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Abstract: Code smells indicate poor implementation choices that may hinder the system maintenance. Their detection is
important for the software quality improvement, but studies suggest that it should be tailored to the perception
of each developer. Therefore, detection techniques must adapt their strategies to the developer’s perception.
Machine Learning (ML) algorithms is a promising way to customize the smell detection, but there is a lack
of studies on their accuracy in detecting smells for different developers. This paper evaluates the use of ML-
algorithms on detecting code smells for different developers, considering their individual perception about
code smells. We experimentally compared the accuracy of 6 algorithms in detecting 4 code smell types for 40
different developers. For this, we used a detailed dataset containing instances of 4 code smell types manually
validated by 40 developers. The results show that ML-algorithms achieved low accuracies for the developers
that participated of our study, showing that are very sensitive to the smell type and the developer. These
algorithms are not able to learn with limited training set, an important limitation when dealing with diverse
perceptions about code smells.

1 INTRODUCTION

Code smells are poor implementation choices that of-
ten worsen software maintainability (Fowler, 1999).
Studies (Khomh et al., 2009a; Fontana et al., 2013)
have found that the presence of code smells may lead
to design degradation (Oizumi et al., 2016), increa-
sing effort for comprehension (Abbes et al., 2011),
and contributing to introduction of faults (Khomh
et al., 2011a). Therefore, these smells must be care-
fully detected and refactored in order to improve the
software longevity (Rasool and Arshad, 2015).

Several studies indicate that Machine Learning al-
gorithms (ML-algorithms) (Witten and Frank, 2005)
are a promising way to automate part of the code
smell detection process, without asking the develo-
pers to define their own strategies of code smell de-
tection (Khomh et al., 2011b; Maiga et al., 2012;
Amorim et al., 2015). In a nutshell, the MLalgorithms
require a set of code examples classified as smell
or non-smell, i.e. the training set or the oracle.
From them, the learning algorithms generate smell
detection models based on the software metrics, ai-
ming at detecting smells.

In this context, studies evaluated the accuracy
of Bayesian Belief Networks (BBNs) (Khomh et al.,
2011b), Support Vector Machine (SVM) (Maiga et al.,
2012), and Decision Trees (Amorim et al., 2015),
in the detection of code smells in existing software
projects. Moreover, Fontana et al. (Fontana et al.,
2015) performed a broader study on comparing the
efficiency of these learning algorithms on detecting
code smells. The efficiency was evaluated in terms of
the detection accuracy and the training effort (i. e.,
the number of examples) required to the algorithm to
reach a high accuracy.

However, the abstract definitions of smell types
in existing catalogs (e.g. (Fowler, 1999)) lead deve-
lopers to have different perceptions about the occur-
rence of smells (Mäntylä and Lassenius, 2006; Schu-
macher et al., 2010; Santos et al., 2013). For instance,
while a developer may consider that a method con-
taining more than 100 lines of code as being a Long
Method smell (Fowler, 1999), other developers may
not necessarily agree. As a consequence, the develo-
pers have to customize such definitions to their speci-
fic context.

In this case, to use the ML-algorithms, it is ne-
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cessary that developers provide examples that repre-
sent their understanding about smells. However, there
is still no knowledge about the accuracy of ML-
algorithms on detecting smells for developers that
may perceive such anomalies differently. Indeed,
the existing studies performed evaluations on datasets
containing code examples annotated by a single per-
son or a small number of developers that shared the
same perception about the analyzed code smells.

In this paper we present a study aimed at eva-
luating the accuracy of ML-algorithms on detecting
code smells for different developers, and that may
have different perceptions about code smells. We ana-
lyzed the 6 widely used algorithms on detecting 4 ty-
pes of code smells from three different perspectives:
the overall accuracy, the accuracy for different develo-
pers, and the learning efficiency (the number of exam-
ples necessary to reach a specific accuracy). For this
study we built a dataset based on the input of 40
diverse developers which classified 15 code snippets
according to their individual perspective. This resul-
ted in dataset containing 600 (non-)smells examples
representing the individual perception of all 40 deve-
lopers involved in our study.

The results of our study indicate that, in average,
the analyzed ML-algorithms were not able to reach a
high accuracy on detecting code smells for developers
with different perceptions. The results also indicate
that the detection process is very sensitive not only
the smell type but also the individual perception of
each developer. These two factors must be conside-
red in the design of approaches that aim to accurately
detect code smells.

2 RELATED WORK

The use of intelligent techniques has been widely in-
vestigated in order to deal with the different percepti-
ons concerning code smells (Mäntylä and Lassenius,
2006; Schumacher et al., 2010; Santos et al., 2013).
In this context, several machine learning algorithms
have been adapted in order to enable an automatic de-
tecting customization, based on a set of examples ma-
nually validated (Khomh et al., 2011b; Maiga et al.,
2012; Amorim et al., 2015; Fontana et al., 2015).
Although these studies report important results con-
cerning the efficiency of techniques based on Ma-
chine Learning (ML) algorithms, they do not discuss
about how such techniques deal on customizing the
detection for different developers. After all, the stu-
dies did not evaluate the efficiency of these techniques
when customized from different training sets valida-
ted individually by single developers.

Bayesian Belief Network (BBN) algorithm
has been proposed to detect instances of God
Class (Khomh et al., 2009b). The authors used 4 gra-
duate students to validate, manually, a set of classes,
reporting if each class contains a God Class instance
or not. From such procedure was created a single
oracle containing 15 consensual smell instances.
After performing a 3-fold cross-validation procedure
in order to calibrate the BBN, the authors assessed an
accuracy (precision) of 0.68 on detecting God Class
instances. In (Khomh et al., 2011b) the same authors
extended their previous work, by applying the BBNs
to detect three types of code smells. By following the
same procedure of their previous work, the authors
submitted 7 students to create a single oracle. After
calibrating, the produced BBN reached an accuracy
of almost 0.33.

The work presented in (Maiga et al., 2012) eva-
luated the efficiency of a technique based on a Sup-
port Vector Machine (SVM) to detect code smells.
In order to evaluate the proposed technique, the aut-
hors consider the some oracles defined in a previous
work (Moha et al., 2010). Although defined by se-
veral developers, such oracles are not indexed by their
evaluators. After considering these oracles, the SVM
approach reached, in average, accuracies up to 0.74.

In (Amorim et al., 2015) the authors proposed the
use of Decision Tree algorithm to detect code smells.
The authors used a single training set containing a
huge number of examples and validated by different
developers. The work used a third party dataset as an
oracle for the training the modules. At end, the paper
reported the algorithm was able to reach accuracies
up to 0.78.

More recently, Fontana et al. (Fontana et al., 2015)
presented a large study that compares and experi-
ments different configurations of 6 ML-algorithms on
detecting 4 smell types. For training, the authors con-
sidered a set of oracles composed of several exam-
ples of code smells manually validated by different
developers. However, these oracles did not identify
these developers. As results, the authors reported
that all evaluated techniques present a high accuracy.
The highest one was obtained by two algorithms ba-
sed on Decision Trees (J48 and Random Forest (Mit-
chell, 1997)). In addition, the authors also affirmed
that were necessary a hundred training examples to
the techniques reach an accuracy of, at least, 0.95.

3 STUDY DESIGN

The main goal of this study was to evaluate the ability
of Machine Learning (ML) algorithms to detect code
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smells for different developers, considering their in-
dividual perception about code smells. Although pre-
vious work (Fontana et al., 2015) studied the accu-
racy and efficiency of ML-algorithms, the different
perspectives of the developers was not considered. In
summary, the study tries to answer the following re-
search questions:

• RQ1: How accurate are the ML-algorithms in de-
tecting smells?

• RQ2: How do the ML-approaches deal with dif-
ferent perceptions about code smells?

• RQ3: How efficient are the ML-algorithms on de-
tecting smells?

To answer these questions, an experimental appro-
ach was defined based on the usage of machine lear-
ning algorithms in code with and without smells. An
overview of the approach is presented in Figure 1.

Figure 1: Training and testing the ML-algorithms.

The approach is based on two main parts: trai-
ning phase and testing phase. The training dataset
(1) is composed of a set of evaluations provided by
developers, reporting the presence (or absence) of a
smell in code snippets, and the software metrics ex-
tracted from those snippets. Next, the ML-algorithm
(2) is trained to learn which metrics may determine
the smell evaluations given as input. Based on this
learning, the algorithm produces a model (3), able to
classify any snippet as a smell or non-smell.

In a test phase, the classifier model are tested to
verify if it is able to classify novel instances as the
developer does. For that, test dataset (4) is produced
with evaluations and software metrics related to other
code snippets. Next, the classifier model (5) tries to
predict the developer’s evaluations. Finally, classifi-
cations are compared with the developer’s answers to
obatin the results (6).

3.1 Smell Types and ML-algorithms

In our study, we analyzed four types of code smells,
described in Table 1. We chose these smell types for
two main reasons. First, they affect different scopes
of a program. While God Class and Data Class affect
mainly classes, the Long Method and Feature Envy
are related to methods. Second, these four smell types
were also evaluated by previous studies on code smell
detection (Khomh et al., 2011b; Maiga et al., 2012;
Amorim et al., 2015; Fontana et al., 2015).

Table 1: Types of Code Smells investigated in this study.

Name Description
God
Class

Classes that tend to centralize the intelligence of the system

Data
Class

Classes that have fields, getting and setting methods for the
fields, and nothing else

Long
Met-
hod

A method that is too long and tries to do too much

Feature
Envy

Methods that use more attributes from other classes than
from its own class, and use many attributes from few classes

We evaluated and compared 6 ML-algorithms,
which reached a high accuracy in detecting code
smells during the experiments presented in (Fontana
et al., 2015). Initially, we applied these algorithms
by following the same configuration adopted (Fontana
et al., 2015) and then we tried other configurations
in order to find one in which the analyzed algorithm
could reach its highest efficiency. We present below
a short description of the algorithms analyzed in our
study:

• J48: an implementation of the C4.5 decision tree.

• JRip: an implementation of a propositional rule
learner.

• Random Forest: a classifier that builds many
classification trees as a forest of random decision
trees.

• Naive Bayes: a simple probabilistic classifier ba-
sed on applying Bayes’ theorem.

• SMO: an implementation of John Platt’s sequen-
tial minimal optimization algorithm to train a sup-
port vector classifier.

• SVM: an integrated software for support vector
classification.

We used the Weka (Hall et al., 2009) implemen-
tation of these ML-algorithms. In order to provide a
fair comparison, we created an environment in which
all algorithms were executed by considering a same
set of data in each execution.
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3.2 Building the Oracle Datasets

We built a set of data containing examples of
(non-)smells according to the developers’ input. For
this, we sent an invitation message to several contacts
from academy and industry. We were able to recruit
40 developers with at least 3 years experience in soft-
ware development and code smell detection, which
had emphasis on software quality.

The selected developers evaluated a set of code
snippets by looking for a specific smell type. The
code snippets comprehend methods or classes sus-
pects of containing the smell type under analysis. For
example, to recognize the occurrence of God Class,
the developers analyzed classes that could contain
this smell type. The developer concluded each clas-
sification by answering: YES, if he agrees that the
code snippet contained the specified smell type; and
NO, otherwise. The code snippets used in our study
were extracted from GanttProject1 (v2.0.10), an open
source Java project. We selected this project because
they had been used in other studies related to code
smells (Moha et al., 2010; Khomh et al., 2011b; Fon-
tana et al., 2015). Moreover, such studies reported a
variety of suspicious code smells in this project. In
this context, the code snippets that were evaluated in
our study counted with several of these reported in-
stances.

In order to create the datasets that were conside-
red in our study, we divided the 40 developers into
4 groups. Each group, composed of 10 participants,
was responsible for analyzing one of the smell types
described in Table 1. To this aim, each group analy-
zed a set of 15 code snippets, and each participant of
the group classified each snippet indicating the occur-
rence or not of the smell type assigned to the group.
Each set of 15 evaluations performed by a single de-
veloper detecting a given code smell formed an oracle
that was used to train the ML-algorithms in our study.
This way, the 600 classifications formed, in total, 40
oracle datasets.

To verify if the participants had different percep-
tions about smells, all the developers of a group ana-
lyzed the same set of 15 code snippets. From that,
we could assess the agreement degree among the 10
developers that analyzed a single code smell type.
Such agreement was calculated by using the Fleiss’
Kappa, which is a measure to evaluate the concor-
dance or agreement among multiple raters (Fleiss,
1971). This measure reports a number lower or equal
to 1. A Kappa value equal to 1, means that the raters
are in complete agreement. The categories presen-
ted in (Landis and Koch, 1977), propose that a low

1http://www.ganttproject.biz/

Table 2: Inter-rater agreement for each code smell type.

Code Smell Agreement
Strength defined by

(Landis and Koch, 1977)
God Class 0.308 Fair
Data Class 0.421 Moderate
Long Method 0.322 Fair
Feature Envy 0.222 Fair

agreement is verified in values close or below 0, and
that values above 0.6 represent substantial agreement.

After collecting all developers’ evaluations and
assessed the Kappa measure, we verified the inter-
rater agreement for each smell type as described in
Table 2. The developers that evaluated the Data
Class smell, presented the higher, albeit still weak,
agreement. They reached an Kappa value equals to
0.421, that is considered a Moderate agreement. All
the remaining smells were evaluated by developers
that presented a Fair agreement. The Kappa results
for them varied from 0.222 (Feature Envy) to 0.308
(God Class). From such results, we confirmed that
the developers that built the oracle datasets present
different perceptions about the smells analyzed in our
study. Such fact enable us to analyze the accuracy
of the ML-algorithms on detecting code smells from
these oracles aiming at answering our research ques-
tions.

3.3 Experimentation Phase

Using the datasets containing the developers’ evalua-
tions and the software metrics for each analyzed snip-
pet, we performed two different experiments trying to
answer the research questions, as follows:

1) Accuracy – Analyzes the accuracy of the ML-
algorithms globally and by developer. The algorithms
are used to produce a classifier model for each deve-
loper that evaluated a single smell type. In this sce-
nario we used each one of the 40 oracle datasets (10
for each smell) as input through a 5-fold cross vali-
dation procedure. The creation of the experimented
folds was guided to balance the number of code smell
instances for each fold. As each participant classi-
fied manually each oracle used in our experiment, we
could not control that such oracle was composed of
a closest number of smell and non-smell instances.
Moreover, in order to limit over-fitting problems, we
repeated this procedure 10 times. In the end, we mea-
sured the mean of the accuracy reached by the produ-
ced classifier models on detecting the smell instances
over the remaining fold.

2) Efficiency – Analyzes the accuracy of the ML-
approaches according to the number of examples used
as training. For each oracle dataset, we randomly
ordered their evaluations and ran the ML-algorithms
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with a varied number of these evaluations. Next, we
executed the ML-algorithms 15 times, where the n-
execution considers as learning the n first evaluations
in the ordered dataset. The produced classifier mo-
dels were tested on the entire dataset, containing the
15 examples. At end of each execution, we assessed
the accuracy of the classifier model defined by the al-
gorithms over the dataset. Each procedure with the 15
executions were repeated 10 times, in order to limit
overfitting problems. Again, we measure the mean of
accuracy reached by each algorithm on considering
all executions.

4 RESULTS AND DISCUSSION

This section presents and discusses the main results
of the study.

4.1 Overall Accuracy

Figure 2 presents the results concerning the mean va-
lues of accuracy obtained by the ML-algorithms on
detecting the smell types God Class, Long method,
Data Class and Feature Envy. We attach the exact
mean value to the bar associated with each algorithm.
The legend on top of the figure describes the colors
used to identify each algorithm.

Figure 2: Mean of accuracy reached by the ML-algorithms
on detecting smells.

As we can observe, the results of each algorithm
in each smell type are quite diverse. In fact, the algo-
rithms that present better results in a smell present in
many cases much lower results for other smells. Furt-
hermore, none of the ML-algorithms analyzed in our
study was able to reach a mean above 0.635.

Random Forest presented the best results on de-
tecting God Class and Data Class, but SMO perfor-
med better in Long Method and Feature Envy smells.
These results suggest that the accuracy of the algo-
rithms may be influenced by the scope of the type of
code smell analyzed. While the God Class and Data
Class are related to classes, the Long Method and Fe-
ature Envy are more related to methods.

Regarding the God Class, the SMO reached only
≈0.44, which is the lowest mean value of accuracy
observed in all analysis. On the other hand, the
Random Forest reached a mean 45% higher than SMO
by reaching ≈0.64, which also correspond to highest
observed mean value. JRip, Naive Bayes and SVM
were still able to reach values greater than 0.6. Fi-
nally, J48 reached ≈0.54, which is an intermediate
value between the mean obtained by the SMO and the
other algorithms.

Similarly, Random Forest also reached the highest
mean value of accuracy on detecting Data Class. In-
deed, Random Forest was the only algorithm to re-
ach a mean greater than 0.6. The algorithms J48,
JRip, SMO and SVM reached values between 0.57
and 0.58. The lowest mean 0.49 was obtained by the
Naive Bayes.

For Long Method, Random Forest was not able to
reach the highest mean. Regarding this smell type, the
highest mean values were obtained by the algorithms
SMO and SVM, both reached ≈0.60. Next, the al-
gorithm Naive Bayes reached ≈0.58. The remaining
algorithms reached values around ≈0.52.

Regarding the Feature Envy, we observe that
even though none of the algorithms was able to re-
ach a mean above 0.6 on detecting this smell type,
they did not reach a mean below 0.5. While the hig-
hest mean 0.578 was obtained by the SMO, the JRip
reached the lowest mean 0.511.

The analysis of these results provides us with the
answer to the research question RQ1. The results
indicate that, in average, the algorithms were not
able to detect smells with high accuracy for develo-
pers with different perceptions. In fact, we observe
that the accuracy of each ML-algorithm depends on
the type of smells being studied.

4.2 Accuracy by Developer

After analyzing the overall accuracy obtained by the
ML-algorithms, we decided to perform a deeper in-
vestigation on the accuracy reached by each algorithm
in order to better understanding how these algorithms
deal with the individual perception of each developer.

Table 3 presents the results obtained. The first co-
lumn describes the smell type in analysis. The se-
cond column identifies the developer that evaluated
the code snippets related to each smell type, as descri-
bed in Section 3.2. The following six columns report
the accuracy reached by each ML-algorithm. Besi-
des the accuracy values, we also report the mean of
the accuracy values obtained by each algorithm on
detecting the smell type in analysis. From the re-
sults described in Table 3, we can identify the accu-
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racy obtained by each algorithm on detecting smells
for each developer. In particular, we can recognize
the algorithms that reached higher accuracy to a spe-
cific developer. In order to improve our discussion,
we highlight (in gray) the cells containing the higher
accuracies for each developer in the table. In addi-
tion, the lowest accuracy reached by the algorithms
on detecting a given smell are marked in red.
God Class. The SVM reached an accuracy higher
than the other algorithms on detecting God Class to
the developers 1, 3 and 7-10. However, it also obtai-
ned the lowest accuracy, among all the God Class ana-
lysis, on detecting smells to the Developer 2. On the
other hand, the Random Forest reached higher accu-
racy only to the developers 2 and 4-6, but it obtai-
ned the highest value of accuracy, among all the God
Class analysis, on detecting smells to the Developer
4. The SMO, JRip, J48 and Naive Bayes did not reach
an accuracy higher than the other algorithms for any
developer.
Data Class. Regarding the Data Class, even the
Naive Bayes that reached the lowest mean, it could
reach an accuracy equal or higher than the other algo-
rithms on detecting this smell type to the Developers
18 and 20. We also observe that the SVM reached
the same accuracy of the Naive Bayes to the develo-
pers 18 and 20. In addition, the SVM reached higher
accuracy than the other algorithms to the Developer
16. However, we note that the SVM reached the lo-
west accuracy, among all the Data Class analysis, on
detecting smells to the developer 17.

The Random Forest, which obtained the highest
mean, could reach an accuracy equal or higher than
the other algorithms only to the developers 13, 14
and 17. Note the JRip obtained the same accuracy
of the Random Forest to the Developer 14. Moreo-
ver, the JRip reached a higher accuracy to the deve-
lopers 15 and 19. In the case of the Developer 19,
the JRip obtained the highest accuracy, among all the
Data Class analysis. Finally, the J48 obtained higher
accuracy than the other algorithms to the developers
11-12.
Long Method. The SVM and SMO reached the hig-
hest means on detecting Long Method to the develo-
pers. While the SVM could reach higher accuracy
than the other algorithms only to the Developer 30,
the SMO reached higher accuracy to five developers:
21, 22, 26, 28 and 29. However, the SMO obtained
the lowest accuracy among all the algorithms on de-
tecting Long Method to the Developer 27.

The J48 and Random Forest reached higher accu-
racy than the other algorithms on detecting Long Met-
hod to the developers 25. In addition, the J48 obtai-
ned higher accuracy to the Developer 23. Finally, the

Table 3: Accuracy of the ML-algorithms on detecting
smells for each developer.

Dev
Accuracy

J48 JRip RF SMO NB SVM

GC

1 0.407 0.633 0.493 0.400 0.640 0.667
2 0.547 0.647 0.707 0.587 0.493 0.360
3 0.473 0.573 0.593 0.387 0.593 0.667
4 0.640 0.667 0.760 0.433 0.747 0.667
5 0.587 0.667 0.753 0.420 0.720 0.667
6 0.533 0.580 0.747 0.467 0.500 0.387
7 0.500 0.580 0.467 0.427 0.547 0.600
8 0.567 0.540 0.607 0.440 0.647 0.667
9 0.480 0.593 0.627 0.373 0.613 0.667

10 0.660 0.640 0.600 0.440 0.580 0.667
Mean 0.539 0.612 0.635 0.437 0.608 0.601

Dev J48 JRip RF SMO NB SVM

DC

11 0.693 0.673 0.513 0.453 0.380 0.600
12 0.693 0.400 0.640 0.533 0.533 0.533
13 0.420 0.480 0.613 0.413 0.433 0.600
14 0.627 0.813 0.813 0.627 0.420 0.600
15 0.627 0.780 0.733 0.640 0.400 0.600
16 0.480 0.433 0.453 0.420 0.540 0.600
17 0.473 0.520 0.640 0.500 0.453 0.333
18 0.460 0.340 0.600 0.427 0.667 0.667
19 0.660 0.840 0.753 0.633 0.407 0.600
20 0.607 0.447 0.540 0.667 0.667 0.667

Mean 0.574 0.573 0.630 0.531 0.490 0.580
Dev J48 JRip RF SMO NB SVM

LM

21 0.487 0.500 0.500 0.627 0.600 0.600
22 0.560 0.600 0.600 0.780 0.700 0.600
23 0.627 0.600 0.480 0.487 0.520 0.600
24 0.407 0.433 0.560 0.667 0.700 0.667
25 0.593 0.527 0.593 0.547 0.480 0.533
26 0.427 0.480 0.520 0.547 0.487 0.533
27 0.427 0.473 0.400 0.373 0.747 0.667
28 0.480 0.467 0.467 0.827 0.540 0.533
29 0.527 0.493 0.507 0.747 0.600 0.600
30 0.633 0.640 0.600 0.413 0.387 0.667

Mean 0.517 0.521 0.523 0.601 0.576 0.600
Dev J48 JRip RF SMO NB SVM

FE

31 0.593 0.520 0.540 0.567 0.467 0.580
32 0.453 0.547 0.447 0.473 0.273 0.600
33 0.693 0.593 0.607 0.620 0.467 0.587
34 0.547 0.467 0.547 0.527 0.613 0.420
35 0.613 0.533 0.513 0.540 0.533 0.600
36 0.600 0.600 0.587 0.587 0.687 0.600
37 0.533 0.413 0.580 0.740 0.760 0.453
38 0.527 0.533 0.660 0.653 0.760 0.593
39 0.453 0.360 0.407 0.420 0.453 0.327
40 0.533 0.547 0.547 0.653 0.533 0.600

Mean 0.555 0.511 0.543 0.578 0.555 0.536
GC-God Class, DC-Data Class, LM-Long Method, FE-Feature Envy

Naive Bayes obtained higher accuracy to the Develo-
pers 24 and 27.
Feature Envy. Regarding the Feature Envy, the SMO
reached higher accuracy than the other algorithms
only to the Developer 40. Similarly to the SMO, the
SVM also reached higher accuracy only to a specific
developer (32).

We also note that the Naive Bayes could reach hig-
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her accuracy than the other algorithms to five develo-
pers: 34 and 36-39. However, it also obtained the lo-
west accuracy among all the algorithms on detecting
Feature Envy to the Developer 32. Finally, the J48
obtained a higher accuracy to four developers: 31, 33,
35 and 39.

These results help us to answer the RQ2 presen-
ted on Section 3. Such results indicate that each algo-
rithm reached a wide range of accuracy values on de-
tecting a same smell type for different developers. In
fact, the results show that the accuracy obtained by
each algorithm is very sensitive to the smell type
and the developer. To make matters worse, some
algorithms that reached higher accuracy than the ot-
her algorithms on detecting a specific smell type to a
developer, also obtained the lowest accuracy on de-
tecting the same smell type to other developers.

4.3 Efficiency

In this section, we analyze the efficiency of the ML-
algorithms, i.e., the number of examples required by
each algorithm to reach its accuracy. Figure 3 presents
the results of our evaluations that support the research
question RQ3. The charts describe the learning cur-
ves that represent the efficiency reached by each al-
gorithm on detecting the smell types God Class, Data
Class, Long Method and Feature Envy, respectively.
The y-axis represents the mean of the accuracy va-
lues obtained by each algorithm on detecting smells
for different developers. The x-axis represents the
number of examples used in the learning phase by the
algorithm to reach such mean. For instance, in the
case of the God Class, the algorithm SMO reached
a mean accuracy of 0.450 by using only 7 examples.
We ranged the number of examples from 1 to 15 be-
cause each developer analyzed 15 code snippets, as
described in Section 3.2.

Concerning the God Class, all the analyzed algo-
rithms reached a mean between 0.55 and 0.6 by using
only one example. The only exception is the Naive
Bayes (NB) that obtained a mean lower than 0.5. Ho-
wever, the efficiency of these algorithms suffered dif-
ferent variations as we increase the number of exam-
ples. We observe that the Random Forest (RF) was the
only algorithm to reach mean values above 0.65. In-
deed, none algorithm was able to overcome the mean
obtained by the Random Forest when we considered
more than three examples in the learning phase. On
the other hand, the algorithm SMO presented the lo-
west mean by using more than three examples. In ad-
dition, we note that this algorithm tended to decrease
its mean in almost all cases analyzed from 1 to 15 ex-
amples, reaching a mean lower than 0.4 by using

15 examples. Such result was a surprising for us be-
cause we expected that the algorithms could improve
its accuracy as we increase the number of examples.
The remaining algorithms reached an mean between
0.45 and 0.65.

Similarly, the Random Forest also reached the hig-
hest mean in the majority of the cases related to the
Data Class. The only exceptions occurred when we
considered 2 or more than 13 examples. In the first
case, the SVM, SMO and Naive Bayes reached a
mean equal or greater than the Random Forest. In
the second case, the J48 overcame the Random Fo-
rest. In addition, we observe that the J48 presented
a consistence increase in its accuracy after conside-
ring more than 12 examples. As a consequence, only
the J48 could reach a mean above 0.7 among all the
cases investigated in the four smell types analyzed in
our study. Regarding the SVM and Naive Bayes, alt-
hough they had reached the highest mean values by
using only two examples, their mean values decrea-
sed on considering three examples. From this point,
they could not reach a mean above 0.6 as we increase
the number of examples.

For Long Method, the algorithm SMO reached
mean values equal or greater than the other algorithms
in almost all cases. The only exception occurred when
we considered 10 examples, where the Naive Bayes
overcame the SMO. We also note that the SVM pre-
sented a consistent increase in its accuracy from three
examples, reaching a mean of 0.6. However, it was
not able to overcome the SMO in any analyzed case.
The algorithms J48 and JRip always reach values be-
tween 0.5 and 0.55 in the majority of the cases. Alt-
hough the Random Forest had obtained the highest
efficiency in the vast majority of the cases related to
God Class and Data Class, it was not able to maintain
its efficiency on detecting Long Method.

Regarding the Feature Envy, the algorithm Naive
Bayes reached the highest mean in the most of the
cases. The exceptions occurred when we conside-
red from 2 to 5 examples, where the SMO reached
mean values equal or greater than Naive Bayes. Even
though the SMO has been overcome by the Naive
Bayes in most of the analyzed cases, the SMO presen-
ted an increase in its accuracy as we considered more
examples. Indeed, the SMO reached a mean grea-
ter than the remaining algorithms (J48, JRip, Random
Forest and SVM) in the vast majority of the analyzed
cases. The only exception occurred when conside-
red 8 examples, where the SMO was overcome by the
Random Forest and Naive Bayes.

The analysis of these results provides us with the
answer to the research question RQ3. The results
show that in most cases, the algorithms are not
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(a) God Class (b) Data Class (c) Long Method (d) Feature Envy
Figure 3: Learning curves of the ML-algorithms on detecting smells.

accurate when trained with a small training set. In
fact, the tendency in most cases is for increasing mean
accuracy. The results also shows that the efficiency
of the algorithm varies substantially depending on the
type of code smells being evaluated.

5 THREATS TO VALIDITY

In this section we discuss the threats to validity by
following the criteria defined in (Wohlin et al., 2000).
Construct Validity. The oracle datasets that suppor-
ted our study were built with from a huge quantity of
code snippets manually evaluated by developers. In
this case, the developers evaluated each snippet by re-
porting the option “YES” or “NO”, referring the pre-
sence or absence of a given code smell into the snip-
pet. Providing only these two options may be a threat,
since the developers could not inform the degree of
confidence in their answers. However, we adopted
such procedure aiming at ensuring that the develo-
pers were able to decide about the existence of a code
smell and we could obtain a set of examples that ena-
bles to evaluate the efficiency of the ML-algorithms.
Internal Validity. The use of the Weka tool to imple-
ment the algorithms analyzed in our study enabled to
experiment a variety of configurations, which affect
the learning process. Thus, the configurations consi-
dered in our experiments may impact in the accuracy
and efficiency of the algorithms. In order to mitigate
this threat, we configured all algorithms according to
the better settings defined in (Fontana et al., 2015).
Indeed, that study performed a variety of experiments
in order to find the best adjust for each algorithm.
External Validity. The code snippets evaluated
by the developers were extracted from only 1 Java
project, named GanttProject. Such project has
been widely used in other works related to code
smell (Khomh et al., 2011b; Moha et al., 2010; Maiga
et al., 2012). However, although the implementation
of this project presents classes and methods with dif-
ferent characteristics (i.e. size and complexity), our
results might not hold to other projects. In the same

way, even though we have performed our experiments
with 40 different developers, our results might not
also hold for other developers since they may have
different perceptions about the code smells analyzed
in our study (Mäntylä and Lassenius, 2006; Schuma-
cher et al., 2010; Santos et al., 2013).

6 CONCLUSION

This paper presented the results of a study that evalu-
ated the accuracy of ML-algorithms on the detection
of code smells for different developers. This inves-
tigation is important because machine learning has
been considering a promising way to customize the
code smell detection. Nevertheless, to the best of
our knowledge, there are no study that evaluate the
performance of ML-algorithms on customizing the
detection for developers with different perceptions
about code smells.

We used 6 ML-algorithms to detect smells for 40
software developers that differently detected instan-
ces of 4 code smell types. Altogether, we counted
with 600 evaluations, that supported our study. With
such data we ran two different experiments aiming at
analyzing the accuracy and efficiency of the analyzed
algorithms.

According to our results, the ML-algorithms were
not able to detect smells with high accuracy for the
developers that participated of our study. In this con-
text, the quantity of examples considered on training
may difficult the learning. However, given that diffe-
rent developers have different perceptions about code
smells, and the context may influence in their deci-
sion, the detection approaches must be able to custo-
mize with a limited portion of data to customize the
detection. After all, in a real scenario it is not reaso-
nable that a developer evaluates manually hundreds of
code snippets before in order to customize a detection
approach. This way, other strategies to speed up the
customization performed by the ML-algorithms must
be investigated.

Independently of the accuracy levels, we observed
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that the ML-algorithms are sensitive to the smell type
and the developer. For instance, while the SMO pre-
sented the higher accuracies on detecting Long Met-
hod and Feature Envy smells, such algorithm pre-
sented lowest accuracies on detecting God Class and
Data Class instances. An, almost, inverted behaviour
was verified by the Random Forest algorithm. Simi-
larly, even when an algorithm presented a mean high
accuracy on detecting a given smell, his performance
was not consistent on on detecting such anomalies for
the different developers.

Finally, we will make the dataset used in our ex-
periments available in order to help other studies in
smell detection. We had no knowledge of other data-
sets with a large portion of evaluations manually vali-
dated by different developers over a same set of code
snippets. Thus, the availability of this dataset repre-
sents another contribution of this paper.
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