
ESKAPE: Information Platform for Enabling Semantic Data Processing

André Pomp, Alexander Paulus, Sabina Jeschke and Tobias Meisen
Institute of Information Management in Mechanical Engineering, RWTH Aachen University, Aachen, Germany

Keywords: Semantic Computing, Semantic Model, Knowledge Graph, Internet of Things, Data Processing.

Abstract: Over the last years, many Internet of Things (IoT) platforms have been developed to manage data from public
and industrial environmental settings. To handle the upcoming amounts of structured and unstructured data
in those fields, a couple of these platforms use ontologies to model the data semantics. However, generating
ontologies is a complex task since it requires to collect and model all semantics of the provided data. Since the
(Industrial) IoT is fast and continuously evolving, a static ontology will not be able to model each requirement.
To overcome this problem, we developed the platform ESKAPE, which uses semantic models in addition to
data models to handle batch and streaming data on an information focused level. Our platform enables users
to process, query and subscribe to heterogeneous data sources without the need to consider the data model,
facilitating the creation of information products from heterogeneous data. Instead of using a pre-defined
ontology, ESKAPE uses a knowledge graph which is expanded by semantic models defined by users upon their
data sets. Utilizing the semantic annotations enables data source substitution and frees users from analyzing
data models to understand their content. A first prototype of our platform was evaluated by a user study in
form of a competitive hackathon, during which the participants developed mobile applications based on data
published on the platform by local companies. The feedback given by the participants reveals the demand for
platforms that are capable of handling data on a semantic level and allow users to easily request data that fits
their application.

1 INTRODUCTION

Recent trends in Smart Cities, (Industrial) Internet of
Things (IoT), enterprise and mobile applications and
various other areas lead to an enormous increase of
data sources and available data. Due to the high de-
gree of globalization in today’s international compa-
nies, developers and data scientists face the problem
of utilizing data from multiple technically indepen-
dent company sites. Each site may use different data
formats or data models as well as different languages
resulting in a massive amount of heterogeneous data
sources, even within a single company structure.

However, the common idea of the Internet of
Things and various industrial and enterprise applica-
tions is to enable each participating object, which is
part of the system, to collect and exchange data that
can be used in multiple domains and sites at the same
time. One possible solution for solving this challenge
is the standardization of data models, formats and ex-
changed information. Here, it is necessary to create a
fixed standard for each available information that may
be recorded by a sensor or be produced by an appli-
cation. An example for standardized sensor readings

is SensorML,1 which provides a model consisting at
least of an identifier, a definition and a unit of mea-
surement for each reading, whereas all attributes can
be chosen by the user but are fixed afterwards.

However, defining standardized data models leads
to different problems. If we want to solve the prob-
lem of heterogeneity by using standards and if we do
not want to violate the common idea of IoT, we have
to define them in such a way that they comprise all
existing concepts. For example, for the concept Tem-
perature, a standard also has to define all sub con-
cepts, such as Indoor, Ambient or Room Temperature.
To allow a common understanding of the general data
schema, the standard has to define at least those basic
concepts. Here, further problems arise since the us-
age of those concepts depends on their context. For
instance, if a person is located in a room, the room
temperature corresponds to the indoor temperature.
However, the ambient temperature may either be the
temperature outside the room or outside the build-
ing. Most of today’s data modeling approaches can-
not cope with such unpredictable cases.

1http://www.ogcnetwork.net/SensorML

644
Pomp, A., Paulus, A., Jeschke, S. and Meisen, T.
ESKAPE: Information Platform for Enabling Semantic Data Processing.
DOI: 10.5220/0006324906440655
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 644-655
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The example shows that the definition of standards
for a common data model among various sensors is al-
ready difficult and it becomes more complicated when
considering further data sources. For the definition
of a corresponding standard to be successful, all soft-
ware developers and hardware manufacturers would
have to accord it and apply it to already rolled out
devices or software. While parts of these problems
can be simplified by limiting the standard to a spe-
cific domain, e.g., smart home or a specific company
site, it results in the drawback that those devices can
then only be used in this domain unless their standard
is translated to be compatible with another one. This
leads to additional work and is a contradiction to the
common idea of connected systems (e.g., Industrial
IoT) in which each participant’s data should be read-
able regardless of domain knowledge.

Another possibility for solving the described prob-
lems is the use of ontologies, which are widely spread
in the semantic web. Instead of standardizing data
models, we can use ontologies to define the current
view of the world. This allows the definition of se-
mantic models based on the ontology, creating an ab-
straction layer and thus being able to view the data
on an information level rather than a data level. This
meta level enables the comparability and analysis of
data sources with different data models but identical
information.

However, ontologies also suffer from various dis-
advantages. First, the definition of an ontology is
a complex task which in advance requires to collect
and model all the knowledge that will be required.
Second, ontologies suffer from inflexibility. Due to
the complex generation, an ontology is usually gener-
ated for a specific use case in a specific domain, e.g.,
medicine. Every annotation that is missing in the on-
tology will not be available when creating a semantic
model later on.

Since the (Industrial) Internet of Things is fast and
continuously evolving and new devices and sensors
are proposed every day, a static ontology will not be
able to model each requirement. In addition, covering
the complete required knowledge from the beginning
will also be challenging, even within an enterprise.

To solve the described problems of heterogeneous
data sources and the sophisticated definition of static
ontologies, we are developing the information-based
data platform ESKAPE (Evolving Semantic Knowl-
edge and Aggregation Processing Engine) for struc-
tured as well as unstructured batch and streaming data
that is capable of handling data on a semantic infor-
mation level. To feed data into ESKAPE, users (e.g.,
data source owners) can add data sources and describe
them with a custom semantic model. Instead of gener-

ating the model based on a pre-defined ontology, users
create the semantic model either by using concepts
available in the knowledge graph managed by ES-
KAPE or by defining their own domain-specific con-
cepts leading to an expansion of ESKAPE’s knowl-
edge graph. Hence, compared to ontologies created
top-down, this knowledge graph is capable of adapt-
ing new and unknown concepts and relations bottom-
up based on the added data sources and their seman-
tic models. Other users can use the published data
sources for analyzing data or developing applications
based on it.

We run ESKAPE in a closed enterprise environ-
ment, but due to compliance issues of enterprises, we
evaluated our approach in an open real-world sce-
nario. We set up a challenge in which teams had
to develop smart city applications based on various
data sets (batch and streaming data) that we collected
from different local providers, such as the local bus
company or bicycle sharing company. The evalua-
tion shows that the provided platform features, like a
semantic search, information conversion, data format
conversion or semantic filtering simplify the develop-
ment of real-world applications significantly. Hence,
ESKAPE forms the foundation for enabling true se-
mantics in the evolving IoT.

The remainder of this paper is organized as fol-
lows. Section 2 provides a motivating example and
Section 3 discusses related work. Based on the exam-
ple and current state of the art, we discuss the con-
cepts of ESKAPE in Section 4 as well as its function-
ality (Section 5) and architecture (Section 6). Finally,
we present the evaluation results in Section 7 before
we conclude in Section 8.

2 MOTIVATING EXAMPLE

In this section, we provide a motivating example illus-
trating the necessity for future IoT platforms to con-
sider knowledge about the semantics of data and to of-
fer a semantic-based processing. In addition, we dis-
cuss why usual ontologies are not sufficient for mod-
eling the semantic knowledge of all data sources that
are added to the platform.

The scenario consists of an app developer D1, who
wants to create an application A1 suggesting to the
end users if they should take a bus or rent a bicycle to
reach a certain location. For giving the suggestion, the
application uses the current weather conditions, the
current position of a bus and the number of available
bicycles at the nearest station.

To create the application, the developer searches
for data available in her city. On the local Open Data

ESKAPE: Information Platform for Enabling Semantic Data Processing

645



platform, multiple publishers Pi offer data. P1 offers
weather data DS1 via its HTTP API. The weather data
is available in XML format and includes a timestamp,
the current temperature in ◦C as well as the current
amount of rain. P2, a public transportation company,
provides DS2 as an AMQP stream in JSON format
containing the current timestamp and the GPS posi-
tion of each available bus represented by bus number
and a target stop. P3 offers DS3 as CSV table available
via HTTP containing the current number of available
bicycles at a renting station, the position of this sta-
tion as address (city, street, house number) as well as
the date and time of the last update.

When examining this scenario, we identify dif-
ferent drawbacks of common solutions for the cur-
rent process of data publishing as well as data con-
suming. When using the data, D1 currently has to
deal with three different data models in three differ-
ent formats (JSON, CSV, XML) available via two
different approaches (HTTP, AMQP) leading to un-
necessary implementation overhead. In addition, D1
has to deal with information in different representa-
tion forms. There exist two different location formats
(address and GPS location), a temperature in a pre-
defined unit as well as date and time information for-
matted either as date or as timestamp. These repre-
sentations again lead to a higher unnecessary imple-
mentation overhead.

When publishing data, the parties may also face
different challenges. A common platform without se-
mantics will not be able to provide any knowledge
about the data. For example, the platform would not
be aware of the unit of the temperature and could
therefore not convert it into an appropriate unit. If
we assume that the platform is already using an ontol-
ogy for representing information, the ontology would
need to cover any concept and relation that will be
available in data sets that are added in the future. Oth-
erwise, the platform could not link those unknown
data attributes to other data sets containing the same
information. While defining a comprehensive ontol-
ogy may be possible in a closed and controllable en-
vironment (e.g., inside a single department of a com-
pany), it is very unrealistic for a global company with
multiple sites in different countries or in an open sce-
nario where data sources are added over a long time
period by multiple independent actors, such as local
companies, city administration or private end users.
This shows that we are in need of a more generic and
evolving approach when dealing with semantics in the
(Industrial) Internet of Things.

3 RELATED WORK

In a broad field like the IoT, many other research
topics are related to our work. Such topics are data
integration and semantic model generation, ontol-
ogy learning, community-driven ontology engineer-
ing and IoT platforms.

In the area of data integration, multiple ap-
proaches focus on solving the problem of hetero-
geneous data sources, such as query reformulation
techniques (Global or Local as View) or ontology-
based information integration (Ahamed and Ramku-
mar, 2016).

The Stanford-IBM Manager of Multiple Informa-
tion Sources (TSIMMIS) (Garcia-Molina et al., 1995)
focuses on integrating and accessing heterogeneous
data sources by following a Global as View approach.
TTIMMIS acts as a translator between data sources
and a common data model (CDM) allowing to trans-
late queries to the CDM into data source specific
queries and returning the result back to the user in the
CDM. By additionally providing mediators, TSIM-
MIS identifies data sources that contain queried infor-
mation. Compared to TSIMMIS, ESKAPE follows an
ontology-based information approach where the data
is integrated based on semantic models enabling the
use of queries on an information-focused level.

Knoblock et al. propose in multiple papers
(Taheriyan et al., 2014) (Knoblock and Szekely, 2015)
(Taheriyan et al., 2016) (Gupta et al., 2015) a plat-
form, called KARMA, which follows the ontology-
based information integration approach. This plat-
form allows integrating data of multiple formats
(JSON, XML, etc.) based on a pre-defined ontology.
Data sources that are attached to Karma use seman-
tic models. For that, Knoblock et al. focus their work
on automatically creating semantic models based on a
fixed ontology per use case where the ontology does
not evolve over time. Another project proposed by
Meisen et al. describes a framework for handling
heterogeneous simulation tools for production pro-
cesses by using semantics based on a static ontology
(Meisen et al., 2012). Compared to these approaches,
ESKAPE focuses on an evolving knowledge graph
that learns from semantic models that were created
by users for their provided data sources.

In the area of ontology generation and learning,
OntoWiki (Hepp et al., 2006) addresses the problem
of the complex ontology generation by crowdsourc-
ing ontologies with the help of community members.
In OntoWiki, users create Wiki articles for concepts
and describe them in natural language. If a concept
is missing, users can create a new article for it. How-
ever, the evolving ontology OntoWiki is created by

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

646



community members where each one can modify the
work of the other. Without well-defined processes, the
ontology will not achieve stability. Hence, ESKAPE
mitigates this problem by supervising the knowledge
graph generation using external knowledge databases.

The approaches (Xiao et al., 2016) and (He et al.,
2014) deal with learning ontologies from unstruc-
tured text in an automatic fashion for coping with
the high effort that arises from creating ontologies by
hand. Therefore, the authors use DBPedia as a su-
pervisory tool for guiding a user during the learning
of an ontology. Their work is a first attempt to au-
tomatically generate ontologies. Xiao et al. focus
on learning ontologies from unstructured text where
the learned ontology is created based on a fixed cor-
pus of input sources that are not provided by differ-
ent users whereas ESKAPE’s knowledge graph learns
from user provided semantic models.

Furthermore, the project Semantic Data Platform
(SDP) proposed by (Palavalli et al., 2016) uses on-
tologies and semantic models to enable IoT-based ser-
vices. They also have the goal to deal with the num-
ber of upcoming heterogeneous data sources in the
Internet of Things. Palavalli et al. provide a concept
to solve the problem by allowing vendors to specify
semantic models for their new devices. These mod-
els are then used for evolving the underlying ontol-
ogy, which can be used as a common data model.
Based on SDP, devices and applications can subscribe
to events (e.g., temperature higher than 25◦C) that are
obtained from the collected IoT data. This collection
is enabled by the use of semantic queries. Palavalli et
al. just focus on adding devices with semantic mod-
els that were provided by vendors. Their work does
not consider other data sources, such as applications,
that may deliver data, as well as devices where the
semantic model may change over time (e.g., modular
smart phones). Moreover, the future work presented
includes extending the semantic approach to collabo-
ratively evolve IoT data model standard among device
vendors whereas our approach does not require to es-
tablish a standard.

Similar interest in interoperability of IoT systems
has been stated in a new project named ’BIG IoT’
(Dorsch, 2016). It focuses on the task of offering
a single API for multiple IoT applications, bridging
the gap between multiple independent data storages.
Another project, called Anzo Semantic Data Lake
(Cambridge Semantics, 2016), focuses on develop-
ing a data lake by adding context to all kinds of data
sources. In both projects, the participants do not state
how this task can be achieved but describe the need
for adding semantics to raw data sources.

4 CONCEPT

In this section, we will describe the concept behind
the platform, specifically the semantic concepts used
by ESKAPE. First, since there exist contrary defini-
tions of terms used in literature, we define the follow-
ing terms to accomplish a common understanding in
the upcoming sections:

• Data Attribute: Property of a single point of
data; e.g., column in a table described by a header
or the key in a map identifying all values available
under this key.

• Data Value: Describes the value of one specific
Data Attribute (e.g., the cell in a table or the value
available under a certain key in a map).

• Data Point: Describes an actual object including
Data Values for Data Attributes (e.g., a row in a
table or a map with data values for available Data
Attributes).

• Data Set: Represents all available Data Points
(e.g., all rows in a table) that are present at a cer-
tain time.

• Batch Data: One Data Set that is completely
added to ESKAPE.

• Streaming Data: Consist of multiple Data Sets
where each Data Set arrives at an unknown time
t. Consequently, at a certain time ti multiple Data
Points can arrive simultaneously.

• Data Source: A source from which ESKAPE re-
ceives data, such as a stream, a file system or a
URL.

To address the challenges that we identified in the
motivating example and in the related work, we are
developing ESKAPE, an information-based platform
that is capable of integrating data from heterogeneous
data sources on a semantic level by using a main-
tained knowledge graph. Common approaches tend
to use ontologies for semantic data modeling (cf. Sec-
tion 3) or other static approaches to annotate data sets
with semantic information. A drawback of these ap-
proaches is the missing ability to adapt to changes in
a rapidly changing environment where new devices
come into play almost every day. With ESKAPE, we
want to provide a new approach of creating semantics
for data sources.

Using ESKAPE, a user typically starts with a data
model deducted from a sample data set. The data
model contains all data attributes which have been
found in the analyzed data points thus representing
the structure of the observed input data (Figure 1(a)).
The identified data model has to be mapped to a se-
mantic representation (cf. Section 5.1).

ESKAPE: Information Platform for Enabling Semantic Data Processing

647



ProdY

ModelDesc

Model Main SideB SideA

ProductionSite

CarId

root

PartNo

(a) Data model

ProdY

ModelDesc

Model Main SideB SideA

ProductionSite

CarId

production date

description

car model car part number car part number car part number

car factory

identifier

CustomCar
car

Year
year

Chassis
chassis

GermanLang
german

has

has

assembled in

consists of consists of consists of

has
has

has

procuded in

written in

(b) Semantic model
Figure 1: Identified data model and respective semantic model for an example data set of cars.

4.1 Semantic Models

ESKAPE extends the technique of matching data
source models to (static) ontologies and their vocab-
ulary. The platform uses semantic models to describe
single data sources. A semantic model is a semantic
annotation of a data model adding semantic vocabu-
lary and relations to it. This model gives a semantic
representation of the information contained in the raw
data points. The model itself is user maintained and
fixed at the time the data integration starts.

A semantic model (see Figure 1(b)) is created by
instantiating an Entity Type for each data attribute
identified during the data analysis which is to be inte-
grated later. Each Entity Type contains a user-defined
name for this attribute in this specific semantic model
(e.g., ’ProductionSite’) and has a semantic concept
assigned to it, defining the semantic properties of this
attribute (e.g., ’car factory’). The Entity Type is there-
fore an instantiation of a generic concept for a spe-
cific semantic model and is defined by it. Further-
more, the user is not limited to attribute-assigned En-
tity Types inferred by the source data and can define
advanced Entity Types to create more complex mod-
els (e.g., ’Chassis’). Those advanced types are not
related to a specific data attribute as they resemble a
higher order construct, either by combining multiple
Entity Types or by specifying an Entity Type in more
detail. We require that each Entity Type has a concept
assigned to it as well as each concept to be attached
to at least one Entity Type. To relate two inferred or
created Entity Types, the user can also define Entity
Type Relations between those two (e.g., CustomCar
has CarId). An exemplary result of a semantic model
for the data model shown in Figure 1(a) can be seen
in Figure 1(b).

4.2 Knowledge Graph

Upon submission of a final semantic model in ES-
KAPE, the information contained in the model are
added to the knowledge graph, which is maintained
and supervised by the platform. The knowledge graph
cannot be modified directly by users and resembles
an auto-generated collection of semantic knowledge
from all available semantic models. It consists of
three types of core components:

• Entity Concepts: Entity Concepts are labeled
semantic descriptors which cover and uniquely
identify a generic or specific mental concept (e.g.,
car).

• Entity Concept Relations: Entity Concepts are
connected to other Entity Concepts via Entity
Concept Relations which describe invariant con-
nections (e.g., car has production date).

• Relation Concepts: Relation Concepts are de-
scriptors for kinds of relations, such as isA, pro-
ducedIn or consistsOf which might be used by
Entity Concept Relations and Entity Type Rela-
tions. Each Relation Concept contains a name
and a set of properties defining the mathematical
classes of relations it belongs to like transitive, re-
flexive, symmetric, etc.

With the availability of an evolving knowledge
graph, the creation of a semantic model for a data
source is simplified as elements from the knowledge
graph can be directly re-used in the annotation pro-
cess. Re-using elements from the knowledge graph’s
vocabulary saves the user from defining common con-
cepts and relations multiple times. In addition, it cre-
ates links between elements of the newly created se-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

648



mantic model and the knowledge graph. This allows
ESKAPE to make suggestions during the modeling
process as well as using reasoning based on the previ-
ously available knowledge in the knowledge graph,
e.g., noticing if a relation is probably used in the
wrong direction. However, the user’s semantic model
can be valid even without elements of the knowledge
graph and will not be modified by the system auto-
matically.

The only exception to that is the auto-detection of
probable concepts during the analysis phase. Based
on learned patterns for certain concepts, ESKAPE
can provide an initial semantic model using only pre-
viously known concepts and relations. The system
learns about those patterns when data is integrated for
a specific semantic model. If concepts of the knowl-
edge graph have been reused, example values and/or
patterns for certain concepts can be identified and an-
alyzed to build patterns.

4.3 Evolving the Knowledge Graph

Upon submission of a new semantic model to ES-
KAPE, the knowledge graph adapts the newly gath-
ered information by merging a model’s concepts and
relations into the graph. Re-used elements act as an-
chor points for matching elements. Previously un-
known concepts are matched using heuristics and ex-
ternal resources to detect, e.g., synonyms. If no suit-
able match is possible, a new Entity Concept is cre-
ated from the custom concepts and added to the graph
using the provided relations to previously known ele-
ments of the graph. The same procedure is applied for
newly encountered relations, which are converted to
Relation Concepts. Entity Concept Relations are de-
ducted from Entity Type Relations (which implicitly
relate Entity Concepts) which occur multiple times,
further extending the knowledge graph. Figure 2 il-
lustrates the described information model schemes.

5 FUNCTIONALITY AND
IMPLEMENTATION

To enable users sharing their data with others, we
differentiate between providing data sources to
ESKAPE and retrieving and processing the provided
data sources from it. The former process includes an
initial analysis of the data source (cf. Section 5.1), the
semantic modeling of the available information (cf.
Section 5.2) as well as the data integration (cf. Sec-
tion 5.3). After ESKAPE integrated the data, users
can start different kinds of processes on the data in-

relates Entity Concept 
Relation

Relation 
Concept

relates

contains

Semantic Model
(user maintained)

Knowledge Graph
(platform maintained)

Custom 
Concept

defines

induces new

defines

induces new

defines

Entity Concept

Entity Type

Entity Type 
Relation

Custom Entity 
Type Relation

relates

Figure 2: Overview about the different components that are
used for constructing semantic models for data sources and
their related elements in the knowledge graph.

cluding data enrichment, transformation or analysis
(cf. Section 5.4) as well as querying and obtaining
data (cf. Section 5.5).

5.1 Schema Analysis

When a user connects a data source to ESKAPE for
the first time, it collects an example data set and an-
alyzes it to identify a potential schema. Afterwards,
ESKAPE presents and visualizes the result to the user
to simplify the semantic model creation in the next
step. However, gathering and analyzing the raw data
schema leads to different challenges.

For analyzing the schema, a sufficient amount of
data points is required since a single data point may
not contain all data attributes. For batch data, no prob-
lems occur as it is a self-contained data set that does
not change over time and ESKAPE can just consider
each data point to obtain a comprehensive schema.
For streaming data, it is unknown if the number of
collected data sets and their included data points cover
the complete schema. Thus, our current solution ob-
serves streaming data for a certain amount of time
(configurable by the user). Based on all collected data
sets and data points, ESKAPE proposes a comprehen-
sive schema to the user. If the users recognize any
flaws, they can refine the schema, e.g., by manually
adding missing data attributes that were not covered.

When analyzing the schema, we are not interested
in a superficial schema for the data format, but in the
relationship between multiple data points and espe-
cially the structure of a data point (more precisely, in
the relationship between the different data attributes
of a single data point). While a data set is available
in a fixed format (e.g., CSV or JSON) and follows a

ESKAPE: Information Platform for Enabling Semantic Data Processing

649



Owner

Row

_id _uuid _position _address Address Location_1

latitude longitude Needs_recording

…

Raw Data

XML Common Schema

XML Row Schema

Owner Address Location_1

latitude longitude Needs_recording

…

Rows

Response

<response>
<row>
<row _id="1" _uuid=“…" _position="1" _address=“…">
<owner>Private</owner>
<address>2110 Market St</address>
<primetype>PPA</primetype>
<secondtype/>
<garorlot>L</garorlot>
<regcap>13</regcap>
<valetcap>0</valetcap>
<mccap>0</mccap>
<landusetyp>restaurant</landusetyp>
<location_1 latitude="37.767" longitude="-122.429" needs_recoding="false"/>
</row>
<row _id="2" _uuid=“…" _position="2" _address=“…">

Figure 3: The example illustrates a raw XML data snippet and two possible recognized schemas depending on the used format.
For the XML Common Schema, the result schema includes all available XML properties. In contrast, the result for the XML
Row Schema Analysis considers also the semantic structure of the data (table) and solely focus on the important concepts.

pre-defined standard, (e.g., RFC 41802 for CSV), the
data may be represented in different ways. Depending
on the way these formats are used, the semantic of
the data attributes and data values inside these formats
changes. This might imply whether the data attribute
or value is significant or not.

Thus, the schema analysis does not include all the
format specific details, but rather the semantics im-
plied when using the format. Figure 3 depicts an
example containing raw data from the San Francisco
Open Data platform3 in XML format. When perform-
ing a common schema analysis for this data snippet,
we receive the result shown in the lower part. This
schema contains data attributes that do not generate
any actual semantic value (e.g., response, rows, row).
Thus, the user should not define a semantic model for
those parts of the data.

To increase usability for the semantic model cre-
ation (cf. Section 4), we examined multiple data
sets from different Open Data platforms and identi-
fied patterns allowing to strip all the unnecessary data
attributes. One example (XML Row) is illustrated in
Figure 3. This schema implicitly considers that the
contained data represents a table consisting of mul-
tiple rows, just like a CSV file. Thus, this schema
analysis automatically strips all the data attributes that
should not be covered by the semantic model. Further
identified subtypes of formats are:

• CSV: covers all data sets where the values for data
attributes are separated by a delimiter.

2https://www.ietf.org/rfc/rfc4180.txt
3https://data.sfgov.org/Transportation/Parking/

9qrz-nwix

• JSON Lines: covers all data sets where the single
data points are in line separated JSON format.

• JSON Tabular: used for tabular data represented
as JSON. This format is recommended by the
W3C4 for tabular data that contain additional meta
data.

• JSON Common: used for all JSON data sets that
are not covered by any other subtype (e.g., JSON
Tabular).

• XML Row: tabular data represented in XML for-
mat.

• XML Common: used for all XML data sets that
are not covered by any other subtype (e.g., XML
Row).

Since maintaining a schema analysis per subtype
leads to high implementation overhead, especially
when changing constraints for the analysis, we decide
to translate each identified subtype into a platform in-
ternal format (JSON) and perform the schema anal-
ysis based on this format. We define for each sub-
type an appropriate conversion process which trans-
lates the subtype into an equivalent representation in
JSON. This allows us to define all schema analysis
constraints based on a single format. If constraints
for a single subtype change, we just have to adopt the
corresponding translation process.

4https://www.w3.org/TR/tabular-metadata/

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

650



5.2 Modeling Information of Data
Sources

After recognizing a schema for a data source, we
present the result to the user. Based on the deter-
mined schema, the user creates the semantic model
using the buildings blocks described in Section 4. Fol-
lowing the example illustrated in Figure 1, the user as-
signs each data attribute (ProdY, ModelDesc, Model,
Main, SideB, SideA, Plant, CarId) an Entity Type.
For instance, the Entity Type ModelDesc referencing
the Entity Concept description is assigned to the at-
tribute ModelDesc. In addition, the user defines more
complex Entity Types which are not mapped to data
attributes directly (e.g., CustomCar referencing the
Entity Concept car). By defining Relations between
the Entity Types, the user completes the view of a
car entity and precisely defines the characteristic of
a custom car entity named ’CustomCar’ consisting
of attributes ’ProdY’(production date), ’Model’(car
model), ’Chassis’(chassis), ’ProductionSite’(car fac-
tory) and ’CarId’(identifier). Figure 4 illustrates the
described scenario using the modeling GUI during
the semantic model creation phase in the prototype
web client of ESKAPE. The user creates new Entity
Types by dragging concepts onto attributes or into
free space. An Entity Type is then created automat-
ically, initially assuming the name of the attribute or
the concept, respectively.

Our approach comes with three novelties allow-
ing to continuously evolve the knowledge graph over
time. This is important for a growing system, such
as the Internet of Things, as it is constantly expanded
by newly added sensors and data emitters with new
semantic models. Thus, we first allow the user to use
concepts that are not available in the knowledge graph
yet. If the user wants to define an Entity Type but no
appropriate Entity Concept is available, then the user
will add this concept to the knowledge graph. To en-
sure that the concept is added at an appropriate posi-
tion in the graph, we use external data sources, such
as semantic networks (cf. Section 4).

The second novelty is that the knowledge graph
learns from the semantic model how entities are re-
lated to each other. Let us assume that the Entity
Concept car was only connected to the Entity Con-
cepts description, identifier and production date be-
fore the new semantic model was added to ESKAPE.
After defining the semantic model and adding it to
ESKAPE, the knowledge graph learns that the entity
car can also have a car factory, a chassis, and a car
model which can then be proposed to users which
intend to add other data sets containing information
about cars.

Another novelty of our approach is that the data
attributes recognized by the schema analysis are not
mapped in a one-to-one fashion onto entities of the se-
mantic model. Instead, we allow the user to refine the
schema and map the semantic model on the refined
schema. In the example illustrated in Figure 1, we
created a semantic model where the SideA attribute
was modeled by a car part number Entity Concept
and a relation to the Chassis Entity Type. If the user
wants to define a more fine granular model, she can
split the SideA attribute based on a regular expression
into two attributes c1 and c2 where c1 contains the
serial number and c2 the manufacturer number. By
mapping c1 to a corresponding Entity Concept, such
as serial number, and c2 to the Entity Concept manu-
facturer number a more detailed semantic model will
be created. Besides the splitting of a data attribute
into multiple ones, we also offer to split lists into
multiple lists or single data attributes by using reg-
ular expressions and defining repetition cycles. We
call fields that are split into multiple ones Composite
Fields. Furthermore, we also allow users to remove
unwanted data attributes from the schema for publish-
ing.

This example shows that the definition of a seman-
tic model is not unique. The user just provides her
view of the data even if there might exist more pre-
cise semantic models.

5.3 Data Integration

After the user has created the semantic model for a
data source, ESKAPE is capable of integrating the
data. The main goals of the data integration are:

• Syntactic homogenization

• Splitting composites into single attributes

• Linking specified entity types to the data attributes
of the refined schema

• Marking data values that could not be integrated

• Data point homogenization

• Discarding invalid data points

The syntactic homogenization ensures that all data
types (text, number, Boolean and binary values) are
integrated into a unified representation, which sim-
plifies the later handling of the data. For instance,
Boolean values that occur as 0, 1 or F, T are mapped
to False and True and numbers are represented by the
American notation. We do not perform a semantic ho-
mogenization (e.g., convert all temperatures to a uni-
form unit such as ◦F) since this information is en-
coded in the semantic model anyway and can thus be
used during processing.

ESKAPE: Information Platform for Enabling Semantic Data Processing

651



Figure 4: Prototype view of the modeling GUI of ESKAPE. For overview reasons, Entity Types and Entity Concepts are
combined. Node top: Entity Type (e.g., ’CustomCar’), node bottom: Entity Concept (e.g., ’car’). The view can be modified
by toggling displayed elements such as the data model.

In addition, the integration splits composite fields
into multiple data attributes and links all the data
attributes to their semantic entity type. If, for in-
stance, the splitting or the syntactic homogenization
fails (e.g., data type is marked as number but the
data value was a string), then the whole data value
is marked as invalid. We explicitly store those values,
since we do not want to lose information and we do
not know the scenario where the data might be used.
We only discard complete data points if errors occur
that do not allow us to link the data to its semantic
type (e.g., parsing errors).

After integrating data sets (batch or streaming),
ESKAPE stores the integrated data in our platform
specific Semantic Linked Tree format, called SLTFor-
mat. This format offers the user information about the
semantic type, the data value, the syntactic type and
if the value was successfully integrated, enabling true
semantic interoperability on the data sets. To addi-
tionally enable real-time analysis, streaming data are
directly forwarded to the next processing step.

5.4 Data Enrichment, Transformation
and Analysis

After the successful integration of data sources, the
data can be used for data enrichment, transforma-
tion and analysis. This step enables the user to per-
form heavyweight processing based on one or more
selected data sources, their semantic models and ad-
ditionally parameters defined by the user. The result is
a new data source with its semantic model that again
is persisted and can be published on ESKAPE.

In processing, we differentiate between Data En-
richment, Data Transformation and Data Analysis.
We define Data Enrichment as the process of extract-
ing and persisting new information by using data at-
tributes that are already available in the data. For in-
stance, assumed we have a data source containing a
data attribute that holds a description text. A typi-
cal data enrichment step would be to determine the
language of the description, so we explicitly gener-
ate information that is implicitly available and persist
it. Moreover, the information that was added will not
change over time and is use case independent. Op-
posed to this, Data Transformation is the process of
transforming or converting data attributes based on
knowledge that is offered by the semantic model. An
example is the conversion of a data attribute contain-
ing temperature data in ◦C into ◦F . Compared to Data
Enrichment, Data Transformation changes the data
depending on the user’s use case. Finally, Data Anal-
ysis involves all tasks that extract new information by,
e.g., aggregating multiple data points or joining data
sources based on defined criteria.

After the processing of the data was successful,
ESKAPE persists the newly created data source on the
storage and adds the corresponding semantic model to
the knowledge graph. In case of streaming data, the
data is directly forwarded to satisfy possible real-time
constraints.

5.5 Querying Data and Information

Aside from data integration and processing, users can
also extract data from ESKAPE. Since users have dif-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

652



Data Storage

• Raw Data
• Integrated Data
• Data Configurations

Information Model Storage

• Contains Semantic 
Models for each data 
source

External Data Sources

• Data sources for 
feeding data into the 
platform

Front End View & Logic

Processing Core

RESTful

• Creation of Semantic Models 
• Information-oriented integration of 

heterogeneous data sources
• Information-based processing of batch and 

streaming data 

• Trigger Semantic Model 
Creation

• Control Data Integration
• Control Data Processing 

Presentation Layer Third-Party Persistence

Figure 5: Overview about the architecture and technologies
of ESKAPE.

ferent requirements based on the use case, we offer
multiple approaches for the data extraction. The user
can either trigger the extraction for an available data
source on a semantic level by selecting a data source
and the semantic parts of it (e.g., selecting the con-
crete requested entity types) or by actively querying
for specific data sets using SQL, which, however, re-
quires the user to consider the semantic model.

For the semantic extraction, we offer the user to
perform additional filters and limits on the data and to
select a specific data format, such as XML or JSON,
in which the data should be extracted. The user can
also decide if she wants to receive the data as a stream
or as a file. When requesting batch data, a file can be
downloaded or emitted as stream for a certain amount
of time enabling the simulation of a data stream. For
streaming data, the data is sent directly to the user. We
do not offer to stream the data, which is persisted by
ESKAPE, into a file since it is identical to extracting
historic streaming data for a defined time span.

The SQL extraction, on the other hand, addresses
expert users who want to perform more sophisticated
data extraction by using familiar SQL syntax on a se-
mantic level.

6 ARCHITECTURE AND
TECHNOLOGIES

To ensure scalability, reliability and performance of
ESKAPE, we are using technologies that allow us to
distribute tasks among a cluster. Figure 5 provides an
overview of the developed architecture and used tech-
nologies. The architecture of ESKAPE consists of a
data processing back end (Processing Core) and a vi-
sualization front end used to add data sources to ES-

KAPE, maintain their state and define their semantic
models. It also allows for defining processing, e.g.,
enrichment steps on selected data sources and data
querying including visualization of the returned re-
sults. Furthermore, there exist several interfaces us-
ing popular data exchange formats to retrieve queried
and streaming data from ESKAPE.

To store the aforementioned knowledge graph and
the semantic models of each data source, we are us-
ing the graph database OrientDB5. Data storage is
handled in a Hadoop6 cluster. This cluster contains
the raw acquired data from gathered data sources and
streams as well as the integrated data sets, including
enriched data sets and additional data from third-party
enhancements, such as text language analysis. The
cluster storage concept enables ESKAPE to redun-
dantly store all acquired data sets in the SLTFormat
(cf. Section 5.3).

ESKAPE performs data processing (cf. Section
5), in the Processing Core, which makes up for the
largest part of the platform. The Processing Core
uses Apache Storm7 to process data sets in user-
defined chains expressed as directed acyclic graphs
(DAGs) called topologies. A topology consists of
spouts, which represent various data sources, and
bolts, which contain processing logic inside the pro-
cess chain. Combining different spouts and bolts
yield a DAG running in the Storm Cluster. Figure
6 shows an example of a simple stream processing
chain in a public transport domain. Each topology
is encapsulated in its own instance but may be dis-
tributed over several machines, called nodes. Those
topologies are used to form the processing part of any
heavy-weight operation as defined in Section 5.4. For
each specific processing task, a new Storm topology
is created by ESKAPE, besides the always present
ones handling data integration and export. By design,
topologies run infinitely, waiting for new data to be
emitted from the spouts, until ESKAPE shuts them
down. This is kept to process streaming data, how-
ever, on the batch integration part, a topology will be
shut down when the source does not yield any more
data. Continuous domain-specific data enrichment
tasks on integrated data sets defined by users also tend
to run indefinitely.

We implemented the communication between the
core platform and topologies running on the Storm
cluster using Apache Kafka8. It enables the core plat-
form to receive messages, such as errors or status up-
dates from all the topologies. Due to the Kafka de-

5http://orientdb.com/orientdb/
6http://hadoop.apache.org/
7http://storm.apache.org/
8http://kafka.apache.org/

ESKAPE: Information Platform for Enabling Semantic Data Processing

653



Stream
Stream-JSON 

Converter

Hadoop
Persistor

Position 
Computation

Delay 
Computation

Database

Stream 
Emitter

Spouts Bolts Data Flow

Figure 6: Example Storm processing chain for calculat-
ing public transportation delay from current vehicle posi-
tions, transmitted as a proprietary stream (not JSON), and
the scheduled timetable saved in the database.

sign, it also facilitates to directly persist those mes-
sages allowing for a detailed downstream analysis.

Data extraction from the Processing Core is done
in three ways. To distinguish between those ways,
one has to differentiate data extraction and data en-
richment. Topologies which are used to enrich data
contain a bolt to write the generated data back into
the Hadoop storage. In the case of stream process-
ing, the processed data is stored by default and also
forwarded to the aforementioned interfaces providing
data exchange technologies. ESKAPE currently sup-
ports stream-, HTTP- and file export, where in the
case of stream processing RabbitMQ9, an AMQP im-
plementation, is used.

To allow direct data extraction from the Hadoop
cluster (cf. Section 5.5), Apache Drill10 provides an
interface to execute a limited set of SQL queries on
the integrated data. ESKAPE can then quickly export
the queried data from the Hadoop Cluster. If any kind
of processing is needed, which extends simple oper-
ations such as joining and filtering data sets, a new
Storm topology is needed to handle those requests.

7 EVALUATION

As we could not evaluate ESKAPE in an enterprise
setting, we defined an open-world scenario in the first
place. For evaluating ESKAPE, we set up a hackathon
in which teams had to develop mobile applications
based on the data that were published on the plat-
form. The goal of this challenge was to get feedback
from users to identify potential design flaws as well
as missing features.

To provide a sufficient amount of data originating
from real-world sources, we teamed up with the local
city administration as well as local companies com-
ing from different domains. For example, the local

9https://www.rabbitmq.com/
10http://drill.apache.org/

bus company provided real-time data about the delay
of approaching buses for each stop via an HTTP API
and the regular schedule of each stop as CSV files.
Other parties published real-time weather data, the lo-
cations of available WiFi spots or the number of free
slots at bicycle rental stations. Altogether, nine differ-
ent parties provided 64 different data sets from which
15 were streaming data and 49 were batch data. All
streaming data was published via HTTP APIs, which
were polled in different time intervals (min=1min,
max=1day) whereas the batch data sets were pub-
lished as files (42) or via an HTTP API (7) without
any update frequency (one-time polling). From the
64 data sets, 20 were published as CSV, 11 as XLSX
(Excel), 2 as JSON Common, 2 as JSON Tabular, 10
as JSON Lines, 3 as PDF, 2 as SHP, 4 as WMS and 10
as XML Common. Since our prototype did not sup-
port all formats at the moment, we converted XLSX
files manually to CSV and we did not import PDF (not
a M2M format) as well as SHP and WMS resulting in
55 available data sets for the hackathon.

For developing applications, 92 persons grouped
into 25 teams participated in the hackathon. Each
submitted application used at least three different data
sets for developing their application. We discovered
that mobile applications developed for the Android
operating system requested the data as JSON whereas
the submitted iOS applications requested the data as
XML. Each team that requested data sets with the se-
mantic concept Temperature requested a conversion
before extracting the data from ESKAPE. Based on
interviews with the teams that used such features, we
confirmed that the conversion for units as well as
formats simplifies the development process for sev-
eral OS/platforms. However, we also received feed-
back about missing features, such as an HTTP API
(no team liked AMQP extraction) and merging of
data directly on ESKAPE (not enabled during the
hackathon). Two teams also requested to integrate
own processing logic into the processing pipelines,
which will be addressed by the analytic layer in the
future.

8 CONCLUSION AND FUTURE
WORK

In this paper, we presented our approach to enable se-
mantics in the continuously evolving (Industrial) In-
ternet of Things. The main idea to mitigate problems
of current solutions, such as dealing with heteroge-
neous data sources and defining sophisticated static
ontologies, is a platform, called ESKAPE, that uses
semantic models based on a knowledge graph for de-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

654



scribing data sources. Instead of pre-defining all con-
cepts and relations in the graph, we presented an ap-
proach where the graph is able to cope with new con-
cepts and relations from data sources that are added
to ESKAPE. To create the semantic models, we pro-
posed a detailed schema analysis for which we iden-
tified more fine granular subtypes of data formats that
directly consider additional semantics, such as table
rows described in XML. Based on the schema analy-
sis and the user-defined semantic models, the data is
integrated into a unified format that directly links se-
mantic concepts and data attributes. Afterwards, inte-
grated data can be used to perform data enrichment,
transformation and analysis and to extract the result
based on various approaches, such as SQL queries
or an extraction on a semantic level. The latter es-
pecially enables the subscription of processed, trans-
formed and enriched real-time data sources on a se-
mantic level, enabling true semantics for the Internet
of Things.

In the near future, we plan to improve the cur-
rent data processing by allowing the user to create
own topologies using the web interface. Currently,
all topologies are created and made available by ES-
KAPE’s developers. Enabling the user to create and
modify own topologies during runtime will allow for
complete autonomous usage of ESKAPE. Further-
more, modifying a pipeline requires a restart of the
running node resulting in potential data loss. A so-
phisticated buffering technique will prevent the data
loss during modification.

In addition to these improvements, the user will
get advanced support when creating semantic mod-
els. Our goal is to analyze the given input data and
automatically propose a full semantic model to the
user. This requires more detailed analysis of the given
data attributes and machine learning approaches to
estimate the best assignment of Entity Concepts and
Types. In addition, adding the capability to change the
now fixed semantic models during runtime will help
to adapt to changing data sources. By extending ES-
KAPE’s semantic search to support natural language
queries, we will additionally improve its usability.

Additional future work will focus on improving
the supervising of the knowledge graph creation. By
using appropriate machine learning approaches on the
provided data of the new concepts, we want to im-
prove the automatic supervising resulting in a more
resilient knowledge graph.

REFERENCES

Ahamed, B. and Ramkumar, T. (2016). Data integration-
challenges, techniques and future directions: A com-
prehensive study. Indian Journal of Science and Tech-
nology, 9(44).

Cambridge Semantics (2016). Anzo Smart Data Discovery.
http://www.cambridgesemantics.com/.

Dorsch, L. (2016). How to bridge the interoperability gap
in a smart city. http://blog.bosch-si.com/categories/
projects/2016/12/bridge-interoperability-gap-smart-
city-big-iot/.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstanti-
nou, Y., Ullman, J., and Widom, J. (1995). Integrating
and accessing heterogeneous information sources in
tsimmis. In Proceedings of the AAAI Symposium on
Information Gathering, volume 3, pages 61–64.

Gupta, S., Szekely, P., Knoblock, C. A., Goel, A.,
Taheriyan, M., and Muslea, M. (2015). Karma: A
System for Mapping Structured Sources into the Se-
mantic Web: The Semantic Web: ESWC 2012 Satel-
lite Events: ESWC 2012 Satellite Events, Heraklion,
Crete, Greece, May 27-31, 2012.

He, S., Zou, X., Xiao, L., and Hu, J. (2014). Construc-
tion of diachronic ontologies from people’s daily of
fifty years. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC 2014), Reykjavik, Iceland. ELRA.

Hepp, M., Bachlechner, D., and Siorpaes, K. (2006). On-
towiki: Community-driven ontology engineering and
ontology usage based on wikis. In Proceedings of
the 2006 International Symposium on Wikis, WikiSym
’06, pages 143–144, New York, NY, USA. ACM.

Knoblock, C. A. and Szekely, P. (2015). Exploiting seman-
tics for big data integration. AI Magazine.

Meisen, T., Meisen, P., Schilberg, D., and Jeschke, S.
(2012). Adaptive Information Integration: Bridging
the Semantic Gap between Numerical Simulations,
pages 51–65. Springer Berlin Heidelberg, Berlin, Hei-
delberg.

Palavalli, A., Karri, D., and Pasupuleti, S. (2016). Se-
mantic internet of things. In 2016 IEEE Tenth Inter-
national Conference on Semantic Computing (ICSC),
pages 91–95.

Taheriyan, M., Knoblock, C. A., Szekely, P., and Ambite,
J. L. (2014). A scalable approach to learn semantic
models of structured sources. In Proceedings of the
8th IEEE International Conference on Semantic Com-
puting (ICSC 2014).

Taheriyan, M., Knoblock, C. A., Szekely, P., and Ambite,
J. L. (2016). Learning the semantics of structured data
sources. Web Semantics: Science, Services and Agents
on the World Wide Web.

Xiao, L., Ruan, C., Yang, Zhang, J., and Hu, J. (2016). Do-
main ontology learning enhanced by optimized rela-
tion instance in dbpedia. In Proceedings of the Tenth
International Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. ELRA.

ESKAPE: Information Platform for Enabling Semantic Data Processing

655


