
Procedural x OO
A Corporative Experiment on Source Code Clone Mining

José Jorge Barreto Torres1, Methanias C. R. Junior1 and Mário André de Freitas Farias2
1Federal University of Sergipe – UFS, Sao Cristovao, Sergipe, Brazil

2Federal Institute of Sergipe – IFS, Aracaju, Sergipe, Brazil

Keywords: Software, Mining Software Repositories, Clones, Experimental Software Engineering, Closed-source

Projects.

Abstract: Open Source Software (OSS) repositories are widely used to execute studies around code clone detection,

mostly inside the public scenario. However, corporative code Repositories have their content restricted and

protected from access by developers who are not part of the company. Besides, there are a lot of questions

regarding paradigm efficiency and its relation to clone manifestation. This article presents an experiment

performed on systems developed in a large private education company, to observe and compare the

incidence of cloned code between Object Oriented and Procedural proprietary software, using an exact

similarity threshold. The results indicate that Object Oriented Software wondrously showed higher cloned

lines of code incidence and a similar use of abstraction (clone sets) for functions or methods.

1 INTRODUCTION

The demand for speeding up software development

allied to the lack of patterns and the inexistence of

internal policies to implement best practices triggers

a series of issues related to coding organization.

Software development teams have to achieve

business deadlines, so they adopt the bad practice to

copy-and-paste code. In this way, clones populate

software repositories and hinder the improvement or

maintenance of systems.

There are some reasons for the existence of

clones: The most part of legacy systems code is the

result of reusing existing code, so, developers who

want to implement a new feature find some code

snippet similar to the desired one then make a copy

and modify it; Some code fragments used on default

messages are copied to maintain a standard coding

style, also generating clone code; Similar computing

instances or code that perform similar computing are

often cloned, even without the act of copy-and-paste,

because the operations are similar; Some clones

result from identical instructions that works only

with different data types – this indicate the failure to

use Abstract Data Types; Systems that have time

constraints and need frequent optimization updates

to computing replications, especially when the

compiler does not provide inline expressions

insertion; Occasional code fragments that are

accidentally identical – as applications increase in

size this type of accident occurs more often (Baxter

et al., 1998).

Construction of device drivers also generates

many similarities between codes, as much of this

type of program geared to the same platform is

virtually identical, only having some attributes and

parameters modified (Ma and Woo, 2006).

Moreover, another reason for the existence of clones

is called “reinventing the wheel”, because some

developers do not bother to look if there is already a

piece of code for something that was requested to

the team (Marcus and Maletic, 2001).

Despite the copy-and-paste way be more

productive, this attitude may cause a serious

maintenance problem, for example, in case of bugs.

If a bug was found in a piece of code that has been

cloned in several other pieces, all of these clones

should be corrected so that the bug is completely

resolved (Khatoon, Mahmood and Li, 2011).

Most studies around clone code theme make use

of the same concepts. For example, the main types

of code clones are (Rattan, Bhatia, and Singh, 2013):

Exact clones or program fragments identical to each

other; Parameterized clones, are fragments with the

same structure except for changes in data types,

identifiers, layout and comments; Near-miss clones,

Torres, J., Junior, M. and Farias, M.
Procedural x OO - A Corporative Experiment on Source Code Clone Mining.
DOI: 10.5220/0006325003950402
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 395-402
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

395

program fragments copied with a few modifications

inside; Semantic clones, blocks of code textually

different but producing a same computation.

Other authors bring some terminologies

concerning the relationships between clones (Roy

and Cordy, 2007). A Clone Pair is a pair of code

fragments identical or similar to each other. To

illustrate, we can turn attention to Figure 1 and note

that we have three code fragments which we will

name in a short way as F1, F2 and F3. From these

three fragments we can mount five clone pairs:

<F1(a),F2(a)>, <F1(b),F2(b)>, <F2(b),F3(a)>,

<F2(c),F3(b)> and finally <F1(b),F3(a)>. A Clone

Class is a set of code fragments in which any two of

the members can form a clone pair. In short, a clone

class is the union of all clone pairs who shares code

fragments in common. Clone Family, also known as

Super Clone, is the group of all clone classes

belonging to the same domain.

Figure 1: Examples of clone pair and class (Roy and

Cordy, 2007).

Despite code clones are considered harmful

(Kapser and Godfrey, 2008), for all the reasons we

presented earlier, in some cases they may be a good

choice. Introducing a new feature inside existing

software can be eased by replicating the code and

making the modifications. When the modified

version of the code is tested in a sandbox or

something similar, it can be applied in the

production environment. This way minimizes the

risk of instabilities in the stable version.

Some studies suggest that code clones may be

avoided by adopting good design techniques and

development methodologies, including refactoring

on the development process (Roy and Cordy, 2007).

Many efforts show that code refactoring as part of

the package of a clone detection tool may be a

desirable feature in some situations. Roy and Cordy

(2008) studied cloning incidence in both C and Java

Open Source Systems, executing a mixed

experiment with different paradigms, showing

interesting results regarding Clone Classes and

Clone Sets incidence.

An Open Source System is publicly accessible

and people can modify and share it. The software

where only one person, team or organization who

created it has access to modifications is called

proprietary or closed source software

(OpenSource.com).

Thus, considering a corporate environment with

a well-defined software process, this paper aims

address the following research question: “Have

object-oriented software systems more efficiency

than procedural systems, regarding code clone

manifestation?” The question is about a proposal of

efficiency in OO coding regarding Procedural, due

to present abstraction structures in the Object-

Oriented paradigm. The utilization of those

abstraction structures are intended to provide a better

code reuse and consequently less clone

manifestation. To answer, our experimental

evaluation analyzed large-scale Closed-Source

Systems and compared their OO Systems with the

Procedural ones. This is an in-vivo evaluation and

the results are generalizable evidence only for

similar teams, projects and environments. Despite

OO languages are intended to have a better

abstraction implementation, in our industrial

environment, Procedural and OO systems presented

similar behavior regarding clone manifestation.

Those results showed numbers that leave opened

other issues who are not directly linked to the

paradigm question.

The remainder of this paper is structured as

follows: Section 2 discusses related work. Section 3

is dedicated to the understanding of the main tool

used in our experiment. Section 4 presents the

experiment planning and definition. Section 5

describes the experiment execution among with the

environment used to explore the clone code

detection. Section 6 describes, analyzes and

discusses the validity of the obtained results. Finally,

Section 7 contains conclusions and final remarks.

2 RELATED WORKS

As this work focuses on clone incidence inside

software repositories, this section presents studies

about this subject. The main peculiarity of these

articles regarding our work is that they were

performed inside Open Source Software (OSS)

environments.

Roy and Cordy (2011) developed a qualitative

evaluation along with a comparison of techniques

and clone detection tools. In their work, some key

concepts also have been described with a generic

clone detection process and taxonomy. They used a

hybrid clone detection tool called NICAD to

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

396

examine more than 15 open source C and Java

systems.

The same researchers mentioned above provided

in another work (Kim, Sazawal, and Notkin, 2005) a

description of commonly used terms, review of

existing clone taxonomies, detection approaches and

experimental evaluations of clone detection tools. At

last, a list of some problems related to clone

detection for future research is presented and

discussed.

Many works were concerned about evaluating

source code mining techniques and tools, identifying

their strengths and weakness. Khatoon, Mahmood

and Li (2011) try to extract positive and negative

aspects from cloned detection tools and techniques

to help future researchers and developers.

Schwarz, Lungu and Robbes (2012) focused on

large code bases, combining three lightweight clone

detection techniques to evaluate performance on a

real-world ecosystem. The techniques are directed to

three types of clones. The type 1 are Hashes of

Source Code. Type 2 are defined as Hashes of

Source Code With Renames. A clone is considered a

type-2 if it is a type-1 even after every sequence of

alphabetical letter be replaced by the letter “t” and

all sequence of digits replaced by number 1. Type 3

or “Shingles”, are defined as a consecutive sequence

of tokens in a document, after the transformations

defined by rules of type-2 clones.

Roy and Cordy (2008) motivate our work. Their

study was about finding function clones inside C and

Java Open Source Code repositories, with projects

varying in size from 4K LOC to 6265K LOC. All

non-empty functions with a minimum of 3 LOC

were considered, that includes the function header

with opening and ending bracket and at least one

code line. The validation of results was done by

hand and using Linux diff tool to check the textual

similarities. Like them, we run a clone detection tool

in two different software repositories with the

difference that they are protected repositories

belonging to a private corporation. We intend to

compare incidences of cloned code between Object-

Oriented and Procedural Projects.

Clone Mining research needs substantial

infrastructure support, particularly with respect to

adopting a standard experimental process, described

in some Mining Software papers (Colaço et al.,

2012) and in this paper, with the goal of effectively

replicating clone studies. The barrier and cost for

experimentation with Clones Mining are

considerably low compared to other software

engineering techniques (e.g., on-line experiments

with participants). In other words, research projects

and papers can conceive an experience factory and

demonstrate true value of this area for practitioners.

3 CloneDR TOOL

CloneDR uses a tree-based technique called Abstract

Syntax Trees (AST). Supporting a variety of

language dialects and the capacity of huge sets of

files analysis, this tool is top-rated in literature (Roy,

Cordy, and Koschke, 2009) with a more

sophisticated detection of clones. The intention for

choosing this tool was to maintain the same type of

analysis and results pattern of the referenced work.

Also, the tool was the only one available to our

team, for Java and PL/SQL code analysis.

The AST technique consists in receiving tree-

parsed code fragments to find exact clones by

hashing the sub-trees and comparing them. To locate

near-miss clones, a bad-hashing function is used to

preserve the main properties of this type of clone.

For example, this function may ignore only

identifier names, building a hash code for the rest.

A better description of this technique is

presented by Baxter et al. (1998). At first, all the

program code is fragmented in parts that will be

compared to find out which one are equivalent. After

this parsing stage, an Abstract Syntax Tree is build

and some algorithms are applied to find clones. The

first one is called the Basic algorithm and it is

responsible to detect sub-tree clones. The second

one, called the sequence algorithm tries to detect

variable-size sequences of sub-tree clones and it is

used essentially to detect statement and declaration

sequence clones. The third algorithm attempts to

find more complex near-miss clones, generalizing

combinations of other clones. AST technique does

not concern to detect semantic clones. Some other

semantic analysis technique may be used to capture

different fragments but that produces similar results.

4 EXPERIMENT

Our work is presented here as an experimental

process. It follows the guidelines by Wohlin et al.

(2000). In this section, we start introducing the

experiment definition and planning. The following

sections, will direct to the experiment execution and

data analysis.

Procedural x OO - A Corporative Experiment on Source Code Clone Mining

397

4.1 Goal Definition

Our goal is to compare clone findings between two

private source code repositories, one with Object-

Oriented code and other with Procedural Projects,

using an exact-similarity threshold.

To achieve this, we are going to execute an

experiment in a controlled environment using a

clone detection tool. This comparison test attempts

to answer questions about clone incidence related to

programming language paradigms.

The goal is formalized using the GQM Goal

template proposed by Basili and presented in

(Solingen and Berghout, 1999):

 Analyze our corporate projects

 with the purpose of evaluation OO Systems

against Procedurals Systems

 with respect to code clone manifestation

 from the point of view of the programmers

 in the context of an environment with a

well-defined software process

4.2 Planning

Context selection: The experiment will be off-line

and executed with the CloneDR clone detector

inside a Java and a PL/SQL code repository

containing about seven different systems each. The

selected subject organization is an educational-

purpose company active in market since the 60s,

with more than 2,000 employees and around 50,000

customers. The PL/SQL development team differs

from the java team by more experience and job

constancy, as shown in Table 1. PL/SQL team

consists of 4 developers with age from 37 to 40

years old and an experience average of 15 years

against 5 developers for java team, starting with 23

years old, most with only a 2-year programming

experience. About 20 systems are maintained by

procedural language team and 11 systems by OO

team. Deadline pressure levels for both teams are the

same.

Table 1: Experience and Constancy of Development

Teams.

Hypothesis formulation: The research question for

this experiment is: Have object-oriented software

systems more efficiency than procedural systems,

regarding code clone manifestation?

Since private organizations provide a more

controlled environment to adopt standardization of

software development, we are interested about

differences in the incidence of clones within

programming language paradigm code repositories.

We will compare some extracted statistics of our

Java systems with seven other PL/SQL private

systems from our target corporation using the same

extraction tool, respecting the similarity threshold

between comparisons.

To assure the reliability of our hypothesis test,

we will calculate the average between the

proportional results of exact similarity for each

system (S), where similarity threshold is 1 (means

100% or exact clones). The proportion (P) is

calculated by dividing Cloned Source Lines of Code

or Clone Sets (C) by its respective total of Source

Lines of Code (SLOC).

When defining the variables for the formal test,

the systems size was considered, because just the

clone numbers does not imply conditions to evaluate

a greater propensity to lower abstraction. Besides,

the similarity threshold as 1 indicates an identical

clone, evidencing more reliably the possibility of a

type of Technical Debt (DT) (Guo et al., 2011)such

as failure to code reuse or failure to use Abstract

Data Types (ADT).

Capture of Clone Sets were included in our

experiment in order to identify repositories storing

methods that are cloned in excess.

Keeping this idea, we will try to reinforce the

following hypothesis:

HYPOTHESIS 1

 Null hypothesis H0SL: Object-Oriented

Systems (1) have same incidence of Cloned

SLOC than Procedural Systems (2) in the

context of our corporate projects.

o H0
SL: µ1(Cloned SLOC Proportion) = µ2(Cloned SLOC

Proportion)

 Alternative hypothesis H1SL: Object-Oriented

Systems (1) have lower incidence of Cloned

SLOC than the Procedural Systems (2) in the

context of our corporate projects.

o H1
SL: µ1(Cloned SLOC Proportion) < µ2(Cloned SLOC

Proportion)

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

398

HYPOTHESIS 2

 Null hypothesis H0CS: Object-Oriented

Systems (1) have same incidence of Clone Sets

than Procedural Systems (2) in the context of

our corporate projects.

o H0
CS: µ1(Clone Sets Proportion) = µ2(Clone Sets

Proportion)

 Alternative hypothesis H1CS: Object-Oriented

Systems (1) have lower incidence of Clone

Sets than the Procedural Systems (2) in the

context of our corporate projects.

o H1
CS: µ1(Clone Sets Proportion) < µ2(Clone Sets

Proportion)

Independent variables: AST method; Our Object-

Oriented and Procedural Industrial Projects, written

respectively in Java and PL/SQL. Moreover, the

parameters used to configure the tool used on this

experiment will be described in Section 5.

Dependent variables: The Clone Sets and Cloned

SLOC proportions (PS) and averages (μ) between

results of Cloned SLOC and Clone Sets (CS) and

their respective SLOC will be used as dependent

variables. They are described as follows:

 Proportion: PS = CS/SLOC

 Final Average: μ = (PS1 + PS2 + … + PSn) /

n

Objects selection: The selection of Object-oriented

and procedural projects is shown in Table 2,

describing their names, amount of LOC and the kind

of repository they belong to. The private code

projects size varied from a 4.7K SLOC to a 102K

SLOC application. This selection was done by

convenience. We have used some corporate projects

which we were clone consultants for. The analysis is

non-intrusive to developers as the data were drawn

directly from the code repository, they did not know

which source code would be extracted.

Instrumentation: We have used CloneDR tool

described in section 3. Results are printed to the

standard output. Additional information results are

exported to HTML files in the same directory of the

original system source.

Table 2: Overview of selected projects.

5 EXPERIMENT OPERATION

In this section, we describe the whole experiment

execution. The detection tool was configured to

consider only functions or methods with a minimum

of 6 LOC. We do not analyze in this work clone

distribution and localization over files or directories.

5.1 Execution

First, we extracted clone information for the whole

OO repository to compare with the Procedural

Repository results, using the CloneDR tool. Then,

each project was analyzed individually still with the

same tool and every clone-related discovered

information was recorded and analyzed by hand.

At first we can confirm that inside our PL/SQL

repository there are fewer clone manifestations than

the Java repository. We may see a mean of

proportional Cloned SLOC for the Procedural

repository of 11,20%, meanwhile inside the OO

repository the mean is 19,54% using the highest

similarity threshold value.

5.2 Data Validation

The CloneDR clone detection tool generated HTML

reports where we extracted the cloned methods to

validate by hand a sample of the cloned methods.

This brings more confidence on what was analyzed

by the clone detection tool.

To ensure analysis, interpretation and validation, we

used two types of statistical tests: Shapiro-Wilk Test

and the T-Test. Shapiro-Wilk test, normally applied

on smaller populations, was used to verify normality

of the samples. The T-Test was used to check our

hypothesis. All statistical tests were performed using

the SPSS tool (SPSS, IBM).

Procedural x OO - A Corporative Experiment on Source Code Clone Mining

399

Table 3: CloneDR statistics for OO and Procedural code repositories.

6 RESULTS

To answer our experiment question, we executed all

individual tests and created a table showing data to

compare with the results obtained from the

experiment. The Table 2 already showed several

statistics collected from the analysis of our

experiment.

6.1 Analysis and Interpretation

Clone detection statistics from all the OO Projects

analyzed are also present on Table 3.

The values on “Cloned SLOC” and “Clone Sets”

are representing the results after an analysis using an

exact-similarity threshold. The Procedural projects

presented significantly much more SLOC than OO

systems. The “PS” column represents the

proportional values for the clone detection, for the

respective system.

Analyzing the Table 3, we note that clone

incidence is not related to the project size. The

bigger the worst does not apply here, since we have

the Java version of Academic System with 24%

Cloned SLOC inside 26K SLOC versus the PL/SQL

version presenting 14% Cloned SLOC for 102K

SLOC.

PL/SQL Contest System showed excellent

results in comparison to the OO Protocol System,

both having about 14K SLOC. The OO Protocol

System returned the higher Clone Set value, which

indicates a worse use of methods abstraction. This

system also had the worst performance, with almost

30% of cloned code.

Academic and Protocol System were the top-

cloned software. Besides having a huge number of

SLOC, they are maintained by a vast and

heterogeneous development team.

For the OO, Extension System was the more

clone-free project. The Procedural system with less

proportionally Cloned SLOC was the Contest

System, with among 7% of exact clones. The final

average found for the OO and Procedural Cloned

SLOC and Clone Sets can be found on Table 4.

Table 4: Final average results.

Based on these results, we observe that was some

significant difference between the two kinds of

repository. The Object-oriented Systems showed

more proportional clone incidence than the

Procedural ones. With this data, is not possible yet to

make any assumption about results without

sufficiently conclusive statistical evidence.

Firstly, we applied the Shapiro-Wilk test with a

significance level of 0.05, analyzing the distribution

normalization. The Sig variables (also known as p-

values) for Cloned SLOC were 0.615 on OO

samples and 0.261 on Procedural samples. For Clone

Sets, the p-values were 0.216 on Procedural Systems

and 0.193 on OO. The numbers on all samples for

each hypothesis were above the significance level,

so, we assume that data distribution is normal.

Applying the T-Test (Figure 2), we obtained a

Sig. result of 0.014 for Cloned SLOC samples and

0.818 for Clone Sets. Only the p-value for Clone

Sets was above the significance level of 0.05. This

means that, regarding Cloned SLOC, we cannot

assert the null hypothesis for H0SL. In other words,

the differences of cloned single lines of code found

on object-oriented programs was relatively higher

than the numbers returned from procedural systems.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

400

Figure 2: T-Test results. Exported from IBM SPSS.

The Levene’s Test is used to test if the samples

have equal variances, also called homogeneity of

variance. The sig value for CSETS is 0.466 (higher

than 0.05) which means that, for Clone Sets the

scores do not vary too much. Observing Source

Lines of Code, the sig value is 0.021 (less than

0.05). Because of this, for SLOCS there is a

statistically significant difference between the

means.

For the Clone Sets null hypothesis H0CS, the final

decision is to not reject it. In fact, for Clone Sets

there was a strong retention for the null hypothesis

H0CS (µ1(Clone Sets Proportion) = µ2(Clone Sets

Proportion)). In real terms, there is a probability of

almost 82% that we will mistakenly reject the

similar Clone Sets incidence, although Object-

Oriented coding has features that make easy code

abstraction and reuse.

The results indicate that the use of abstraction for

both Procedural and OO programs in this

organization present a similar efficiency. We have

more Cloned SLOC for OO than Procedural

projects, but when implementing abstraction in

functions or methods, the clone findings are almost

equal. This means that, although object-oriented

languages provide means to a better use of

abstraction (e.g. polymorphism), the analyzed Java

repository showed an inadequate behavior for this

issue.

The development teams are different for PL/SQL

and Java. The PL/SQL team has a characteristic of

having lower staff turnover than Java team. Thus,

the procedural repository takes advantage of owning

maintainers with more experience time inside the

company, with a solid knowledge about the business

rules and knowing more deeply the code.

Moreover, is evident that, even with design

patterns and frameworks adopted by the OO team,

experience may have great influence on the capacity

of abstraction. In background, there is a warning for

the software management acting with regard to

recycling and adoption of good practices by the

teams.

For the organization, these results require further

study about other causes that may have

compromised the quality of coding. Features

concerning different development patterns or

different team profiles as age, maturity and

knowledge could be studied to check their

interference on clones’ manifestation.

6.2 Threats to Validity

In spite of the fact that our corporate systems are a

mature, real world, large projects, and our results

seem to be quite consistent with the systems sizes,

our study shows threats to its validity that we must

consider:

 We cannot conclude that all closed-source

projects will present similar results as ours.

Process maturity can play a large role on

code clone manifestation;

 Other software characteristics such as

complexity may affect the results. We have

not test for those variables;

 Adoption of design patterns also may

influence on code clone manifestation;

The profile of the development team (team size,

age, experience) also can represent a change on the

final sample.

7 CONCLUSIONS AND FUTURE

WORK

In our experiment, we analyzed two different
repositories, which comprise systems of distinct
programming language paradigms and found
evidences that clone incidence is not directly related
to the size of code. In fact, the studied Procedural
systems had fewer lines of cloned code with much
more coding lines than the OO ones.

Procedural x OO - A Corporative Experiment on Source Code Clone Mining

401

The lack of code abstraction ended up being
similar in both cases. Questions about the profile of
both Java and PL/SQL development teams must be
asked to check if experience, age, instruction degree
and other factors, may affect the coding
maintainability.

We encourage more research inside private
environments to test hypothesis only studied on
Open Source Software systems. Also, our corporate
Object-Oriented Systems had very few SLOC than
other Object-Oriented Open Source Systems. It is
important to replicate this experiment inside several
other private repositories to check if they present the
same behavior. The more the systems are tested,
more we assure external validity.

As mentioned before, we adapted the software
engineering experimental process described in
Wohlin et al (2000) to clones mining experiments.
We believe that the studies, applications, and tools
for software clone mining can benefit from this type
of approach. Rigorous experimental description
facilitates replication of studies and the executing of
systematic reviews and other types of secondary
analysis.

As future work, we have in mind a few projects
related to clone incidence. The first one is to verify
if the human profile of development team has some
direct effect on clone appearance. Data like age,
experience and qualification may be extracted and
combined from several sources to mount this profile.
Other insight is to explore code comments to find
out words that indicate something that was
purposely implemented missing some pieces (for
many reasons) and this will have to be done some
time, indicating a Technical Debt (TD) issue.

ACKNOWLEDGEMENTS

This study could only be developed due to the
support of Tiradentes University – UNIT, along with
the Technology Information Department – DTI, who
provided the repository used in our experiment.

REFERENCES

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.

Bier, “Clone detection using abstract syntax trees,” in

ICSM, 1998,pp. 368–377.

Y. Ma and D. Woo. Applying a Code Clone Detection

Method to Domain Analysis of Device Drivers. In

Proceedings of the 14th Asia Pacific Software

Engineering Conference (APSEC’07), pp. 254–261,

Nagoya, Japan, December 2006.

A. Marcus and J. I. Maletic. Identification of high-level

concept clones in source code.In Proceedings of the

16th IEEE International Conference on Automated

Software Engineering (ASE’01), pp. 107-114, San

Diego, CA, USA, November 2001.

S. Khatoon, A. Mahmood, and G. Li, “An evaluation of

source code mining techniques,” Proc. - 2011 8th Int.

Conf. Fuzzy Syst. Knowl. Discov. FSKD 2011, vol. 3,

pp. 1929–1933, 2011.

C. K. Roy and J. R. Cordy, “An Empirical Study of

Function Clones in Open Source Software,” 2008 15th

Work. Conf. Reverse Eng., pp. 81–90,2008.

J. R. Cordy and C. K. Roy, “The NiCad Clone Detector,”

2011 IEEE 19th Int. Conf. Progr. Compr., no. Figure

3, pp. 219–220, 2011.

N. Schwarz, M. Lungu, and R. Robbes, “On how often

code is cloned across repositories,” Proc. - Int. Conf.

Softw. Eng., pp. 1289–1292, 2012.

D. Rattan, R. Bhatia, and M. Singh, Software clone

detection: A systematic review, vol. 55, no. 7. Elsevier

B.V., 2013.

M. Kim, V. Sazawal, and D. Notkin, “An empirical study

of code clone genealogies,” ACM SIGSOFT Softw.

Eng. Notes, vol. 30, p. 187, 2005.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and

evaluation of code clone detection techniques and

tools: A qualitative approach,” Sci. Comput. Program.,

vol. 74, pp. 470–495, 2009.

D. Rattan, R. Bhatia, and M. Singh, Software clone

detection: A systematic review, vol. 55, no. 7. Elsevier

B.V., 2013.

C. J. Kapser and M. W. Godfrey, “‘cloning considered

harmful’ considered harmful: Patterns of cloning in

software,” Empir. Softw. Eng., vol. 13, pp. 645–692,

2008.

Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,

and A. Wesslén (2000). Experimentation in software

engineering: an introduction. Kluwer Academic

Publishers, ISBN: 0-7923-8682-5.

M. Colaço, M. Mendonça, M. André, D. F. Farias, and P.

Henrique, “A Neurolinguistic-based Methodology for

Identifying OSS Developers Context-Specific

Preferred Representational Systems,” Context, no. c,

pp. 112–121, 2012.

OpenSource.com What is open source? Retrieved from

https://opensource.com/resources/what-open-source

Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin,

F. Q. B. Da Silva, A. L. M. Santos, and C. Siebra,

“Tracking technical debt - An exploratory case study,”

IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 528–

531, 2011.

R. van Solingen and E. Berghout (1999). The

Goal/Question/Metric Method: A practical guide for

quality improvement of software development.

McGraw-Hill.

SPSS, IBM Software, http://goo.gl/eXfcT3

C. K. Roy and J. R. Cordy, “A Survey on Software Clone

Detection Research,” Queen’s Sch. Comput. TR, vol.

115, p. 115, 2007.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

402

