fastest algorithms in literature.

1 INTRODUCTION

In the last few decades there have been substantial
improvements in database systems, in part due to its
commercial importance, usefulness and extensive tes-
ting throughout the years. And yet, managing com-
plex data objects in these systems remains a chal-
lenge. In fact, many operations which are fine for
simple objects are often ineffective for complex ones.
A good example is equality tests. They are ubiquitou-
sly used in database management operations, but of-
ten cannot capture the subtle relations between com-
plex objects, which highlights the need for similarity
calculations on such data.

Set similarity join is the operation of retrieving all
pairs of data objects (represented by sets of features)
from some data collection, for which the result of a
similarity function is not less than a given threshold.
The problem has attracted growing attention over the
years (Sarawagi and Kirpal, 2004; Chaudhuri et al.,
2006; Bayardo et al., 2007; Vernica et al., 2010; Xiao
et al., 2011; Ribeiro and Hirder, 2011; Wang et al.,
2012; Cruz et al., 2016), as volume and complexity
of data increase in the current Big Data era. It is both
an important operation by itself, and a crucial step for
more advanced data processing tasks, including inte-
gration (Doan et al., 2012), cleaning (Chaudhuri et al.,
2006), and data mining (Leskovec et al., 2014).

Assessing the exact similarity between complex
objects, particularly for joins where all pairs of ob-
jects must be compared, is often expensive, even for
state-of-the-art algorithms. In the case of textual
data, the infamous curse of dimensionality becomes

152

Quirino, R., Junior, S., Ribeiro, L. and Martins, W.
fgssjoin: A GPU-based Algorithm for Set Similarity Joins.
DOI: 10.5220/0006339001520161

very apparent, since text data representations are of-
ten sparse and high-dimensional. Set-based simila-
rity functions are very attractive in this context be-
cause predicates involving such functions can be equi-
valently expressed as a set overlap constraint. As a
result, set similarity join is reduced to the problem of
identifying set pairs with enough overlap.

In this scenario, it becomes clear that parallel so-
lutions are welcome. Today, virtually all processors
support parallelism through the use of multiple cores.
Multi-core processing is a growing trend in the indu-
stry, and it has been followed by the so-called many-
core architectures like GPUs (graphical cards used
for general purpose computing). Many-core proces-
sors, also known as accelerators, have a large number
of processing units — hundreds or thousands — but in
the form of slower and simpler cores. Recent develop-
ments and the affordability of GPUs have made them
attractive to scientists in many areas. GPUs are de-
signed for massive multi-threaded parallelism and are
inherently energy-efficient because they are optimi-
zed for throughput and performance per watt. Howe-
ver, GPUs have a different architecture and memory
organization from traditional CPUs. Therefore, con-
siderable parallelism (tens of thousands of threads)
and an adequate use of its hardware resources are nee-
ded to fully exploit its capabilities. This fact imposes
some constraints in terms of designing appropriate al-
gorithms and new implementation approaches.

In this paper we present a fine-grained parallel al-
gorithm for the set similarity join problem and a GPU-
based implementation of this algorithm that allows
the usage of state-of-the-art prefix filtering techni-

In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 152-161

ISBN: 978-989-758-247-9

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

ques. The proposed parallel algorithm is based on
a divide-and-conquer strategy and partitioning of the
data set in blocks in such a way that all blocks are
indexed and queried against all others, following an
index-filter-verify cycle. This strategy ensures that
any data set can be processed regardless of the GPU
memory available. It also allows the skipping of some
blocks from being queried against others for which no
match could be generated. The main contributions of
this paper are:

e A parallel algorithm for the set similarity join pro-
blem.

e A GPU-based implementation of the proposed al-
gorithm.

e Extensive experimental work with standard data-
sets.

The remainder of this paper is organized as fol-
lows. Section 2 covers related work. Section 3 defi-
nes the set similarity join problem and introduces im-
portant concepts. Section 4 presents an overview of
the architecture and programming model of a GPU.
Section 5 describes our solution. Section 7 presents
the experimental evaluation, while Section 8 conclu-
des the paper.

2 RELATED WORK

There have been many research on sequential set si-
milarity joins algorithms (Sarawagi and Kirpal, 2004;
Chaudhuri et al., 2006; Arasu et al., 2006; Bayardo
et al., 2007; Xiao et al., 2011; Ribeiro and Hérder,
2011; Wang et al., 2012). An experimental evalua-
tion of several state-of-the-art set similarity join al-
gorithms is presented by Mann et al. (Mann et al.,
2016). The filtering-and-verification framework is
prevalently adopted by such algorithms: first, various
filtering schemes are used to prune set pairs that can-
not meet the threshold; the actual similarity compu-
tation is then performed on each of the remaining set
pairs and those deemed as similar are sent to the out-
put. Popular filtering schemes are length-based filter
(Sarawagi and Kirpal, 2004; Arasu et al., 2006), pre-
fix filter (Sarawagi and Kirpal, 2004; Chaudhuri et al.,
2006; Ribeiro and Hirder, 2011; Wang et al., 2012),
and positional filter (Xiao et al., 2011). Verification
can be optimized by employing a merge-like proce-
dure that stops earlier on set pairs that do not satisfy
the similarity constraint. Our proposed algorithm ex-
ploits all those optimization on many-core architectu-
res.

Approximate set similarity joins resort to data re-
duction techniques to speed up processing time. The

fgssjoin: A GPU-based Algorithm for Set Similarity Joins

most popular technique in this context is Locality
Sensitive Hashing (LSH) (Indyk and Motwani, 1998),
which is based on hashing functions that are approx-
imately similarity-preserving. However, LSH-based
algorithms may miss valid output pairs. In contrast,
our approach always produces an exact result.

Another popular type of string similarity join em-
ploys constraints based on the edit distance, which is
defined by the minimum number of character-editing
operations — insertion, deletion, and substitution —
to make two strings equal. As one can derive set
overlap bounds from the edit distance (Gravano et al.,
2001), the filtering phase of our proposal can be rea-
dily used to reduce the number of distance computa-
tions (edit distance also lends itself to efficient GPU
implementation (Chacén et al., 2014)).

Lieberman et al. (Lieberman et al., 2008) presen-
ted a parallel similarity join algorithm for distance
functions of the Minkowski family (e.g,. Euclidean
distance). The algorithm first maps the smaller input
dataset to a set of space-filling curves and then per-
forms interval searches for each point in the other da-
taset in parallel. The overall performance of the algo-
rithm drastically decreases as the number of dimen-
sions increases (see Figure 5b in (Lieberman et al.,
2008)) because every additional dimension requires
the construction of a new space-filling curve. Thus,
this approach can be prohibitively expensive on text
data, whose representation typically involves several
thousands of dimensions.

Cruz et al. (Cruz et al., 2016) proposes an approx-
imate set similarity join algorithm designed for GPU.
The Jaccard similarity between two sets is estimated
using MinHash (Broder et al., 1998), an LSH scheme
for Jaccard. MinHash can be orthogonally combined
with our algorithm to reduce set size and, thus, obtain
greater scalability.

To the best of our knowledge, the gSSJoin al-
gorithm, proposed by Ribeiro-Junior et al. (Junior
et al., 2016), is the only existing GPU-based algo-
rithm for exact set similarity join. Similarly to our
approach, gSSJoin first builds an inverted index be-
fore performing similarity computations. However,
gSSJoin does not employ any filtering technique to re-
duce the comparison space. We compare our proposal
with gSSJoin in Section 7.

Finally, recent work proposed to perform set si-
milarity joins on the MapReduce framework (Vernica
et al., 2010; Deng et al., 2014). We plan to investigate
the integration of fgssjoin into a distributed platform
to accelerate local computation in future work.

153

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

3 BACKGROUND

In this section, we provide background on set simila-
rity join concepts and techniques.

3.1 Mapping Text Data to Sets

In order to express text data as sets of features, we use
the notion of g-grams, which are tokens obtained by
”sliding” a window of size g over the characters of a
given string. For example, if we have two strings 5| =
“Computation” and s, = "Compilation”, we have the
following 2-gram sets:

x={Co,om,mp, pu,ut,ta,at,ti,io,on}
y={Co,om,mp, pi,il,la,at,ti,io,on}
Applying the Jaccard similarity function (JS) to
the strings above yields:
eyl 7
[xUy] 104+10-—7

JS(x,y) 2~0,538.

3.2 Problem Definition, Basic Concepts,
and Optmization Techniques

Definition 1. (Set Similarity Join). Let U be a uni-
verse of features, C be a set collection where every
set consists of a number of features from U, Sim(x,y)
be a similarity function that maps two sets from C to
a number in [0,1] and y be a number in [0,1] (called
threshold). Set similarity join is the operation of de-
fining the set S of all pairs of sets from C, for which
Sim(x,y) > ¥.

We focus on a general class of set similarity
functions, for which the similarity predicate can be
equivalently represented as a set overlap constraint.
Specifically, we express the original similarity pre-
dicate in terms of an overlap lower bound (overlap
bound, for short) (Chaudhuri et al., 2006).

Definition 2. (Overlap Bound). Let x and y be sets
of features, Sim be a set similarity function, and Y be
a similarity threshold. The overlap bound between x
and y relative to Sim, denoted by overlap(x,y)', is a
Sfunction that maps Y and the sizes of x and y to a real
value, s.t. Sim(x,y) >v< [xNy| > overlap(x,y).

This way, the similarity join problem can be re-
duced to a set overlap problem, in which we need to
obtain all pairs (x,y) whose overlap is not less than
overlap(x,y). The set overlap formulation enables
the derivation of size bounds. Intuitively, observe that
|xNy| < |x| whenever |y| > |x|, i.e., set overlap and

IFor ease of notation, the threshold 7 is omitted in the
definitions of this section.

154

thus similarity are trivially bounded by |x|. Exploi-
ting the similarity function definition, it is possible to
derive tighter bounds allowing immediate pruning of
candidate pairs whose sizes are incompatible accor-
ding to the given threshold.

Definition 3. (Size Bounds). Let x be a set of featu-
res, Sim be a set similarity function, and 'y be a simi-
larity threshold. The size bounds of x relative to Sim
are functions, denoted by minsize(x) and maxsize(x),
that maps Yy and the size of x to a real value, s.t. Yy, if
Sim(x,y) > 7y then minsize(x) < |y| < maxsize(x).

Therefore, given a set x we can safely ignore
all sets whose size do not fall within the interval
[minsize(x), maxsize(x)], because they can not match
with x according to the given threshold. Table 1 shows
the overlap and size bounds of three of the most wi-
dely used similarity functions: Jaccard, Dice, and Co-
sine (Arasu et al., 2006; Sarawagi and Kirpal, 2004;
Xiao et al., 2011; Li et al., 2008; Xiao et al., 2009).

If we ensure that all sets in the collection have its
features under the same total order O, we can combine
overlap and size bounds to prune even more the com-
parison space through the prefix filtering technique.
The idea is to derive a new overlap constraint to be ap-
plied only to subsets of the original sets. For any two
sets x and y, under the order O, if |[xNy| > o then the
subsets consisting of the first [x| — ot+ 1 elements of x
and the first [y| — ot + 1 elements of y must share at le-
ast one element (Chaudhuri et al., 2006; Sarawagi and
Kirpal, 2004). These subsets are called prefix filtering
subsets and will be denoted by pref(x). The exact
prefix size is determined by overlap(x,y), but it de-
pends on each matching pair. Given a set x, the ques-
tion is how to determine | pre f(x)| such that it suffices
to identify all matches of x. Clearly, we have to take
the largest prefix in relation to all y. The prefix for-
mulation given above tell us that the prefix size is in-
versely proportional to overlap(x,y), and the former
increases monotonically with y. Therefore, |pref(x)|
is largest when |y| is smallest. The smallest possible
size of y, such that the overlap constraint can be satis-
fied, is minsize(x).

Definition 4. (Max-prefix). Let x be a set of featu-
res. The max-prefix of x, denoted by maxpre f(x), is its
smallest prefix needed for identifying ¥y that |[xNy| >
overlap(x,y). |maxpref(x)| = |x| — [minsize(x)] + 1.

We can also impose an order in the whole col-
lection. If we sort C by its sets sizes we can gua-
rantee that x is only matched with y if |y| > |x|. In this
case the size of pref(x) can be reduced. Instead of
using maxpref(x) we can obtain a shorter prefix by
using overlap(x,x) to calculate the prefix size (Bay-
ardo et al., 2007; Xiao et al., 2011; Xiao et al., 2009).

fgssjoin: A GPU-based Algorithm for Set Similarity Joins

Table 1: Set similarity functions.

Function Definition overlap(x,y) [minsize(x),maxsize(x)]
lxny| y [x]
Jaccard — (x| + x|, —
coal | T el
2 2—
i el | (D) 24 eovi
x|+ Iyl 2 2=y v
. xN X
Cosine | |x|y|}|)| W x| [yl [YZ x|, |Yz|}

Definition 5. (Mid-prefix). Let x be a set of fea-
tures. The mid-prefix of x, denoted by midpref(x),
is its smallest prefix needed for identifying ¥y > x
that |xNy| > overlap(x,y). |midpref(x)| = |x| —
[overlap(x,x)] + 1.

Further optimization is possible. We can sort each
set by its features frequencies in the collection, in in-
creasing order, which precipitates the least frequent
ones to the prefixes, thus filtering out even more pairs
(since less frequent ones are likely to have fewer ma-
tches). We can also exploit the positional information
between common features in two sets, under the same
order, to verify if the remaining features in both sets
are enough to meet the given threshold (Xiao et al.,
2011).

4 GPUARCHITECTURE AND
PROGRAMMING MODEL

In this section we provide a brief description of a
modern GPU architecture and its corresponding pro-
gramming model. We refer the reader to (Kirk and
Hwu, 2010) for more details on the GPU architecture
and its programming model.

Graphics processing units (GPUs) are specialized
architectures originally designed as special-purpose
co-processors for dedicated graphics rendering. Due
to the high computation power and improved pro-
grammability, they have recently become a powerful
accelerator for general purpose computing (GPGPU).
GPUs can be regarded as massively parallel proces-
sors with approximately ten times the computation
power and memory bandwidth of CPUs. Moreover,
the computational performance of GPUs is improving
at a rate higher than that of CPUs and at an exceptio-
nally high performance-to-cost ratio.

A GPU can be considered as a Multiple SIMD
(Single Instruction Multiple Data) processor, as de-

picted in figure 1. Each SIMD unit is known as a stre-
aming multiprocessor (SM) and contains streaming
processor (SP) cores, although different vendors and
development frameworks may use different terms (in
this paper we are using the terms from the CUDA
development framework). At any given clock cycle,
each SP executes the same instruction, but operates on
different data. The GPU supports thousands of light-
weight concurrent threads and, unlike the CPU thre-
ads, the overhead of creation and switching between
threads is negligible. The threads on each SM are or-
ganized into thread groups (blocks) that share com-
putation resources such as registers. A thread block
is divided into multiple schedule units, called warps,
that are dynamically scheduled on the SM. Because of
the SIMD nature of the SP’s execution units, if threads
in a schedule unit must perform different operations,
such as going through branches, these operations will
be executed serially as opposed to in parallel. Addi-
tionally, if a thread stalls on a memory operation, the
entire warp will be stalled until the memory access
is done. In this case the SM scheduler selects anot-
her ready warp and switches to that one. The GPU
global memory is typically measured in gigabytes of
capacity. It is an off-chip memory and has both a high
bandwidth and a high access latency. To hide the high
latency of this memory, it is important to have more
threads than the number of SPs and to have threads in
a warp accessing consecutive memory addresses that
can be easily coalesced. The GPU also provides a fast
on-chip shared memory which is accessible by all SPs
of an SM. The size of this memory is small but it has a
low latency and it can be used as a software-controlled
cache. Moving data from the CPU to the GPU and
vice versa is done through a PCIExpress connection.

The GPU programming model requires that part
of the application runs on the CPU while the
computationally-intensive part is accelerated by the
GPU. The programmer has to modify his application
to take the compute-intensive kernels and map them

155

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

SM GPU SM

SP || SP || SP || SP SP || SP || SP || SP

CPU

=8=

Main Memory |

sp |f se [sp || sp sp || se || spf sp

Shared Memory

E8=

Shared Memory

0=

Global Memory |

I——— PCle 16x _—_T

Figure 1: GPU architecture.

to the GPU. The general flow for a program consists
of the following. First the program running on the
CPU allocates memory on the GPU and copies data
to this area. Then the GPU code (kernel function) is
started on the GPU. The kernel executes its code in
parallel on the GPU and then the results can be co-
pied back to the CPU main memory. A new iteration
can take place or the CPU program can deallocate me-
mory on the GPU and terminate.

The GPU programming model exposes paralle-
lism through the data-parallel SPMD (Single Program
Multiple Data) kernel function. During implemen-
tation, the programmer can configure the number of
threads to be used. Threads execute data parallel com-
putations of the kernel and are organized in groups
called thread blocks. Thread blocks are further orga-
nized into a grid structure. When a kernel is laun-
ched, the blocks within a grid are distributed on idle
SMs. Threads of a block are divided into warps, the
schedule unit used by the SMs, leaving for the GPU
to decide in which order and when to execute each
warp. Threads that belong to different blocks cannot
communicate explicitly and have to rely on the global
memory to share their results. Threads within a thread
block are executed by the SPs of a single SM and can
communicate through the SM shared memory. Furt-
hermore, each thread inside a block has its own regis-
ters and private local memory and uses a global thread
block index, and a local thread index within a thread
block, to uniquely identify its data.

S PARALLEL SIMILARITY JOIN

In this section we present our parallel algorithm to
solve the set similarity join problem with prefix fil-
tering techniques. We describe the three key phases,
indexing, filtering and verification, and also our block
partitioning strategy.

156

dy \d | di | dy | da | d3 | ds | d5 | d5 | ds
d |ntt — £
hlslufjbe]ltsnlln]t
b t: .
d | is E (entries)
ds |1 ¢ Count number of terms
dy |2 nllolslal:s
ds |t 1315 31212 1 2
count
Term Collection J« Compute prefix sum
nhjnjtsftats
0131517138
index
J, Point to 1¥ position
njlnjn ooyttt]s
di \ds \ds Vo ds Y di | d5s | di | d2) ds

invertedIndex

Figure 2: Creating the inverted index.

5.1 Indexing Phase

In state-of-the-art algorithms, the inverted index lists
are created during the filtering process, which makes
them inherently sequential algorithms: sets are se-
quentially probed against the index and the state of
the lists in one iteration depends on their state in the
previous iteration. To go around this problem we need
to create the entire inverted index statically before the
filtering phase, as show in figure 2. In this way we
can perform probes independently, because the index
is always complete. Hence, we need an efficient pa-
rallel algorithm to create the inverted index. For this
purpose, we need to concatenate all features from all
sets in a unique array we call E. Let e € E be an en-
try that contains three fields: the set it belongs to, a
feature and its positional information. So, the sets are
reduced to an array of tuples (s;, f;, p;). This will be
important in the positional filtering step of the filte-
ring algorithm. When creating the entries for the in-
verted index algorithm we only add mid-prefix featu-
res to the array E. The concepts described in Section
2 allows us to use only max-prefix features from the
sets to probe against mid-prefix features in the index,
if we guarantee that matches will only occur between
bigger probing sets and smaller indexed sets. Then,
we calculate a count array, which counts the occur-
rence of each feature, and then perform a prefix sum
on it to obtain the starting indexes of each feature list
in the inverted index. Algorithm 1 shows the paral-
lel strategy used to create the whole inverted index in
memory. Note that V represents our dictionary (voca-
bulary).

Algorithm 1: Datalndexing(E).

input : Array of entries E[0..|E| —1].
output: count, index, invertedIndex.

-

array of integers count[0..|V|—1];

(8]

array of integers index[0..|V|—1];
invertedIndex]0..|E| —1]

“w

IS

Initialize count array with zeros;

wn

Count the occurrences of each token, in parallel, on the input and

accumulates in count.

£

Perform an exclusive parallel prefix sum on count and store the
result in index.
forall € E, in parallel do

® 2

Copy t to invertedIndex, according to index and update index.
end

o

10 Return the arrays: count, index, and invertedIndex.

Algorithm 2: Filtering.

input : The collection of sets S, the inverted index /, the array
of buckets b, a threshold T
output: The candidate pairs
1 Initialize b with zeros;

for each set x in S, in parallel do

2
3 for each feature f in x’s maxprefix do
4 for each set y in f’s inverted list do
5 if x.id < y.id then
6 if [y| < minsize(x) then
7 blx.id][y.id] = —oo;
8 break;
9 else
10 if b[x.id][y.id] > 0 then
11 rem = min(|x| — x.f pos,|y| = y.fpos);
12 ps = blx.id][y.id];
13 m=overlap(x,y); /*T omitted*/
14
15 if ps+ 14 rem < m then
16 | blxid)[y.id) = —oo;
17 else
18 | blxid)[y.id}+=1;
19 end
20 end
21 end
22 end
23 end
24 end
25 end

5.2 Filtering Phase

With the entire inverted index stored in memory, we
can set each processor to perform one probe (process
one set) against the index, using only max-prefix fe-
atures from the set. One problem is how to accu-
mulate the scores (intersections) between all pairs of
sets. Since we can potentially have all set pairs being
candidates (specially for lower thresholds), we need

fgssjoin: A GPU-based Algorithm for Set Similarity Joins

“buckets” for all possible pairs of sets in the col-
lection. So, we create an n x n matrix called b (the
buckets to contain the partial scores), where # is the
number of sets in our collection). It will contain the
partial intersection (partial scores) between probed
and indexed sets, because only parts of the sets (the
prefixes) are used in the process in this stage. After
performing the filtering phase, we need to compact
the content of the scores table to obtain only the po-
sitive scores, i.e., the candidate pairs. So we create
an additional n x n array, the compacted_buckets ar-
ray. After the compaction, this array will contain the
indexes of the scores in the table which are positive.
In order to reduce memory requirements (n x n array)
we partition the data collection in blocks and, thus we
are be able to process collections of any size. Figure
3 illustrates the state of the memory after the filtering
phase. Note that each row in the first matrix in the
figure represents a set being queried against the index
while each column represents an indexed set.

[BL][L]] s [hlt]f ofalo|la]|o][1]8|1w0]13]15
i i Jr i s, || BT o|-1]0]2]o0 23
S, S, S,
M ols s, [&% 7lofolala
s | s s, [f % 2[1]1)0]0
s, [L]% ofl1]0|1]0

Figure 3: Memory after the filtering phase, with inverted
index, sets, the array b (buckets) of partial scores and its
corresponding array of compacted buckets (with the indexes
to the elements in b that have positive values), respectively.
Since we have five sets in this example, our tables are 5x5.
The numbers in the first table are the partial scores after the
filtering phase. Negative (—1) numbers represents —oo. The
second table is the compacted version of the first; its values
(the absolute indexes of the selected elements from the first
table) represent the candidate pairs and are provided to the
verification phase.

Algorithm 2 is similar to state-of-the-art filtering
based algorithms in literature, but here it is execu-
ted by each GPU processor (core) for one probing
set. From now on we will refer to a set being pro-
bed against the index as a query, and to a set in the
index as a source (because they generate the index).
For each query, the filtering algorithm has two loops,
one to iterate on the max-prefix features of the query,
and one to consult the sources in the inverted list cor-
responding to each feature. Then we test if the query
id is smaller than the source id, i.e., we will only ma-
tch set x with set y if x.id < y.id. This test avoids
processing the same pair twice as well as ensures that
query sets are bigger than the sources, since the whole
collection is sorted in decreasing set cardinality order.
When we obtain a match we test if the source is smal-
ler than the query minsize. If it is, we can stop ite-
rating on the current inverted index list, because each

157

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

list is also sorted in decreasing order of set cardina-
lity. Finally, only for pairs (buckets in partial _scores)
not marked with —oo, we test if the remaining featu-
res are enough to meet the threshold; note that x. f pos
is the positional information of the current feature in
set x. If they are, we accumulate the score, if not we
mark them with —eo, so that they will not be consi-
dered anymore. In the end, array b will contain mar-
ked buckets, 0 buckets and positive ones, the former
being compacted (their absolute indexes) in the array
compacted_buckets (cb for short). The compacted in-
dexes represent the pairs, since the bidimensional in-
dexes of the matrix (which represents the ids of query
and source sets) can be calculated from the absolute
index. It is the resulting candidate pairs list, which
will be passed to the next phase, verification.

5.3 Verification Phase

The verification phase, which ultimately produces the
final result, can be trivially processed in parallel. It
simply consists in performing the remaining score
calculation on each candidate pair to verify if there
is enough overlap to qualify them as a match. This
can easily be done in parallel, by making each pro-
cessor perform verification on one candidate pair. We
can use the partial score to reduce a bit the overlap
calculations. By comparing the last feature from the
prefixes of the two sets in a candidate pair, we can
start the overlap calculation in the position of the fe-
ature with the smaller id in its own set, and in the
beginning with the other, with the initial value being
the partial score of the candidate pair, since any ma-
tch with prefix features in this set was already calcu-
lated in the filtering phase. In each step of the overlap
calculation we also test if the remaining features are
enough to meet the threshold, marking those which
are not. Those not marked by this process form the
result set, the similar pairs according to the threshold
and the similarity function.

5.4 Block Partitioning and
Optimization

The need for quadratic arrays in the filtering phase
sets a limit for the size of the databases we can
process. In order to solve this problem we need to
partition our search space into blocks that fit into the
memory requirements. But then we must process this
blocks in such a way that all sets are matched against
each other. To achieve this we proceed similarly in
the filtering phase, but we index the set’s prefixes of
one block, and use all the others before it to query

158

Algorithm 3: Verification.

input : The array of buckets b with partial scores, the array of
compacted buckets c¢b with the indexes of the
candidate buckets (with positive scores), the array of
features f of each set and a threshold ©

output: The similar pairs list L

-

Initialize a list L;

2 for each index idx in cb, in parallel do
3 x,y = calc_indexes(idx); /*x.id < y.id*/
4 m = overlap(x,y);
5 score = b|x.id|[s.id];
6 | f1= flvid|maxpref());
7| 12— flyid)(midpref ()}
8 pl,p2=0;
9 if f1 < f2 then
10 ‘ pl = |maxpref(x)|;
11 else
12 ‘ p2 = |midpref(y)|;
13 end
14 while p1 < |x| and p2 < |y| do
15 1= filp1]; f2= filp2l;
16 if (pl == x| — 1 and f1 < f2) or
(p2==|y|—1and f2 < f1) then
17 ‘ break;
18 end
19 if f1 == f2 then
20 ‘ score+ = 1; pl4+=1; p24+=1;
21 else
22 s=f1<f2?x:y;p=f1<f2?pl:p2;
23 rem = |s| — p;
24 if rem + score < m then
25 ‘ break;
26 else
27 | pt=1
28 end
29 end
30 if score > m then
31 ‘ include pair (x,y) in L;
32 end
33 end
34 end

its index. In this way we create an index-filter-verify
cycle with the blocks, gradually aggregating the re-
sults, which can be flushed to the disk if approaching
memory limit. By using the previous blocks as que-
ries, as shown in figure 4, we ensure that only big-
ger sets are queried against smaller ones in the index,
since the collection is sorted in decreasing cardinality
order. This fact also allows us to skip some blocks
from being queried against others for which its first
set’s maxsize is smaller than the query block’s last
set. In these cases it is guaranteed that no match could
be yield from the two blocks. This significantly im-
proves performance for higher thresholds. Another
consequence of block partitioning is the possibility of
running in distributed memory systems, since we can
process each probe/index block pair in one node in

parallel, executing its own index-filter-verify calcula-
tions.

Quer

Index !.FF

o
o

i

I

N
N

i

OGRS 4—3

W|m | | O
W|m| |

3 3

Figure 4: Illustration of the block processing scheme.

6 GPUIMPLEMENTATION

The GPU implementation consists of three main ker-
nels (functions that executes in the GPU), plus other
smaller kernels responsible for common parallel tasks
used by the main ones, like parallel counting and pre-
fix sum in the inverted index creation and compaction
in the filtering phase.

The three main kernels are scheduled by the block
processing function, that partitions the dataset into
blocks and executes the block processing scheme, as
shown in figure 4 where ”Query” means filter against
the index and verify the selected candidates. The
block processing scheme executes the index-filter-
verify cycle by calling their three associtated kernels.

The kernel responsible for the creation of the in-
verted index is simple, very like algorithm 1. It is
composed of three smaller kernels responsible for its
steps: parallel counting, parallel prefix sum and pa-
rallel building of the index according to the count and
prefix sum arrays.

For the filtering algorithm, we create a single ar-
ray in the GPU memory, the partial scores array, with
a number of elements equals to the square of the num-
ber of sets in one block (the number of all possible
pairs for the block). We only allocate it once, and
reuse it for each filtering execution, to save the al-
location time. We also allocate only once a com-
pacted_buckets array, of the same size of the par-
tial_scores, to contain the result of the compaction.
Of course these arrays must be cleaned (set to 0) at
each execution of the filter-verify algorithms in the
block processing scheme. The number of sets per
block must be chosen in such a way that two times
its squared value times the data type size used in par-
tial_scores and compacted_buckets is less than the me-
mory available in the GPU.

After the filtering kernel is executed, it fills the
partial_scores array, and the compaction kernel can be
called to fill the compacted_buckets array, as shown in
figure 3. The result of the compaction is the absolute
indexes of the positive elements in partial_scores. The

fgssjoin: A GPU-based Algorithm for Set Similarity Joins

indexes represent the pairs, since they can be derived
from the absolute index. These indexes, i.e. the can-
didate pairs, as well as the partial_scores are passed to
the verification kernel. It will calculate the intersecti-
ons (the final scores) between the candidate pairs, al-
ways checking if there is still enough features in the
sets to meet the minimum overlap, according to the
chosen similarity function (jaccard in our implemen-
tation). The pairs that pass the verification algorithm
are pushed into a list, that is periodically flushed to
the output file, where the actual similarity values are
calculated.

We used a fixed number of thread blocks and of
threads per block, which depends on to the specific
GPU used. In order to ensure maximum utilization
of the device, we used a technique called persistent
threads. This technique allows one thread to be reu-
sed, processing more than one data element when the
number of elements to process is bigger than the num-
ber of threads sent to execution.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

We tested two reference sequential algorithms, all-
pairs (Bayardo et al., 2007) and ppjoin (Xiao et al.,
2011), as well as a massively parallel algorithm
gssjoin (Junior et al., 2016) and our parallel filter-
based algorithm fgssjoin.

Our experiments were executed on a machine
equipped with two Intel Xeon E5-2620, each with 6
processing cores (12 threads in hyper-threading) and
20MB of cache memory, 16GB of RAM memory and
4 Nvidia GTX Titan Black, each with 2880 proces-
sing cores and 6GB of memory, although we only
used one GTX Titan Black for our parallel implemen-
tation.

We used two standard databases: DBLP (a col-
lection of computer science article titles and authors),
with 100k registers, and IMDB (a collection of movie
titles, TV shows, etc), with 300k registers, which are
popular datasets in set similarity joins related work.
We pre-processed the data sets, removing accents and
punctuation, and setting all characters to lowercase.
Both datasets were g-tokenized with 2-grams and 3-
grams. We conducted our experiments varying the
threshold values from 0.5 to 0.9, in 0.1 increments.
Our baseline comparison algorithms were executed
on the Xeon processor, except gssjoin, which was also
executed on the Gtx Titan Black.

159

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

60 600
50 —— allpairs 500 —&—— allpairs
_ch —&— ppjoin .lc'} —&— ppjoin
c —&—— gssjoin = —&—— gssjoin
G 404 - G 400
3 ——— fgssjoin 8 —%—— fgssjoin
n 304 N 300
= <
@ 204 L 2004
E £
F 104 F 1004
0 ‘ o :
0,5 0,6 0,7 0,8 0,9 0,5 0,6 0,7 0,8 0,9
Threshold Threshold
(a) DBLP 100k, 3-gram tokens (b) DBLP 100k, 2-gram tokens
Figure 5: Execution times for DBLP dataset, 100k registers, with 2-gram and 3-gram tokens.
700 4000
600 —&— allpairs —&— allpairs
7] ioi 1} —a— joi
o — = ppioin S 3000 bpjoin
% 500 —A— gssjoin % —&— gssjoin
& 400 *— fgssjoin ¢ —— fgssjoin
w “ 2000
£ 300 =
] L]
£ 200 E 1000
[=
100
0 I) 0 ? T
0,5 0,6 0,7 0,8 0,9 0,5 0,6 0,7 0,8 0,9
Threshold Threshold

(a) IMDB 300k, 3-gram tokens

(b) IMDB 300k, 2-gram tokens

Figure 6: Execution times for IMDB dataset, 300k registers, with 2-gram and 3-gram tokens.

7.2 Performance Analysis

We report execution runtimes with varying threshold
values. Figure 5 shows the execution times obtai-
ned as we increase the threshold from 0.5 up to 0.9.
As can be seen, our algorithm achieved considerable
speedups of up to 25x faster than the leading sequen-
tial algorithm in literature. The best speedups were
achieved when the datasets were tokenized with 2-
grams. Of course the finer grained 2-grams requi-
res more computational power, since there are fe-
wer combinations of 2 characters and this leads to
more matches and more candidate pairs in the filte-
ring phase, consequently raising the load for the veri-
fying phase. Also, we expect our algorithm to become
even better as the size of the dataset grows. One ca-
veat is that our algorithm relies on positional filtering,
which is inherently sequential. Although it is very
efficient in lowering the number of candidate pairs in
the filtering phase, it imposes difficulties for some key
optimization in many-core architectures. For exam-
ple, it reduces memory coalescing, and hinders a hig-
her degree of parallelism, e.g., parallelizing the tokens
among processing units, instead of whole queries, in

160

the filtering phase. Table 2 shows the best speedups
achieved on each dataset over the 3 other algorithms
used in experiments; the corresponding threshold va-
lue is shown in parentheses.

Table 2: Best speedups of fgssjoin over the other algorithms
on each dataset, with corresponding threshold values.

Dataset ppjoin | allpairs | gssjoin
s | S5
o || R
oo | 08|58
IMDB, 3-gram 2((‘):2;‘ 2(82;(1(207.§])X

8 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a parallel algorithm, as
well as a GPU-based implementation to solve the set
similarity join problem, with considerable speedups

in relation to the state-of-the-art algorithms in lite-
rature. Our experiments, with standard datasets, re-
vealed good speedups, with a scalable behavior as we
increase the size of the datasets. Besides the good re-
sults in this paper, many improvements can be done.
We did not explore some specific optimization in re-
lation to the many-core architectures, like the use of
the so called shared memory in CUDA or local me-
mory in OpenCL (both are parallel development fra-
meworks), as well as memory coalescing. One ob-
servation in this research is the inherently sequential
nature of positional filtering techniques, which hin-
ders a higher level of parallelism. We plan, in future
work, to remove the positional filtering techniques
from our filtering phase, and increase the degree of
parallelism by assigning one processing core to each
token, instead of each set, to make possible coalesced
memory accesses, hoping that the gain with the higher
degree of parallelism compensates the loss in filtering
capacity. We also plan to make use of shared/local
memory as a way to increase locality and, hence,
achieve greater speedups. Finally, we plan to imple-
ment a multi-GPU version (to run on GPU clusters)
and process bigger datasets.

REFERENCES

Arasu, A., Ganti, V., and Kaushik, R. (2006). Efficient exact
set-similarity joins. In Proceedings of the 32nd inter-
national conference on Very large data bases, pages
918-929. VLDB Endowment.

Bayardo, R. J., Ma, Y., and Srikant, R. (2007). Scaling up
All Pairs Similarity Search. In WWW, pages 131-140.

Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenma-
cher, M. (1998). Min-Wise Independent Permutations
(Extended Abstract). In STOC, pages 327-336.

Chacén, A., Marco-Sola, S., Espinosa, A., Ribeca, P., and
Moure, J. C. (2014). Thread-cooperative, Bit-parallel
Computation of Levenshtein Distance on GPU. In
ICS, pages 103-112.

Chaudhuri, S., Ganti, V., and Kaushik, R. (2006). A primi-
tive operator for similarity joins in data cleaning. In
ICDE, page 5.

Cruz, M. S. H., Kozawa, Y., Amagasa, T., and Kitagawa, H.
(2016). Accelerating set similarity joins using gpus.
TLDKS, 28:1-22.

Deng, D., Li, G., Hao, S., Wang, J., and Feng, J. (2014).
MassJoin: A Mapreduce-based Method for Scalable
String Similarity Joins. In /CDE, pages 340-351.

Doan, A., Halevy, A. Y., and Ives, Z. G. (2012). Principles
of Data Integration. Morgan Kaufmann.

Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N.,
Muthukrishnan, S., and Srivastava, D. (2001). Ap-

proximate string joins in a database (almost) for free.
In VLDB, pages 491-500.

fgssjoin: A GPU-based Algorithm for Set Similarity Joins

Indyk, P. and Motwani, R. (1998). Approximate Nearest
Neighbors: Towards Removing the Curse of Dimensi-
onality. In STOC, pages 604-613.

Junior, S. R., Quirino, R. D., Ribeiro, L. A., and Martins,
W. S. (2016). gssjoin: a gpu-based set similarity join
algorithm. In SBBD, pages 64-75.

Kirk, D. B. and Hwu, W.-m. W. (2010). Programming
Massively Parallel Processors: A Hands-on Appro-
ach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1st edition.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mi-
ning of Massive Datasets, 2nd Ed. Cambridge Univer-
sity Press.

Li, C, Lu, J., and Lu, Y. (2008). Efficient Merging and Fil-
tering Algorithms for Approximate String Searches.
In ICDE, pages 257-266.

Lieberman, M. D., Sankaranarayanan, J., and Samet, H.
(2008). A Fast Similarity Join Algorithm Using
Graphics Processing Units. In ICDE, pages 1111—
1120.

Mann, W., Augsten, N., and Bouros, P. (2016). An Em-
pirical Evaluation of Set Similarity Join Techniques.
PVLDB, 9(9):636-647.

Ribeiro, L. A. and Hirder, T. (2011). Generalizing Prefix
Filtering to Improve Set Similarity Joins. Information
Systems, 36(1):62-78.

Sarawagi, S. and Kirpal, A. (2004). Efficient Set Joins on
Similarity Predicates. In SIGMOD, pages 743-754.

Vernica, R., Carey, M. J., and Li, C. (2010). Efficient Pa-
rallel Set-similarity Joins using MapReduce. In SIG-
MOD, pages 495-506.

Wang, J., Li, G., and Feng, J. (2012). Can We Beat the Pre-
fix Filtering?: An Adaptive Framework for Similarity
Join and Search. In SIGMOD, pages 85-96.

Xiao, C., Wang, W., Lin, X., and Shang, H. (2009). Top-
k set similarity joins. In 2009 IEEE 25th Internatio-
nal Conference on Data Engineering, pages 916-927.
IEEE.

Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G.
(2011). Efficient Similarity Joins for Near-duplicate
Detection. TODS, 36(3):15.

161

