
Unity Decision Guidance Management System:
Analytics Engine and Reusable Model Repository

Mohamad Omar Nachawati1, Alexander Brodsky1 and Juan Luo2

1Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A.
2Information Technology Unit, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A.

Keywords: Advanced Analytics, Decision Guidance Management Systems, Decision Support Systems, Decision Man-
agement Systems, Knowledge Management, Modeling, Simulation, Optimization, Machine Learning.

Abstract: Enterprises across all industries increasingly depend on decision guidance systems to facilitate decision-
making across all lines of business. Despite significant technological advances, current paradigms for devel-
oping decision guidance systems lead to a tight-integration of the analytic models, algorithms and underlying
tools that comprise these systems, which inhibits both reusability and interoperability. To address these limi-
tations, this paper focuses on the development of the Unity analytics engine, which enables the construction of
decision guidance systems from a repository of reusable analytic models that are expressed in JSONiq. Unity
extends JSONiq with support for algebraic modeling using a symbolic computation-based technique and com-
piles reusable analytic models into lower-level, tool-specific representations for analysis. In this paper, we also
propose a conceptual architecture for a Decision Guidance Management System, based on Unity, to support
the rapid development of decision guidance systems. Finally, we conduct a preliminary experimental study
on the overhead introduced by automatically translating reusable analytic models into tool-specific representa-
tions for analysis. Initial results indicate that the execution times of optimization models that are automatically
generated by Unity from reusable analytic models are within a small constant factor of that of corresponding,
manually-crafted optimization models.

1 INTRODUCTION

Organizations increasingly use automated decision
support (ADS) systems to streamline and improve
decision-making across a variety of different do-
mains, including manufacturing, supply-chain man-
agement, health-care, government operations and
marketing (Meleancă, 2013; Taylor, 2015). This pa-
per is concerned with the rapid development of de-
cision guidance systems, a class of decision sup-
port systems (DSS) geared toward actionable recom-
mendations. These systems are often deployed in
a service-oriented architecture that encapsulate ex-
ecutable decision-making logic that can be invoked
by different decision-making clients, such as business
process management systems, as well as human an-
alysts through integrated and model-driven develop-
ment environments (Taylor, 2011).

However, despite significant technological ad-
vances, current approaches for developing decision
guidance systems to automate decision-making lead
to a tight-integration between analytic models, algo-

rithms and underlying tools that comprise these sys-
tems. Such difficulties can be attributed to diverse and
low-level abstractions provided by current paradigms,
which preclude the reuse of analytic models across
different analytical tasks. Thus the same underlying
reality must often be modeled multiple times using
different mathematical abstractions, instead of being
modeled just once, uniformly (Brodsky et al., 2016a;
Brodsky and Luo, 2015). Also, the modeling pro-
ficiency required by these languages is typically not
within the realm of expertise of many business users,
such as executives, analysts and application devel-
opers. Consequently, development projects often re-
quire a team with diverse interdisciplinary expertise,
are prone to budget overruns and unexpected delays,
and often result in software that is non-reusable, non-
extensible, and locked-in to proprietary tool vendors
(Brodsky et al., 2016a; Brodsky and Luo, 2015).

To address this problem, earlier work (Brodsky
et al., 2016a; Brodsky and Luo, 2015) proposed the
Decision Guidance Analytics Language (DGAL) as
a solution for developing reusable analytic models in

312
Nachawati, M., Brodsky, A. and Luo, J.
Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository.
DOI: 10.5220/0006338703120323
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 312-323
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

JSONiq, a JSON-based query language itself an ex-
tension to XQuery. However, this work was concep-
tual in nature and did not focus on the problems of
compilation and execution of reusable analytic mod-
els. We further discuss related work in Section 2.

Addressing these issues is exactly the focus of
this paper. Specifically, the contributions of this pa-
per are as follows. First, we developed an analytics
engine, called Unity, to support the development of
decision guidance systems from a repository of ana-
lytic models, which can be reused for different ana-
lytical tasks. Unity’s uniqueness lies in its core deci-
sion guidance algorithms, including optimization and
learning, which do not require lower-level level mod-
els (e.g., in AMPL for optimization problems), but
rather automatically generate lower-level, task- and
tool-specific models from reusable analytic models,
which are task- and tool-independent. We developed
an algorithm to perform deterministic optimization
against such models, based on a reduction to stan-
dard optimization problem formulation in AMPL and
OPL, which can be solved using a variety existing
optimization solvers, such as CPLEX and MINOS.
To support the reduction, we developed algorithms
based on symbolic computation, which output mathe-
matical constraints encoded as a JSON object. These
symbolic computation algorithms are also suitable to
implement other decision guidance functionality, in-
cluding machine learning, through reduction to lower-
level models.

Second, we propose a conceptual architecture
for a NoSQL-based Decision Guidance Management
System (DGMS) that is built around Unity to sup-
port the seamless integration and interoperability of
decision guidance applications, analytic models, al-
gorithms and underlying tools. The uniqueness of
this architecture is that it centered around a knowl-
edge base of analytic models, which can be reused for
various analytical tasks such as prediction, optimiza-
tion and statistical learning without the need to man-
ually create lower-level task- and tool-specific mod-
els. Finally, we conduct an initial experimental study
on the overhead of compiled analytic models. Our
evaluation in this paper is limited to the execution
time overhead of optimization models generated au-
tomatically by Unity. Initial results indicate that the
execution times of optimization models that are auto-
matically generated from reusable analytic models are
within a small constant factor of that of correspond-
ing, manually-crafted optimization models.

The rest of this paper is organized as follows. In
the next section, we briefly discuss some relevant
background and related work. In the following sec-
tion, we propose an architecture for a NoSQL-based

DGMS based around Unity, and describe each of its
major components. Then we provide an overview of
reusable analytic modeling, and show how to develop
a simple decision guidance system with Unity. Next,
we move on to describe the implementation of the
Unity analytics engine, to include the symbolic com-
putation approach, the intermediate representation,
and an algorithm for implementing the DGAL opera-
tor for deterministic optimization against reusable an-
alytic models. Finally, we present the experimental
study and then conclude the paper with some brief re-
marks on future work.

2 BACKGROUND AND RELATED
WORK

In this section, we further discuss related work. De-
spite its mixed reception and slow adoption due to,
among other reasons, unfavorable market conditions
and lack of integration and maturity, automated de-
cision system technology is now widely used across
many industries (Davenport and Harris, 2005; Patter-
son et al., 2005). These systems often depend on an-
alytic models to provide actionable recommendations
upon which decisions are made. In this paper, we use
the term decision guidance system to refer to an ad-
vanced class of decision support systems that are de-
signed to provide actionable recommendations using
a variety of different analytic models, algorithms and
data (Brodsky and Wang, 2008). While decision guid-
ance systems are not restricted to automated decision-
making, they often serve to support them. Also, as
a clarification, the term decision guidance is distinct
from decisional guidance, which is known in the lit-
erature as the degree to which a DSS influences user
decisions (Silver, 1991; Parikh et al., 2001).

Decision guidance systems are built on top of a va-
riety of lower-level tools that provide the full gamut of
business analytic capabilities, ranging from descrip-
tive to diagnostic to predictive to prescriptive analyt-
ics. There have been several attempts to classify DSSs
(Alter, 1980; Arnott, 1998; Hackathorn and Keen,
1981; Haettenschwiler, 2001), including one such
classification, by Power, that classifies these systems
into five different categories per underlying technol-
ogy, namely data-driven, model-driven, knowledge-
driven, document-driven and communications-driven
(Power, 2001). On the other hand, state-of-the-art de-
cision guidance systems often combine multiple ap-
proaches into one integrated system to solve complex
analytical problems (Brodsky et al., 2016b; Brodsky
and Luo, 2015; Luo et al., 2012).

Brodsky and Wang introduced a new type of plat-

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

313

form that they referred to as a Decision Guidance
Management System (DGMS), which was designed
to simplify the development of decision guidance sys-
tems by seamlessly integrating support for data ac-
quisition, learning, prediction, and optimization on
top of the data query and manipulation capabilities
typically provided by a DBMS (Brodsky and Wang,
2008). While this work laid the foundation for addi-
tional research, it did not address the technical chal-
lenges surrounding the development of a functional
system. Specifically, it did not develop any underly-
ing algorithms to support the decision guidance ca-
pabilities of the proposed system, such as simula-
tion, optimization and learning. The proposed ar-
chitecture was also limited to the relational model,
and lacked support for developing analytic models on
top of NoSQL data stores, which support more flex-
ible, semi-structured data formats, such as XML and
JSON. Furthermore, due to the inherent limitations of
SQL, to re-purpose the language for decision guid-
ance modeling and analysis, a few non-standard syn-
tactic extensions were developed, which collectively
was called DG-SQL. Introducing new language di-
alects, however, can break the interoperability of ex-
isting development tools, reduce the reusability of ex-
isting code and inhibit wide-spread adoption (Lam-
mel and Verhoef, 2001; Shneiderman, 1975).

More recently, progress was made by Brodsky
et al. with the proposal of the Decision Guidance
Analytics Language (DGAL), which was designed
as an alternative to DG-SQL for developing deci-
sion guidance systems over NoSQL data stores (Brod-
sky et al., 2016a; Brodsky and Luo, 2015). In-
stead of SQL, DGAL is based on JSONiq, which is
a more expressive, NoSQL query language. JSONiq
was designed specifically for querying JSON docu-
ments and NoSQL data stores, and itself is based on
the XQuery language (Florescu and Fourny, 2013),
which provides highly-expressive querying capabili-
ties centered around the FLWOR construct (Cham-
berlin et al., 2003). Although this work focused on
proposing the DGAL language, it did not propose
an architecture for a NoSQL-based DGMS developed
around DGAL, nor did it address how to compile and
execute analytic models, both of which we cover in
this paper.

Rather than extending the syntax of an existing
language, as what was done in DG-SQL, DGAL is,
by design, syntactically equivalent to JSONiq. Un-
like purely library-based approaches for developing
analytic models such as the Concert API, the DGAL
language is designed to support algebraic modeling,
similar to SymPy and JuMP, which allow modelers to
specify equations directly using the native expression

operators of the host language. While SymPy is a full-
blown computer algebra system for Python (Joyner
et al., 2012), and JuMP is a domain specific mod-
eling language for optimization in Julia (Lubin and
Dunning, 2015), DGAL is a lighter-weight, algebraic
modeling language designed to specifically to sup-
port the development of reusable analytic models. To
support decision guidance, DGAL introduces a small
library of core decision guidance operators for dif-
ferent analytical tasks, such as optimization and ma-
chine learning, which are exposed as regular JSONiq
functions (Brodsky et al., 2016a; Brodsky and Luo,
2015). While these operators appear as regular func-
tions in JSONiq, they require a non-standard inter-
pretation of the language to implement. Thus, while
DGAL is syntactically equivalent to JSONiq, the de-
cision guidance operators have semantics that extend
that of the JSONiq language. Although the seman-
tics of these operators are intuitive, the underlying al-
gorithms needed to implement them are significantly
more complex.

3 NOSQL-BASED DECISION
GUIDANCE MANAGEMENT
SYSTEM ARCHITECTURE

In this section, we present a conceptual system ar-
chitecture for decision guidance systems using the
proposed Decision Guidance Management System
(DGMS). The architecture we describe is illustrated
in Figure 1. The DGMS middleware, represented
by the empty black rectangle, is composed of three-
layers, namely the application management layer, the
decision guidance analytics management layer, and
the tool management layer. Within this middleware,
the Unity analytics engine, represented by the solid
black rectangle, is situated between the client layer
and external tool layer, and transparently connects
different clients to the lower-level, external tools that
support decision guidance. Keeping with the goals
that motivated the earlier DGMS proposal (Brodsky
and Wang, 2008), our proposed architecture is de-
signed to provide seamless support for data acquisi-
tion, learning, prediction, and optimization. How-
ever, unlike the former, which uses DG-SQL for
analytic modeling, we replace the role of DG-SQL
with DGAL. Specifically, in our proposed architec-
ture, DGAL serves as both a language for developing
reusable analytic models as well as for executing an-
alytical queries against those models.

The proposed architecture supports several differ-
ent user roles for interacting with the system, to in-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

314

Figure 1: Proposed Architecture for a NoSQL-based Decision Guidance Management System.

clude decision makers, contributors, analysts, model-
ers, developers, and administrators. The roles are not
mutually exclusive and therefore a single user may
serve different roles, depending on their specific re-
quirements. Decision-makers are the end-users of de-
cision guidance, and can be either human operators
or a decision-guided applications or services, such as
business processes, workflows and intelligent agents.
Contributors are users that run ETL processes and
provide data-entry into the decision guidance repos-
itory. These users can also manage data models and
data sources. Analysts are technical users that man-
age the life-cycle of analytic models in the repository,
and can design new views, dashboards, forms and re-
ports. Analysts can also design workflows and busi-
ness rules for automating repetitive decisions based
on decision guidance provided by the system. Mod-
elers are technical users, typically with a data science
background, that devise mathematical representations
of metrics and constraints for new analytic models to
be published in the repository. If such a user does
not have the technical expertise to develop analytic

models from scratch, they can easily mash up new
models by composing and specializing existing ones
from the repository. Developers are technical users
with experience in software development that build
custom applications that provide extended function-
ality to meet domain-specific requirements. Finally,
administrators are users that have administrative ac-
cess to the system, to handle system configuration,
user management and security.

The client layer includes diverse, domain-specific
applications that support the development and man-
agement of decision guidance systems. The archi-
tecture would provide an API for connecting to a va-
riety of third-party clients, including information vi-
sualization tools, model-driven engineering tools, in-
tegrated development environments and external sys-
tems, such as SCADA or IoT devices.

A primary objective of the proposed architecture
is to facilitate the development of decision guidance
systems by allowing users to work at different lev-
els of abstraction per their skills and expertise. For
example, modelers with expertise in operations re-

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

315

search can use the full power of mathematical con-
straints to create reusable analytic models directly in
JSONiq. Business analysts without an operations re-
search background could then graphically compose
and specialize these expertly crafted models to ad-
dress specific problems using a model-driven engi-
neering tool. They could also develop analytical
views and dashboards using a data visualization tool.

The application management layer provides sev-
eral services to support the rapid development of de-
cision guidance systems. Decision service manage-
ment supports the development and operation of de-
cision services based on analytic models contained
in the repository. View and dashboard management
provide tools to create analytical views and templates
for the rapid development of interactive dashboards.
Analytical views are like regular database views, ex-
cept that they are based on one or more analytic mod-
els and DGAL operators. Form and report manage-
ment supports the development and use of forms and
notebooks for data collection, reporting and publish-
ing. Workflow and rule management supports the de-
velopment and execution of workflows and business
rules for the rapid development of simple automated
decision systems. Finally, custom application man-
agement would provide an API for building domain-
specific, decision-guided applications.

The analytics management layer hides the com-
plexity of dealing with different external tools that
provide the essential analytical capabilities of a de-
cision guidance system. This layer is composed of
the Unity analytics engine, a decision guidance repos-
itory, and a variety of different decision guidance al-
gorithms. The decision guidance repository provides
uniform access to the different artifacts that together
constitute the business knowledge used to support de-
cision guidance. The different types of artifacts stored
in the decision guidance repository include, but are
not limited to data models, analytic models, business
rules, DMN-based decision models, data sources, and
ontologies. The Unity analytics engine serves as a
bridge between the analytic models in the reposi-
tory, decision guidance algorithms and the lower-level
tools used to implement them.

The proposed architecture is designed to support
three kinds of analytic models, namely white-box,
black-box and gray-box models. With white-box ana-
lytic models, the source code of the model is stored
in the decision guidance repository, and the execu-
tion of such models is performed locally by the an-
alytics engine. While white-box analytic models can
help decision-makers better understand the logic be-
hind the computation of metrics and constraints, they
would not be suitable for models containing propri-

etary knowledge. On the other hand, with black-box
analytic models the source code is not provided, and
instead what is stored in the decision guidance reposi-
tory is a description of a web service that provides re-
mote and opaque execution of the model. While this
method supports proprietary models, it does not pro-
vide a way for the client to reuse the models for dif-
ferent analytical tasks. It also requires users to send
possibly sensitive data to third parties for processing.
Finally, gray-box models are like black-box models in
that the execution occurs remotely, however gray-box
models return its results in symbolic form. While this
exposes part of the model’s logic, it allows clients to
easily reuse remote models for different types of ana-
lytical task.

Finally, the tool management layer serves to pro-
vide seamless access to the external tools that are
needed to implement decision guidance algorithms as
well as to provide additional capabilities. The types
of external tools that this layer would support in-
cludes packages for data storage and retrieval, data
analytics and manipulation, statistical and machine
learning, MP/CP optimization and business process
and rule execution and reasoning. Ideally, this layer
would also support big data analytics and deep learn-
ing frameworks such as Apache Spark’s Mllib (Meng
et al., 2016), Theano (Bergstra et al., 2010), Google
Tensorflow (Abadi et al., 2016).

4 REUSABLE ANALYTIC
MODELING

As mentioned before, current decision guidance sys-
tem development paradigms lead to a tight-integration
of the analytic models, algorithms and underlying
tools that make up these systems, which often in-
hibit integration and interoperability. This often ne-
cessitates the development of specialized models for
each analytic task, such as machine learning and opti-
mization, which makes it difficult to reuse and extend
existing models via declarative composition and spe-
cialization constructs. In this section, we show how
Unity can be used to build a rudimentary decision
guidance system to support intelligent order manage-
ment based on a single reusable analytic model ex-
pressed directly in JSONiq. In the next section, we
describe the implementation of Unity, which uses a
symbolic computation-based approach to enable al-
gebraic modeling in JSONiq.

In our intelligent order management scenario, we
track suppliers that each supply zero or more items,
as well customers that each have a demand for zero
or more items. We also maintain a list of orders that

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

316

represent the flow of items from suppliers to cus-
tomers. We can represent this information using a
simple JSON object that will serve as the input to our
analytic model. An example of this input object is
shown below:

let $input := { "suppliers": [{

"sid": "supplier1",

"supply": [

{ "upc": "47520 -81452",

"ppu": 10.99,

"qty": 500 }, ...]

},{

"sid": "supplier2",

"supply": [

{ "upc": "47520 -81452",

"ppu": 11.99,

"qty": 1500 }, ...]

}, ...],

"customers": [{

"cid": "customer1",

"demand": [

{ "upc": "47520 -81452", "qty": 1475 }, ...]

},{

"cid": "customer2",

"demand": [

{ "upc": "32400 -24785", "qty": 874 }, ...]

}, ...],

"orders": [{

"sid": "supplier1", "cid": "customer1",

"items": [

{ "upc": "47520 -81452", "qty": 500 }, ...]

}, ...]

}

Based on the data model that one can derive from
the above example, we can now define the metrics and
constraints for our analytic model, which we will then
proceed to implement. While a single analytic model
can support multiple metrics, for the purposes of our
discussion we will limit our model to a single metric:
the computation of the total cost of all ordered items.
Assuming the variable $input holds the input for our
analytic model, the total cost metric can be expressed
in JSONiq as follows:

let $orders := $input.orders []

let $items := $input.items[]

let $suppliers := $input.suppliers []

let $cost :=

for $order in $orders , $item in $items

return fn:sum($suppliers[

$$.sid eq $order.sid]. supply [][

$$.upc eq $item.upc].ppu * $item.qty)

We will now define supply and demand con-
straints for our order management analytic model.
First, we have a supply constraint on orders, which re-
quires that for each supplier, the quantity of each item
in stock is greater than or equal to the sum of the order
quantities of that particular item across all orders to

that supplier. This constraint ensures that an existing
order can be fulfilled per current supplier inventory
levels. Second, we have a demand constraint on or-
ders, which requires that for each customer, the quan-
tity of each item requested is equal to the sum of the
order quantities of that particular item across all or-
ders from that customer. This constraint ensures that
we only order items that are specifically requested by
customers. We can express both of these constraints
in JSONiq as follows:

let $suppliers := $input.suppliers []

let $customers := $input.customers []

let $orders := $input.orders []

let $supplyConstraint :=

for $supplier in $suppliers ,

$item in $supplier.supply []

return $item.qty ge fn:sum($orders[

$$.sid eq $supplier.sid]. items [][

$$.upc eq $item.upc].qty)

let $demandConstraint :=

for $customer in $customer ,

$item in $customer.demand []

return $item.qty eq fn:sum($orders[

$$.cid eq $customer.cid]. items [][

$$.upc eq $item.upc].qty)

We finish the JSONiq implementation of our an-
alytic model by wrapping the cost metric as well as
the supply and demand constraints inside a function
containing a single parameter corresponding to our
model’s input data and whose return value is the com-
puted metrics and constraints:

declare function scm:OrderAnalyticsModel($input)

{

let $cost := ...

let $supplyConstraint := ...

let $demandConstraint := ...

let $constraints := $supplyConstraint and

$demandConstraint

return {

"cost": $cost ,

"constraints": $constraints

}

};

With our reusable analytic model implemented in
JSONiq, we can now use different DGAL operators
to perform many analytic tasks, such as simulation,
optimization and machine learning, without having to
redevelop different versions of our model for each an-
alytic task that we want to perform. The work of com-
piling our reusable analytic model into task- and tool-
specific models for analysis is handled seamlessly by
the Unity analytics engine. For example, we can sim-
ulate our model on some order input using the deter-
ministic simulation operator in DGAL, which is im-
plicitly exposed as a regular JSONiq function invoca-
tion:

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

317

scm:OrderAnalyticsModel($input)

In this case, the output object that is returned con-
tains the computed cost metric as a JSON number,
and a value of either true or false for the constraints
property, depending on if the supply and demand con-
straints were satisfied for the given input.

What if we wanted to find the optimal item or-
der quantities, qty, for each supplier such that the
total cost is minimized? To do this, we can anno-
tate our original input object with decision variables
in the place of numeric values for each qty property.
This indicates to the Unity analytics engine that we
want to solve for the values of those properties. A de-
cision variable is represented as a simple object that
contains one of the following properties correspond-
ing to its type: integer?, decimal?, or logical?.
The corresponding value indicates the decision vari-
able’s identifier, which if set to null will be automat-
ically replaced with a UUID. Two different decision
variables that contain the same identifier refer to the
same decision variable in the underlying optimization
problem. An example of an input object with a deci-
sion variable annotation is shown below:

"orders": [{

"sid": "supplier1",

"cid": "customer1",

"items": [{

"upc": "47520 -81452",

"qty": { "integer?": null }

}]

}]

Invoking the scm:OrderAnalyticsModel func-
tion directly on the decision variable input would,
however, result in unexpected behavior. This is be-
cause the function that implements the analytic model
is expecting a numerically-typed value for the qty
property, but it will find a decision variable object in-
stead. Rather, we need to use the dgal:argmin op-
erator to have Unity find specific values for the qty
decision variables that minimize the cost objective:

let $instantiatedInput := dgal:argmin ({

varInput: $annotatedInput ,

analytics: "scm:OrderAnalyticsModel",

objective: "cost"

})

To maintain complete syntactic equivalence with
JSONiq, the DGAL operators provided by Unity
are exposed as regular JSONiq functions. As
shown above, the DGAL operator for optimization
is dgal:argmin, which serves as a tool-independent
wrapper over different underlying optimization al-
gorithms, all of which are seamlessly integrated by

Unity. For complex problems that require the nesting
of multiple optimization operators, Unity also pro-
vides seamless solver interoperability.

The dgal:argmin function takes a single object as
input, which contains at least three properties, specif-
ically: (1) varInput: the decision variable annotated
input, (2) analytics: the analytic model as a quali-
fied name string or function pointer, and (3) objective:
the JSONiq path expression string to select the metric
property that will serve as the objective from the com-
puted output of the analytic model. If a solution to the
resulting optimization problem is feasible, the argmin
operator returns an instantiation of the annotated ob-
ject contained in the varInput property, where all de-
cision variable annotations are replaced with corre-
sponding solution values that together minimize the
objective. Finally, to compute the minimized value of
the objective metric, one simply invokes the analytic
model on the instantiated input object returned from
dgal:argmin:

return

scm:OrderAnalyticsModel($instantiatedInput)

5 IMPLEMENTATION OF UNITY

In this section, we describe the design and imple-
mentation of the Unity analytics engine. Unity in-
tegrates several external tools into a seamless de-
cision guidance platform, such as Zorba, GitLab
CE1, AMPL and OPL. Zorba is a NoSQL query en-
gine that supports both XQuery and JSONiq (Bam-
ford et al., 2009). AMPL is a mathematical pro-
gramming language that was originally developed
by Robert Fourer, David Gay, and Brian Kernighan
(Fourer et al., 1990). OPL is an newer mathematical
programming language that was developed by Pas-
cal Van Hentenryck (Hentenryck, 2002) and is cur-
rently maintained by IBM. The engine also includes
a compiler for translating reusable analytic models
into lower-level, tool-specific models for analysis. A
symbolic computation-based approach is used to sup-
port algebraic modeling without having to modify the
JSONiq query processor (Zorba) by first lowering the
analytic model into a tool-independent intermediate
representation. We discuss the details of this repre-
sentation in Section 5.2.

Unity was developed using a combination of Java,
C++, JSONiq and XSLT and currently supports sim-
ulation, optimization and machine learning against
reusable analytic models. Unity is tightly integrated

1https://about.gitlab.com/

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

318

with GitLab CE, which is used for storage, retrieval
and management of decision guidance repository ar-
tifacts, such as analytic models, views and datasets.
For this purpose, we implemented a custom Zorba
URI resolver, which also serves as a hook where the
Unity engine transparently transforms JSONiq mod-
ules to support algebraic modeling via symbolic com-
putation. To simplify the development of reusable an-
alytic models, we developed a prototype IDE based
on Eclipse, as well as an Atom2 macro for execut-
ing DGAL queries remotely over a RESTful API from
within the IDE.

5.1 Symbolic Computation and Analysis

While JSONiq query processors support complex
data queries and even simple analytical operations
they do not directly support the advanced analytics
operators that DGAL provides, such as for optimiza-
tion and machine learn. Executing DGAL queries that
depend on such operators require the use of special-
ized algorithms, which are often readily available as
third-party tools. By utilizing a simpler intermedi-
ate representation, support for new third-party tools
can be developed without having to re-implement the
entire DGAL language. As explained before, while
syntactically DGAL is backwards compatible with
JSONiq, the execution of decision guidance algo-
rithms extends the semantics of JSONiq. Because of
this difference, decision guidance algorithms cannot
be directly executed on a standard JSONiq query pro-
cessor. One way to support the alternative execution
semantics of DGAL is to re-develop a new JSONiq
query processor that natively supports DGAL. How-
ever, as the objective of Unity is to promote interoper-
ability and reuse, we opted for a different approach. If
JSONiq supported operator overloading, like in C++,
another approach would be to overload the expres-
sion operators supported by DGAL to re-define their
execution semantics. For descriptive analytic tasks
that are supported directly in JSONiq, the execution
semantics would remain unchanged. For predictive
or prescriptive analytic tasks, however, the execution
of these overloaded operators would generate results
in the intermediate analytical representation Unfortu-
nately, however, JSONiq does not currently support
operator overloading.

The process to implement the optimization oper-
ator, dgal:argmin, consists of 6 steps, as shown in
Figure 2. The process begins with the analytic model
resolution step, wherein the fully qualified analytic
model name is resolved against the content repository
(GitLab), to retrieve its JSONiq source code. Next, in

2https://atom.io/

Solver-Specific
Configuration

(JSON)

Analytical Model
Name and

Namespace URI

Objective
Expression

(JSONiq)

Partially Instantiated
Analytical Model

Input (JSON)

Content
Repository

Fully Instantiated
Analytical Model

Input (JSON)

argmin
invocation

Analytical
Model

Resolution

Source-to-
Source

Transformation

Solver-Specific
Model

Generation

Solver-Specific
Execution

Symbolic
Execution

Analytical
Model
Input

Instantiation

argmin
completion

Analytical Model
Implementation
(DGAL)

Symbolically Executable
Analytical Model (JSONiq)

Intermediate Analytical
Representation

(JSON)

Solver-Specific
Model and Data
(OPL / AMPL)

Solution (JSON)

Figure 2: Deterministic Optimization Process.

the source-to-source transformation step, the JSONiq
source code of the module is transformed into a sym-
bolically executable JSONiq module. Then in the
symbolic computation step, the transformed module
is executed as a regular JSONiq module using Zorba.
This generates output in the intermediate represen-
tation. Next in the solver-specific model generation
step, the intermediate representation output is used
to generate a solver-specific model along with asso-
ciated data. Currently, the prototype can generate op-
timization models in either OPL or AMPL. The gen-
erated model is then dispatched, in the solver specific
execution step, to the solver specified in the config-
uration object, such as CPLEX, MINOS or SNOPT.
Finally, in the analytic model input instantiation step,
the solution obtained from the solver is merged with
the annotated decision variable input to return a fully
instantiated input, where all decision variables are re-
placed with the resultant values in the solution.

5.2 Intermediate Representation

The analytics engine uses a common intermediate lan-
guage for representing symbolically computed ana-
lytic models in a way that is independent of both
the front-end modeling language and the tool-specific,

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

319

back-end language. For this purpose, we use a JSON-
based language that is largely compatible with PFA.
The Portable Format for Analytics (PFA) is a JSON-
based interchange format for deploying analytic mod-
els to production environments (Pivarski et al., 2016).
Using a common intermediate language allows us to
easily extend Unity to support both new modeling lan-
guage front-ends as well new tool-specific back-ends,
such as MPS and NL.

In the intermediate representation, mathematical
expressions whose values depend on decision vari-
ables or learning parameters are encoded as symbolic
expression objects, which are JSON objects that cap-
ture the abstract syntax tree of the expression to be
computed, rather than its computed result. Decision
variables are represented as simple JSON objects that
capture the variable’s name, type and optionally its
estimated value, which is often crucial for non-linear
optimization tasks. The property name of a decision
variable indicates its type and the property value is
its identifier. Unlike in some optimization modeling
languages, decision variables in the intermediate rep-
resentation are not explicitly defined, rather they are
implicitly defined when they are used. For this reason,
care must be taken to ensure that if multiple decision
variable symbols with the same identifier are used
within a single intermediate representation model, the
decision variable types must all be consistent. Just
like decision variables, learning parameters are rep-
resented in the intermediate representation as simple
JSON objects that capture the parameter’s name, type
and optionally its estimated value.

Expressions are encoded as single-property ob-
jects where the property name indicates the expres-
sion operator and the corresponding value is an array
containing the values of the operands. The interme-
diate representation supports many kinds of expres-
sion operators, including arithmetical, logical, con-
ditional, and quantification operators. While user-
defined functions are currently not supported, Unity
provides a few built-in functions, such as aggregation
and piecewise-linear. For instance, the JSONiq ex-
pression 100 + 250 eq 350 can be encoded in the
intermediate representation as follows:

{ "==": [{ "+": [100, 250] }, 350] }

While the above expression is valid, Unity auto-
matically reduces expressions that do not depend on
any decision variables or learning parameters. For
this expression, the value can be reduced to simply
true.

5.3 Source-to-Source Transformation

To support algebraic modeling in JSONiq via sym-
bolic computation, Unity performs a source-to-source
transformation to redefine the execution semantics of
expression operators. The main idea behind this ap-
proach is that for each operator in the analytic model,
a function call is substituted in its place that when
called returns its result as an expression tree in the in-
termediate representation. Unity attempts to simplify
this expression tree by performing constant-folding in
cases where the computation does not involve a deci-
sion variable or learning parameter.

Parse and
Generate AST

Validate and
Prune AST

Transform AST

Start

DGAL
Module

Transformed
DGAL Module

DGAL AST

Pruned
DGAL AST

Figure 3: Source-to-Source Transformation Process.

As shown in Figure 3, to perform the source-to-
source transformation Unity first parses the source
code of the JSONiq+DGAL module to build an ab-
stract syntax tree that is serialized in XML. We used
the Rex3 parser generator to generate a JSONiq parser
in Java from the EBNF grammar4 that is provided in
the JSONiq language specification. We then use an
XSLT transformation on the resulting XML tree to
replace each JSONiq expression operator with a cor-
responding function that returns its result in the inter-
mediate representation.

To illustrate how the transformation works, con-
sider the supplyConstraint expression from the or-
der analytics example from Section 4. After
performing the transformation, the sub-expression
$supplyItem.qty ge fn:sum(...) is replaced with
calls to the corresponding dg:ge and dg:sum functions
to enable symbolic computation, as shown below:

let $supplyConstraint :=

for $supplier in $input.suppliers [],

$supplyItem in $supplier.supply []

return dg:ge($supplyItem.qty ,

dg:sum($input.orders []

[dg:eq($$.sid , $supplier.sid)].items[]

[dg:eq($$.upc , $supplyItem.upc)].qty))

All such symbolic computation functions, like
dg:ge and dg:sum, are implemented completely in

3http://www.bottlecaps.de/rex/
4http://www.jsoniq.org/grammars/jq++.ebnf

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

320

JSONiq. For example, the complete JSONiq defini-
tion of the dg:eq function is provided below:

declare function dg:eq($operand1 , $operand2)

{

if ($operand1 instance of object

or $operand2 instance of object) then

{ "==": [$operand1 , $operand2] }

else

$operand1 eq $operand2

};

The function above takes two parameters,
$operand1 and $operand2, which correspond to the
left and right operands of the binary equality operator
in JSONiq. A simplification is done if neither operand
depends on a decision variable or learning parameter,
whereby the fully computed result is returned, other-
wise an object of the expression tree is returned.

6 PERFORMANCE EVALUATION

In this section, we report on a preliminary experimen-
tal study that we conducted to investigate the over-
head introduced by automatically translating reusable
analytic models into task- and tool-specific models
for analysis. The question that we seek to answer is
whether our reusable analytic modeling approach is
inherently too computationally inefficient to be used
for real-world, decision guidance systems. While the
amount of acceptable overhead is highly user depen-
dent, we hypothesize that for the case of determinis-
tic optimization, the execution time overhead of au-
tomatically generated models is within a small con-
stant factor of that of manually-crafted ones. While
our current evaluation is limited to a single compila-
tion target and solver, namely the OPL and CPLEX
respectively, we are working to develop a more com-
prehensive evaluation.

To test our hypothesis, we took the procure-
ment optimization model developed by (Brodsky
et al., 2012) and manually translated it into a DGAL
reusable analytic model. We also translated the orig-
inal AMPL model into OPL to serve as the control
model for our experiment. We then developed a script
to automatically generate isomorphic pairs of ran-
domized input data to feed into our DGAL and OPL
models. For our DGAL test model, the script gen-
erated input data in the JSON format, while for our
OPL control model the script generated input data in
the standard *.DAT file format that the OPL compiler
accepts.

Using this input data, we conducted a total of 205
trials, where for each trial we measured the wall-clock

y = 2.3148x + 1.7776
R² = 0.7644

0

4

8

12

16

20

24

28

32

0 2 4 6 8 10 12 14 16

C
P

LE
X

 S
o

lv
e

Ti
m

e
fo

r
A

u
to

m
a

ti
ca

ll
y

G
en

er
a

te
d

 O
P

L
M

o
d

el
s

CPLEX Solve Time for Manually Crafted OPL Model

Figure 4: Execution Time Overhead of Automatically Gen-
erated OPL Models from DGAL (in seconds).

time that the CPLEX solver took to solve the DGAL-
based test optimization problem after being automat-
ically translated into OPL by Unity. For comparison,
we also measured the CPLEX execution time for solv-
ing the control OPL optimization problem. Because
we are only interested in measuring the time it took
CPLEX to solve the test and control problems, we ex-
cluded from our measurements time spent on other
peripheral tasks, such as compiling DGAL models
into OPL and loading data into memory. Across all
trials, the number of decision variables in the result-
ing optimization problems ranged from 72 to 16,800.

The trials were conducted on a laptop machine
equipped with an Intel Core i5-4210U processor and
16GB of RAM. We used the Java API exposed by
CPLEX to automate the execution and measurement
of each trial. Wall-clock time was measured by sub-
tracting the difference between the return values of
calls to the Java time function, currentTimeMillis(),
which was placed immediately before and after the
invocation of the CPLEX solve method. To reduce
measurement error, we closed extraneous applications

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

321

and services and ran all problems sequentially.
The results of this experiment are presented as a

scatter chart in Figure 4, where the horizontal axis
represents the wall-clock time, in seconds, that the
CPLEX solver took to solve the OPL control opti-
mization problem, and the vertical axis shows the
wall-clock time, in seconds, that the CPLEX solver
took to solve the DGAL-based test optimization prob-
lem. A linear trend line through the time measure-
ment points gives a slope of 2.3148, which indi-
cates that the execution time of overhead for com-
piled DGAL models is about 2.3 times that of man-
ually crafted OPL optimization models. Regarding
the value of the r-squared statistic, 0.7644, some error
is to be expected due to the behavior of underlying
algorithms used for MP-based optimization, such as
branch and bound, which are often sensitive to how
the problem is formulated.

While the purpose of our present research was to
develop an analytics engine for reusable models, the
current overhead introduced leaves significant room
for improvement. There are many techniques that
could be used to decrease the overhead of our com-
piled optimization models. Many solvers provide
options to fine-tune the optimization process, such
as preprocessing, which needs to be investigated in
the future. Also, utilizing a combination of domain-
specific decomposition and preprocessing techniques,
such as the one proposed by Egge et al. to gener-
ate efficient, tool-specific models for certain classes
of problems could be fruitful (Egge et al., 2013).
However, with regards to our preliminary results, we
view the current execution time overhead as a stan-
dard trade-off between user productivity and compu-
tational efficiency. The current performance of Unity
could be acceptable in cases where computational ef-
ficiency can be sacrificed to avoid the costly redevel-
opment of specialized analytic models to support dif-
ferent analytical tasks. In fact, Unity has successfully
been used to support the development of reusable an-
alytic models for manufacturing processes (Brodsky
et al., 2016a).

7 CONCLUSION AND FUTURE
WORK

In this paper, we introduced the Unity analytics en-
gine to support the development of decision guid-
ance systems from a repository of reusable analytic
models. We proposed a conceptual architecture for a
NoSQL-based Decision Guidance Management Sys-
tem (DGMS) that is built around Unity to support the
seamless integration and interoperability of decision

guidance applications, analytic models, algorithms
and underlying tools. We also demonstrated the use
of our analytics engine by constructing a simple de-
cision guidance system for intelligent order manage-
ment. Finally, we investigated the overhead of our
reusable analytic modeling approach by conducting
an preliminary experimental study. Initial results in-
dicate that the execution times of optimization mod-
els that are automatically generated by Unity from
reusable analytic models are within a small constant
factor of that of corresponding, manually-crafted op-
timization models.

Our work opens new research questions that we
are currently working on addressing. Particularly, as
support for more algorithms against analytic models
is developed, the problem of choosing the most ap-
propriate algorithm and settings for a particular prob-
lem emerges. Further research is needed to investi-
gate how a meta-optimization solver can be devel-
oped and integrated with Unity, along the lines of
work on DrAmpl (Fourer and Orban, 2010). The ob-
jective here is to automatically determine the set of
feasible algorithms for a particular problem, as well
appropriate values for algorithm-specific parameters,
which is essential for many heuristic or partial-search
algorithms. Additionally, we are investigating ways to
generalize the work of Egge et al. on decomposition
and preprocessing to drastically reduce complexity on
a larger class of analytic models (Egge et al., 2013).

ACKNOWLEDGEMENTS

This work has been partially supported by the Na-
tional Institute of Standards and Technology (NIST),
award number 70NANB16H171.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
et al. (2016). Tensorflow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI). Savannah, Georgia, USA.

Alter, S. (1980). Decision support systems: current prac-
tice and continuing challenges, volume 157. Addison-
Wesley Reading, MA.

Arnott, D. R. (1998). A framework for understanding deci-
sion support systems evolution. In 9th Australasian
Conference on Information Systems, Sydney, Aus-
tralia: University of New South Wales.

Bamford, R., Borkar, V., Brantner, M., Fischer, P. M., Flo-
rescu, D., Graf, D., Kossmann, D., Kraska, T., Mure-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

322

san, D., Nasoi, S., et al. (2009). Xquery reloaded. Pro-
ceedings of the VLDB Endowment, 2(2):1342–1353.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and
Bengio, Y. (2010). Theano: A cpu and gpu math com-
piler in python. In Proc. 9th Python in Science Conf,
pages 1–7.

Brodsky, A., Egge, N. E., and Wang, X. S. (2012). Sup-
porting agile organizations with a decision guidance
query language. Journal of Management Information
Systems, 28(4):39–68.

Brodsky, A., Krishnamoorthy, M., Bernstein, W. Z., and
Nachawati, M. O. (2016a). A system and architec-
ture for reusable abstractions of manufacturing pro-
cesses. In Big Data (Big Data), 2016 IEEE Interna-
tional Conference on, pages 2004–2013. IEEE.

Brodsky, A. and Luo, J. (2015). Decision guidance analyt-
ics language (dgal)-toward reusable knowledge base
centric modeling. In ICEIS (1), pages 67–78.

Brodsky, A., Luo, J., and Nachawati, M. O. (2016b). To-
ward decision guidance management systems: An-
alytical language and knowledge base. Depart-
ment of Computer Science, George Mason University,
4400:22030–4444.

Brodsky, A. and Wang, X. S. (2008). Decision-guidance
management systems (dgms): Seamless integration of
data acquisition, learning, prediction and optimiza-
tion. In Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, pages 71–
71. IEEE.

Chamberlin, D., Florescu, D., Robie, J., Simeon, J., and
Stefanescu, M. (2003). Xquery: A query language for
xml. In SIGMOD Conference, volume 682.

Davenport, T. H. and Harris, J. G. (2005). Automated de-
cision making comes of age. MIT Sloan Management
Review, 46(4):83.

Egge, N., Brodsky, A., and Griva, I. (2013). An efficient
preprocessing algorithm to speed-up multistage pro-
duction decision optimization problems. In System
Sciences (HICSS), 2013 46th Hawaii International
Conference on, pages 1124–1133. IEEE.

Florescu, D. and Fourny, G. (2013). Jsoniq: The history of a
query language. IEEE internet computing, 17(5):86–
90.

Fourer, R., Gay, D. M., and Kernighan, B. W. (1990). A
modeling language for mathematical programming.
Management Science, 36(5):519–554.

Fourer, R. and Orban, D. (2010). Drampl: a meta solver for
optimization problem analysis. Computational Man-
agement Science, 7(4):437–463.

Hackathorn, R. D. and Keen, P. G. (1981). Organizational
strategies for personal computing in decision support
systems. MIS quarterly, pages 21–27.

Haettenschwiler, P. (2001). Neues anwenderfreundliches
konzept der entscheidungsunterstützung. Gutes
entscheiden in wirtschaft, politik und gesellschaft,
pages 189–208.

Hentenryck, P. V. (2002). Constraint and integer pro-
gramming in opl. INFORMS Journal on Computing,
14(4):345–372.

Joyner, D., Čertík, O., Meurer, A., and Granger, B. E.
(2012). Open source computer algebra systems:
Sympy. ACM Communications in Computer Algebra,
45(3/4):225–234.

Lammel, R. and Verhoef, C. (2001). Cracking the 500-
language problem. IEEE software, 18(6):78–88.

Lubin, M. and Dunning, I. (2015). Computing in operations
research using julia. INFORMS Journal on Comput-
ing, 27(2):238–248.

Luo, J., Brodsky, A., and Li, Y. (2012). An em-based en-
semble learning algorithm on piecewise surface re-
gression problem. International Journal of Applied
Mathematics and Statistics, 28(4):59–74.

Meleancă, R. (2013). Will decision management systems
revolutionize marketing? Procedia-Social and Behav-
ioral Sciences, 92:523–528.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkatara-
man, S., Liu, D., Freeman, J., Tsai, D., Amde, M.,
Owen, S., et al. (2016). Mllib: Machine learning in
apache spark. Journal of Machine Learning Research,
17(34):1–7.

Parikh, M., Fazlollahi, B., and Verma, S. (2001). The effec-
tiveness of decisional guidance: an empirical evalua-
tion. Decision Sciences, 32(2):303–332.

Patterson, A., Bonissone, P., and Pavese, M. (2005). Six
sigma applied throughout the lifecycle of an auto-
mated decision system. Quality and Reliability En-
gineering International, 21(3):275–292.

Pivarski, J., Bennett, C., and Grossman, R. L. (2016). De-
ploying analytics with the portable format for analyt-
ics (pfa). In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 579–588. ACM.

Power, D. J. (2001). Supporting decision-makers: An ex-
panded framework. Proceedings of Informing Science
and IT Education, pages 1901–1915.

Shneiderman, B. (1975). Experimental testing in program-
ming languages, stylistic considerations and design
techniques. In Proceedings of the May 19-22, 1975,
national computer conference and exposition, pages
653–656. ACM.

Silver, M. S. (1991). Decisional guidance for computer-
based decision support. MIS Quarterly, pages 105–
122.

Taylor, J. (2011). Decision management systems: a practi-
cal guide to using business rules and predictive ana-
lytics. Pearson Education.

Taylor, J. (2015). Analytics capability landscape.

Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

323

