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Abstract: Measuring the quality of data partitions is essential to the success of clustering applications. A lot of different
validity indices have been proposed in the literature, but choosing the appropriate index for evaluating the
results of a particular clustering algorithm remains a challenge. Clustering results can be evaluated using
different indices based on external or internal criteria. An external criterion requires a partitioning of the data
previously defined for comparison with the clustering results while an internal criterion evaluates clustering
results considering only the data properties. In a previous work we proposed a method for selecting the most
suitable cluster validity internal index applied on the results of partitioning clustering algorithms. In this
paper we extend our previous work validating the method for density-based clustering algorithms. We have
looked into the relationships between internal and external indices, relating them through linear regression
and regression model trees. Each algorithm was run over synthetic datasets generated for this purpose, using
different configurations. Experiments results point out that Silhouette and Gamma are the most suitable indices
for evaluating both the datasets with compactness property and the datasets with multiple density.

1 INTRODUCTION

Clustering is an unsupervised data mining task based
on the similarity between the instances (Tan et al.,
2006). A cluster is a subset of instances that can be
treated collectively as one group (Han et al., 2006). A
clustering algorithm should maximize intragroup and
minimize intergroup similarity. Nowadays, data clus-
tering is widely used in several scientific or organi-
zational applications such as complex data analysis,
market research, image processing, test of hypotheses
and profiles discovery (Xu and Wunsch, 2009).

Several clustering algorithms have been proposed
in recent decades (Xu et al., 2005; Berkhin, 2006).
k-means (Hartigan and Wong, 1979) is based on cen-
troids and it requires that the user defines the k num-
ber of groups. Besides, k-means is not suitable for
discovering clusters with nonconvex shapes or clus-
ters of very different size. Other examples of parti-
tioning methods are k-medoids and CLARANS. DB-
SCAN (Ester et al., 1996) is another well-known algo-
rithm that grows regions with sufficiently high density
into clusters and discovers clusters of arbitrary shape
in spatial databases with noise. This algorithm re-
quires two user-defined parameters: a neighborhood

specified by the radius ε and the minimum number
of points MinPoints in this neighborhood. Hierar-
chical methods work by grouping data objects into
a tree of clusters (dendrogram) that shows how ob-
jects are grouped together step by step. DIANA and
ROCK are examples of hierarchical algorithms (Han
et al., 2006). There are also grid-based clustering al-
gorithms which quantize the object space into a finite
number of cells that form a grid structure on which
all of the operations for clustering are performed.
An overview of many other clustering algorithms can
be found in the following surveys (Xu et al., 2005;
Berkhin, 2006).

Validation of clustering results is essential to the
success of clustering applications (Halkidi et al.,
2001a). The quality of partitions generated by differ-
ent algorithms can be evaluated using visual inspec-
tion and different indices based on external or inter-
nal criteria. Due to the high dimensionality and cardi-
nality of the datasets, visual inspection becomes im-
practicable. An external criterion requires previously
known data classes for comparison with the partition-
ing of the data resulted from the clustering algorithm
(Xu and Wunsch, 2009). However, the vast majority
of problems which require the use of grouping tech-
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niques do not have the data labelled a priori. There-
fore, a common way to evaluate the clustering results
is using indices based on internal criteria, which re-
gard only the data properties, looking for partitioning
with compact and well-separated clusters.

Several cluster validity indices have been pro-
posed in the literature (Xu and Wunsch, 2009; Rand,
1971; Fowlkes and Mallows, 1983; Davies and
Bouldin, 1979; Dunn, 1974; Rousseeuw, 1987; Baker
and Hubert, 1975; Vendramin et al., 2010; Hubert
and Levin, 1976). Each index focuses on a particular
property of the partitions, and many of them are in-
fluenced by the impact of noise, density variation, or
the presence of subclusters. It is not possible to point
out a universally most reliable index (Liu et al., 2010;
Vendramin et al., 2010). For this reason, selecting
appropriate indices for evaluating the results of a par-
ticular clustering algorithm remains a challenge (Liu
et al., 2010).

In order to help in this process of selecting the
most suitable cluster validity internal indices we pre-
viously proposed a methodology based on the induc-
tion of regression models applied on the results of par-
titioning clustering algorithms (Tomasini et al., 2016).
Now in this paper we have extended our previous
work by adapting and validating the methodology for
density-based algorithms, which were performed over
synthetic datasets generated for this purpose, using
different configurations. Clustering results were eval-
uated by different internal and external indices gener-
ating the input for regression models. Each external
index is taken as the label attribute to be predicted,
and internal indices are the regression attributes. Ex-
periments results show the relationships between in-
ternal and external indices and point out that Silhou-
ette and Gamma are the most suitable indices for eval-
uating both the datasets with compactness property
using k-means and the datasets with multiple density
using DBSCAN.

This paper is organized as follows. In section 2,
we describe a set of cluster validity indices used in
this work. In section 3, we present our methodology
for choosing the most suitable cluster validity internal
index. In section 4, we give details on the performed
experiments and discuss the obtained results. Finally,
in section 5, we draw our conclusions and point out
some future work directions.

2 CLUSTERING VALIDATION

One of the most important issues in clustering analy-
sis is the evaluation of results to find the partitioning
that best fits the underlying data (Liu et al., 2010).

This procedure is known under the terms cluster-
ing validation (Tan et al., 2006) or cluster validity
(Halkidi et al., 2001a).

There are two criteria proposed for clustering val-
idation and selection of an optimal clustering scheme
(Berry and Linoff, 1996):
1. compactness – the members of each cluster should

be as close to each other as possible;
2. separation – the clusters themselves should be

widely spaced.
A common index of compactness is the variance (Han
et al., 2006), which should be minimized. The sepa-
ration can be measured by means of the distance be-
tween the clusters centers or between the nearest or
most distant members. There are many different clus-
ter validity indices that are very useful as quantitative
measures for evaluating the quality of data partitions.

Although several indices had been proposed, each
one focuses on a particular clustering property, and
they may not deal with some aspects such as varia-
tion of density or noise. These properties or aspects
turn each index able to outperform others in specific
classes of problems. Based on the above arguments,
choosing the appropriate validity index for evaluating
the results of a particular clustering scheme remains a
challenge.

Liu et al. (Liu et al., 2010) present a detailed study
of eleven internal cluster validity indices investigat-
ing their validation from the impact of monotonicity,
noise, density, subclusters and skewed distributions.
The performed experiments show that most of indices
have certain limitations in different application sce-
narios.

Vendramin et al. (Vendramin et al., 2010) pro-
posed a statistical methodology for comparing clus-
ter validity indices that is more robust than the tra-
ditional method used in the literature (Milligan and
Cooper, 1985). The authors compute the Pearson cor-
relation between internal and external indices in order
to identify relationships between them. The experi-
ments show that the larger the correlation value the
higher the capability of an internal index to unsuper-
visedly mirror the behavior of the external index and
properly distinguish between better and worse parti-
tions.

As proposed by Vendramin et al. (Vendramin
et al., 2010), our method described in section 3 dis-
cover the behavior and relationships between internal
and external indices. These relationships are learned
from linear regression models and regression model
trees. We have performed a set of experiments pre-
sented in section 4. These experiments show that
regression models can quantify the relationships be-
tween internal and external indices helping the user
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to choose the most suitable cluster validity internal
index. The followings subsections describe a set of
indices used in this work.

2.1 External Indices

The external indices are typically used to compare the
cluster results with a previously known partitioning
(Xu and Wunsch, 2009). This partitioning can reflect
our intuition about the data structure, be suggested
by a domain expert or be defined based on a match-
ing between the clusters found and the labels already
known.

Let P be a previously defined partition of the
dataset X with n points. Let C be a clustering struc-
ture resulted from a clustering algorithm performed
on X . The evaluation of C by an external index is
achieved by comparing C to P. Considering a pair of
data points (xi,x j) ∈ {X ×X}|1 ≤ i ≤ n,1 ≤ j ≤ n,
one can compute the four different cases based on
how xi and x j are placed in C and P (Xu and Wun-
sch, 2009), i.e., the frequency of pairs xi and x j which
belong to:

a. the same group in C and the same category in P;

b. the same group in C, but different categories in P;

c. different groups in C, but the same category in P;

d. different groups in C and different categories in P.

In this work, we have applied the external indices
Jaccard (Xu and Wunsch, 2009), Rand (Rand, 1971)
and Fowlkes-Mallows (Fowlkes and Mallows, 1983).
These indices are based on the frequency of instance
pairs correct or incorrectly grouped according to one
of the cases a, b, c and d. The following subsections
specify each index.

2.1.1 Jaccard

Jaccard index J or Jaccard similarity coefficient (Xu
and Wunsch, 2009) is a statistical measure used to
compare the similarity and diversity between datasets.
This index results in values that range in the close in-
terval [0,1]. J returns a value closer to 0 when applied
to different partitions and closer to 1 when computed
on very similar partitions. The Jaccard index is de-
fined by equation 1.

J =
a

a+b+ c
(1)

2.1.2 Rand

So as Jaccard, Rand index R (Rand, 1971) measures
the similarity between two partitions P and C. This
index also results in values in the range [0,1], where 0

suggests that C and P are very different and 1 means
highly similar partitions. Rand index is defined by
equation 2.

R =
a+d

a+b+ c
(2)

2.1.3 Fowlkes-Mallows

The value of this index is directly related to the simi-
larity between C and P, which means that higher the
returned value, higher is the similarity between the
partitions. Fowlkes-mallows index FM (Fowlkes and
Mallows, 1983) is defined by equation 3.

FM =

√
a

a+b
a

a+ c
(3)

2.2 Internal Indices

In practice, external information such as class la-
bels is often not available in many application scenar-
ios. Therefore, in the situation that there is no exter-
nal information available, internal validity indices are
the only option for clustering validation (Liu et al.,
2010). Typically, these indices are able to quantify
the quality of clustering results using only frequencies
and properties inherent to the dataset (Halkidi et al.,
2001a), e.g., considering only the proximity matrix.

In this work, we have applied the internal indices
DBI (Davies and Bouldin, 1979), Dunn (Dunn, 1974),
Gamma (Baker and Hubert, 1975; Vendramin et al.,
2010), C-index (Hubert and Levin, 1976; Vendramin
et al., 2010) and Silhouette (Rousseeuw, 1987). Since
we have applied the internal indices in different con-
figurations of the clustering algorithms in order to
better understand the behavior and the relationships
among this clustering validation methods, we have
used the internal indices as relative criteria. Accord-
ing to Xu et al. (Xu and Wunsch, 2009), relative crite-
ria compare clustering results generated by different
algorithms or the same algorithm but with different
input parameters, i.e., they evaluate a clustering re-
sult comparing it to other clustering schemes (Halkidi
et al., 2001a). The following subsections specify each
index cited previously.

2.2.1 DBI

The Davies-Bouldin index DBI (Davies and Bouldin,
1979) is the ratio between the sum of the internal dis-
persion of clusters and the distance between them.
Equation 4 defines DBI as

DBI =
1
n

n

∑
i=1

maxi6= j
σi +σ j

d(ci,c j)
(4)
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where n is the number of clusters, σi is the average
distance of all points of the cluster i to its centroid ci,
σ j is the average distance of all points in the cluster j
to its centroid c j and d(ci,c j) is the distance between
the centroids ci and c j.

It is clear for the above definition that DBI is the
average similarity between each cluster and its most
similar correspondent (Halkidi et al., 2001a). It is de-
sirable for the clusters to have the minimum possible
similarity to each other. Thus, smaller values of DBI
correspond to compact clusters which centroids are
distant from each other.

2.2.2 Dunn

The Dunn index D (Dunn, 1974) is calculated from
the ratio between the shortest intergroup distance and
longest intragroup distance. It returns values in the
range [0,∞), where higher values attempts to identify
compact and well separated clusters (Halkidi et al.,
2001a).

Let d(Ci,C j) be the distance between two clusters
Ci and C j performed as the shortest distance between
a pair of objects x ∈ Ci and y ∈ C j (equation 5). Let
diam(Ci) be the diameter of Ci calculated as the max-
imum distance between two of its members (equation
6). Dunn index is formally defined by equation 7,
where k is the number of clusters.

d(Ci,C j) = min
x∈Ci,y∈C j

(d(x,y)) (5)

diam(Ci) = max
x,y∈Ci

(d(x,y)) (6)

D(k) = min
i=1,...,k

(
min

j+1,...,k

(
d(Ci,C j)

maxl=1,...,K (diam(Cl))

))

(7)
The main disadvantage in relation to other indices

is the high quadratic computational complexity. Fur-
thermore, this criterion is very sensitive to noise.

2.2.3 Gamma

The Gamma index Γ (Baker and Hubert, 1975; Ven-
dramin et al., 2010) computes the number of concor-
dant pairs of objects S+, which is the number of times
the distance between a pair of objects from the same
cluster is lower than the distance between a pair of
objects from different clusters. This index also cal-
culates the number of discordant pairs of objects S−,
which is the number of times the distance between a
pair of objects from the same cluster is greater than
the distance between a pair of objects from different
clusters. Γ is defined by equation 8.

Γ =
S+−S−
S++S−

(8)

This index varies in the range [−1,1]. Better parti-
tions are expected to have higher values of S+, lower
values of S− and, therefore, higher values of Γ.

2.2.4 C-Index

The C-index (Hubert and Levin, 1976; Vendramin
et al., 2010) is defined by Equation 9

C =
dw−min(dw)

max(dw)−min(dw)
(9)

where dw is the sum of distances over all pairs of in-
stances from the same cluster. Let j be the number
of pairs of instances in the same cluster, max(dw) and
min(dw) are the sum of the j largest and smallest dis-
tances, respectively, considering all pairs of distances.
Thus, this index should be minimized and it varies
within the range [0,1].

2.2.5 Silhouette

The Silhouette index S (Rousseeuw, 1987) defines the
quality of clustering results based on the proximity
among objects of a particular cluster and the neigh-
borhood of these objects to the nearest cluster. Equa-
tion 10 computes this index for a single instance x,
member of the cluster j, where d(x,C j) is the average
dissimilarity between x and all the objects in j, h is
the cluster nearest to x.

s(x) varies within the range of [−1,1]. The closer
to 1 the better the object allocation. After comput-
ing s for all data objects in the cluster j, the average
S j is calculated (equation 11). Finally, Silhouette in-
dex is computed for the entire partition as defined by
equation 12, where n j is the number of objects in the
cluster j and k is the number of clusters.

s(x) =
d(x,Ch)−d(x,C j)

max(d(x,Ch),d(x,C j))
(10)

S j =
∑

n j
i=1 s(xi)

n j
(11)

S =
∑k

j=1 S j

k
(12)

3 PROPOSED METHOD

This section presents our proposed method to relate
internal and external cluster validity indices. It is split
into five steps presented in Figure 1.

The 1st step sets the datasets to be used. The in-
stances in this dataset must be labelled with prede-
fined partitions that will be used in clustering valida-
tion external criteria. For this step we can select real
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Figure 1: Proposed method to relate internal and external
cluster validity indices.

datasets or generate synthetic ones. We notice that
the use of synthetic datasets allows us the variation of
properties such as number of instances, features and
clusters, density, noise, and so on.

The 2nd step consists in selecting and applying
a clustering algorithm on the datasets generated or
selected in the previous step. This choice depends
on the data properties. For instance, we recommend
using a low computational complexity density-based
algorithm if the datasets are very large having clus-
ters of very different size with non convex shapes
and multiple densities. The algorithm should be per-
formed several times varying the input parameters
looking for different partitions.

The 3rd step computes a set of validity internal
and external indices for each clustering result, i.e., for
each partition returned in previous step. These indices
quantify the quality of clustering results.

In step 4, the index values previously computed
are transformed to be used as input for data mining.
Minimization criteria such as DBI and C-index are
inverted since most indices are maximization crite-
ria. Thus, for all transformed indices, compact and
well-separated clusters will return higher values. A
transformed index value tip is defined by equation 13,
where vip is the index i value computed on the parti-
tion p and v̄i is the average of index i values consider-
ing all partitions. In addition, all transformed values
are normalized in the interval [0,1].

tip =
{

2 v̄i− vip, if i is a minimization criterion
vip, otherwise

(13)
Following our method, given a set of n partitions

generated in 2nd step and their normalized internal

Table 1: An example of the training set with Jaccard (J) as
target attribute.

DBI S D Γ C J
1 0.759 0.793 0.357 0.723 0.487 0.410
2 0.763 0.697 0.314 0.624 0.211 0.410
...
n 0.871 0.753 0.247 0.675 0.401 0.417

index values computed in step 4, the performance of
each index on the assessment of the whole set of par-
titions is evaluated with respect to a normalized ex-
ternal index in step 5. Thus the quality of clustering
results are supervisedly quantify.

Table 1 shows an example of training set where
Davies-Bouldin, Silhouette, Dunn, Gamma and C-
index were taken as predictive attributes and the ex-
ternal index Jaccard was the target attribute. These
training sets are used as input of regression models
to estimate the external index values based on the
internal ones. The analysis of models helps to ver-
ify which internal index is most suitable for evalu-
ating the datasets generated or selected in first step.
A good internal index will be able to rank the parti-
tions according to an ordering that is similar to that
established by an external index, since it relies on su-
pervised information about the data structure (known
clusters).

4 EXPERIMENTAL EVALUATION

This section describes the experiments we conducted
in order to empirically validate the method proposed
in Section 3 and evaluate the quality of the regression
models. Two hundred synthetic datasets were gen-
erated during the evaluation. These datasets contain
multiple distributions of points in a two-dimensional
space, which allows us to visually check the validity
of the results (Halkidi et al., 2001b). The experiments
were performed in a standard personal computer, us-
ing the statistical computing software R 1 in the steps
1 to 4. The last step was conducted using the data
mining software Weka 2.

Experiments are divided into two different case
studies (CS), using:

1. datasets with compactness property and a parti-
tioning clustering algorithm;

2. datasets with multiple density and a density-based
clustering algorithm.

The following metrics were used to evaluate the ob-
tained models: correlation coefficient and root rela-

1http://www.r-project.org/
2http://www.cs.waikato.ac.nz/ml/weka/
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tive squared error (Han et al., 2006). The experimen-
tal results point out that Silhouette and Gamma are the
most suitable cluster validity internal indices for eval-
uating the scenarios specified in both case studies.

4.1 CS1: Datasets with Compactness
Property and a Partitioning
Clustering Algorithm

In the 1st step of the proposed method we have gen-
erated 100 distinct datasets, in which 150 instances
was distributed in a two-dimensional space. We var-
ied the number of real clusters nc (classes) ranging
from 2 to 5. The number of instances for each cluster
was random always totaling 150. Half of the instances
follows a Gaussian distribution, in which the radius r
have been set from 1 to 10 and the standard deviation
sd = 0.33 r. The other half was randomly arranged
between the largest and the smallest coordinates of
the previously generated instances, simulating noise.
Figure 2 (up) shows an example of dataset with three
distinct classes identified by the color of the points.

After datasets generation, in 2nd step, we have
applied the k-Means clustering algorithm setting up
k = nc. In 3rd step the clustering results were eval-
uated using all the cluster validity indices described
in section 2. In step 4, for each partition, the clus-
ter validity indices were transformed and normalized.
Figure 2 (down) shows the partition returned when 3-
means was applied on the generated dataset (up).

In the step 5, we have trained a linear regression
model for each cluster validity external index using
the internal ones (Eq. 14-16). We have kept the Weka
default parameters.

J = 0.4691 S−0.2766 Γ−0.2447 C+0.363 (14)

R =−0.1746 S+0.2492 Γ−0.0543 C+0.508 (15)

FM = 0.581 S−0.3891 Γ−0.2563 C+0.5333 (16)

Observing the linear regression models, we notice
that DBI and Dunn were irrelevant to estimate all ex-
ternal indices because they were not used in any re-
gression. Silhouette had a positive impact on Jaccard
and Fowlkes-Mallows and a negative on Rand index.
The Gamma behavior was opposed because it posi-
tively affected only Rand. The C-index influence was
always negative.

We have also learned regression model trees us-
ing the M5 algorithm (Quinlan et al., 1992) to esti-
mate the same three external indices. We have set the
minimum number of instances to allow at a leaf node
M = 4. Figure 3 shows the regression tree for the Jac-
card index.
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Figure 2: An example of generated dataset (up) and the par-
tition returned by k-means (down).
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S 
LM 1 

(14/2.595%) 

<= 0.14 > 0. 4 
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(5/3.419%) 
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<= 0.513 

LM 2 
(8/1.297%) 

S 

LM 4 
(54/15.48%) 

> 0.574 <= 0.574 

LM 5 
(19/15.82%) 

Figure 3: Model tree using the Jaccard index as target at-
tribute.

Each leaf is a distinct linear regression model
(LM) constructed using a subset of instances, which
are selected using the rule defined by the path between
the root and the leaf. These nodes present the num-
ber of instances and the prediction error of each LM.
Gamma was the most discriminatory attribute (root)
followed by Silhouette. Any other index helped to
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Table 2: Regression evaluation using k-means.

Index Regression Correlation RRSE

J linear 97.82 20.78
M5 98.75 15.83

R linear 91.82 39.61
M5 96.60 25.91

FM linear 98.01 19.86
M5 98.01 19.86

build the tree, but all LM have a minimal influence
of DBI in addition to previously cited indices. For all
LM, Silhouette had a positive impact in the Jaccard
prediction while Gamma and DBI had a negative.

Regarding the use of the DBI as an internal node,
the regression tree for the Rand index did not pro-
duce significant differences in the 10 LM (leaf nodes),
which were composed by the same indices including
Silhouette and Gamma. For the Fowlkes-Mallows in-
dex, M5 produced a single node tree with the same
LM presented in equation 16.

Table 2 compares the linear regressions with the
regression model trees. For each learned model it
shows two quality measures: correlation coefficient
and root relative squared error (RRSE), both in per-
centages (Han et al., 2006). We notice that M5 per-
formed better than or equal to linear regression model.

The analysis of models allows us to verify that the
most suitable cluster validity internal indices for eval-
uating the datasets using k-means were Silhouette and
Gamma. These internal indices was strong related to
all three external ones, i.e. they were able to eval-
uate the vast majority of partitions in a very similar
way when compared to Jaccard, Rand and Fowlkes-
Mallows, as shown by the high values of correlation
and low error rates.

4.2 CS2: Datasets with Multiple Density
and a Density-based Clustering
Algorithm

In this second case study, we have applied the pro-
posed method to multiple density datasets (Handl
et al., 2005) and a density-based clustering algorithm.

In the 1st step we generated 100 distinct synthetic
datasets with 150 instances in each one distributed in
a two dimensional space. For these datasets we varied
the number of classes as follows: 25 datasets with 2
classes, 25 datasets with 3 classes and so on. The 150
points of each dataset were generated using a bivari-
ate Gaussian distribution (Goodman, 1963) defined
by eq. 17, where µx is the mean of x, µy is the mean of
y, σx is the standard deviation of x, σy is the standard
deviation of y and ρ is the correlation.

(
Xn

Yn

)
∼ N



(

µx

µy

)
,




σ2
x ρσxσy

ρσxσy σ2
y




 (17)

We have decided to use the bivariate Gaussian dis-
tribution (Goodman, 1963) to generate datasets with
different shapes. To achieve these shapes we varied
the σx and σy randomly from 0.5 to 1.0 in each real
cluster. This assures a random variation of spread-
ing around x and y for each cluster. The variation
of density was obtained considering a random num-
ber of points in each real cluster. We established that
each cluster must have at least 2 points. Consider-
ing an example of dataset with two clusters, we have
SizeC1 = random[2,148], SizeC2 = 150−SizeC1. Fig-
ure 4 (up) shows an example of a dataset with 4 real
clusters. We can notice that these clusters have differ-
ent density and shape.
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Figure 4: An example of generated dataset with 4 real clus-
ters (up) and the partition obtained after perform DBSCAN
(down) with 3 clusters.

The second step on our proposed methodology
consists in applying the DBSCAN algorithm to each
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generated dataset. A classic problem on density-
based clustering algorithms is to define the appropri-
ate values for the radius (ε) and minimum number of
points (MinPoints) to generate a good clustering re-
sult. Often this problem is solved by trial and error
(Chaimontree et al., 2010). However since we have
100 datasets we decide to adopt the strategy proposed
in (Zhou et al., 2012), which these parameters are
adaptive and self-adjusting without manual interven-
tion.

The approach to determine the parameters ε and
MinPoints for each dataset is divided into four stages
(Zhou et al., 2012):

i. Calculate the distance matrix for all data points
and sort the values of this matrix an ascending
order line by line. Compute the average of each
column (ε vector). So, ε vector[i] is the average
distance between a point and the i-th closer point.

ii. Calculate MinPoints using ε vector. Firstly we
verify how many points there are within ε con-
sidering the values of the distance matrix. For
instance, on the first line of the distance matrix
we verify how many distances are smaller than
the ε vector[1], we apply the same for second
line and so on. These values compose the Min-
Points vector.

iii. Apply the DBSCAN algorithm using ε vector
and MinPoints vector as parameters. For each
pair ε vector[i], MinPoints vector[i] we perform
DBSCAN and store the number of resulted clus-
ters, composing the parameter matrix as exempli-
fied on Table 3.

iv. Using the parameter matrix we can find out when
the number of groups stabilizes and locate the op-
timal values of ε and MinPoints.

Following our method in the 2nd step we apply the
DBSCAN algorithm for the 100 generated datasets
considering the parameters ε and MinPoints calcu-
lated for each dataset as previously explained. Then,

Table 3: Example of parameter matrix generated to obtain
the values of ε and MinPoints for a dataset.

n ε MinPoints k Stability
1 0.00 -1 150 -
2 0.23 -1 81 69
3 0.34 1 49 32
4 0.42 3 10 39
5 0.50 4 6 4
6 0.55 6 5 1
7 0.60 7 3 2
8 0.65 8 4 -1
9 0.69 10 3 1

10 0.73 11 3 0

DBI

> 0.839<= 0.839

LM 1
(29/112.796%)

LM 2
(71/50.888%)

Figure 5: Model tree using Jaccard as target feature ob-
tained on the second case study.

in 3rd step, the clustering results are evaluated using
all the cluster validity indices described in section 2.

In step 4, the cluster validity indices were trans-
formed and normalized to be used as input data for
data mining. Figure 4 (down) shows the partition re-
turned by DBSCAN applied on the original dataset
(up) considering ε = 0.493 and MinPoints = 6.

In step 5, we apply the linear regression algorithm
available on Weka for each cluster validity external
index using the internal ones, considering the same
parameter values used in case study 1 (Eq. 18-20).

J = 0.1927 S+0.1712 Γ+0.0268 DBI+0.353 (18)

R = 0.5798 Γ+0.2868 (19)
FM = 0.2585 S+0.6064 (20)

We can notice that Silhouette has positive effect
on Jaccard and Fowlkes-Mallows external indices.
Gamma is also an important index for density-based
algorithms since it has positive effect on Jaccard and
Rand. The impact of C-index is insignificant since it
does not appear on these linear regression models.

We have also applied the M5 algorithm to ob-
tain regression model trees which estimate Jaccard,
Rand and Fowlkes-Mallows. For Rand and Fowlkes-
Mallows indices we obtain single node trees with lin-
ear models equals to the linear regression equations
19 and 20 respectively. For Jaccard we obtained the
model tree presented in figure 5. The LMs described
on equations 21-22 were obtained by inducing linear
regression models from the leaf nodes of this tree.

JLM1 = 0.0657 S+0.0584 Γ+0.0091 DBI +0.4464
(21)

JLM2 = 0.0336 S+0.2484 Γ+0.0047 DBI +0.353
(22)

From theses equations we can notice that C-index
was insignificant again since does not appear on the
LMs. DBI was important to split the instances in the
root but had insignificant contribution on the LMs.
Similar to linear regression Gamma index has posi-
tive contribution on the Jaccard value. Table 4 com-
pares the results of linear regression and model trees.
We can notice that Rand and Fowlkes-Mallows have
equal results for the two algorithms. The difference is
only for Jaccard results.
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Table 4: Regression evaluation using DBSCAN.

Index Regression Correlation RRSE

J linear 65.48 75.58
M5 67.59 73.73

R linear 72.59 68.78
M5 72.59 68.78

FM linear 64.29 76.59
M5 64.29 76.59

The analysis of models allows us to verify that the
most suitable cluster validity internal indices for eval-
uating the generated datasets using DBSCAN were
Silhouette and Gamma. The values of quality mea-
sures suggest a moderate correlation between them
and all three external indices.

5 CONCLUSION

In this paper we have investigated the relationships
between internal and external clustering validity in-
dices learning a set of regression models. The analy-
sis of these models allowed the inference of the most
suitable internal index for each method of clustering
algorithm. The experiments results point out that Sil-
houette and Gamma were the most suitable indices
for evaluating the datasets with compactness propri-
ety using k-means and the datasets with multiple den-
sity using DBSCAN.

Finally, our method can be seen as a template for
a general strategy for selecting an internal validity in-
dex in which specific clustering or regression algo-
rithms may be replaced by more effective or efficient
ones in specific scenarios. As future work we high-
light the performance of new experiments using dif-
ferent clustering algorithms and real datasets.
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