EVARES: A Quality-driven Refactoring Method for Business Process Models

Wiem Khlif 1, Nouchène Elleuch Ben Ayed2 and Hanène Ben-Abdallah2,1

1Mir@cl Laboratory, University of Sfax, Sfax, Tunisia
2King Abdulaziz University, K.S.A.

Keywords: BPMN Models, Transformation Rules Ordering, Perspectives, Quality Metrics, Quality Sub Characteristics.

Abstract: The business performance of an enterprise tightly depends on the quality of its business process model (BPM). This dependence prompted several propositions to improve quality sub-characteristics (e.g. modifiability and reusability) of a BPM through transformation operations to change the internal structure of the model while preserving its external behaviour. Each transformation may improve certain metrics related to one quality sub characteristic while degrading others. Consequently, one challenge of this model transformation-based quality improvement approach is how to identify the application order of the transformations to derive the “best” quality model. This paper proposes a local optimization-based, heuristic method to decide on the application order of the transformations to produce the best quality BPM. The method is guided by both the perspectives, and the impact of each transformation on the quality metrics pertinent to the perspectives as well as the quality sub characteristics of interest to the designer. The method’s and an experimental evaluation are presented.

1 INTRODUCTION

To improve the performance of its business process, an enterprise often needs to restructure its Business Process Model (BPM). To provide for model restructuring, several refactoring techniques have been proposed, cf. (La Rosa et al., 2011). These techniques are transformation-based and structural pattern-driven, and they restructure a model without changing its external behaviour. In addition, they are quality focussed to assist business analysts to improve quality sub-characteristics of the BPM like understandability, reusability, and modifiability. For example, several works (e.g. (La Rosa et al., 2011)) rely on the empirically shown fact that their transformations can lead to “better structured” models.

The model transformation-based approach to improve the quality of a BPM faces two main challenges: completeness of the transformation operations, and identification of their application order which produces the best quality model. The second challenge is the focus of this paper where the quality sub characteristics are assessed through a set of BPM metrics.

The final quality of a BPM depends on the order of application of the transformations for two reasons: On the one hand, a transformation may have conflicting impact on quality metrics and thus sub-characteristics; on the other hand, being structural pattern-based, the application of a transformation enable and/or disable other transformations. Evidently, with a large set of transformations, it is impractical to try all possible (exponential number of) combinations of transformations to identify the “best” quality model. Evidently, an ad hoc application approach defeats the restructuring purpose.

Face to this challenge, the literature is rather silent. In fact, this challenge is addressed only by (Fernández-Ropero et al., 2013) who statistically proposes to apply the transformation categories in a particular order; but, within one category, the transformations are still applied in an ad hoc way. In addition, none of the existing transformation-based works, e.g. (Fernández Ropero et al., 2013), considers the gain of transformation-based refactoring techniques in terms of business perspectives and/or quality sub-characteristics.

This paper proposes a new approach to tackle this challenge within the method EVARES (EVAIuation and REStructuration of BPMN models) (Khlif et al., 2017). EVARES is a quality-driven and transformation-based method to refactor BPMN
models. Its refactoring operations were determined based on a set of structural patterns that we identified empirically. It assesses quality in terms of a set of pertinent metrics (e.g., CW, CFC, TNG, NSF, Den, NOA, etc) (Cardoso et al., 2006).

This paper enhances EVARES with a local optimization-based, heuristic algorithm to decide on the application order of the transformations to produce the best quality BPM (Section 2). The algorithm is guided by the perspectives (functional, organizational, informational, behavioural), and the impact of each transformation on the quality metrics pertinent to the perspectives as well as the quality sub-characteristics of interest to the designer. To do so, we identify, for each transformation, the set of modelling metrics that it affects. In addition, we classify the transformations according to business process perspectives and quality sub-characteristics (modifiability, comprehensibility and reusability) (ISO/IEC25010, 2011). Besides presenting the algorithm, this paper also presents how EVARES assesses the quality of a BPM (Section 3) and the EVARES tool (Section 4). Finally, Section 5 presents related works and outlines future work.

2 RULE APPLICATION ORDER IDENTIFICATION

EVARES (Khlif et al., 2017) is a method for restructuring BPMN models based on semantic and structural information. It operates in two phases: restructuring followed by evaluation (Section 4).

The EVARES restructuring phase is driven by 28 transformation rules which we identified based on a set of structural patterns we determined empirically (Khlif et al., 2017). To facilitate their application, the transformation rules operate on canonical fragments that can be determined by the algorithm proposed in (Polyvyanny, 2012) to decompose a BPMN model into two special kinds of process fragments: Single Entry Multiple Exit (SEME) to apply the behavioral and informational rules, and Single Entry Single Exit (SESE) fragments to apply the organizational and multi-perspective rules. The selection of the transformation rules is driven by the designer’s perspective(s) of interest. Thus, we classify EVARES transformation rules into organizational, functional, behavioral, informational and multi-perspectives. Due to space limitation, we present six rules (Khlif et al., 2017) that we will illustrate, in section 4, through the ‘Loan process’ example model.

R1-beh: If an exclusive gateway has fan-outs to two parallel gateways G1 and G2 which are linked respectively to activities A,B and A, C, then link B and C to the exclusive gateway which will be linked to A by a parallel gateway.

R2-Org: Merge directly connected activities performed by two actors in the same lane and associate the resulting activity with the actor who has permission to perform the original activities.

R3-Org: Duplicate an activity in two lanes if it is followed by a parallel fragment that is performed by actors in the two lanes, and these actors have the permission to perform the first activity.

R4-Org: If a lane contains only an activity respectively followed or it is between two parallel fragments which are performed by actors in different lanes and who have the permission to perform the first activity, then apply successively the following rules: **R3-Org**, **R2-Org**.

R3-Org and **R4-Org** can also be applied in one lane. We call, respectively, these variants **R3_Org_V** and **R4_Org_V**. In this case, **R4_Org_V** applies successively **R3_Org_V** and **R2_Org**.

R5_Inf: If there is more than one end event in different lanes, then all end events will be grouped with an exclusive, inclusive or parallel gateway, depending on the initial structural context.

R6_Multi: If an inclusive fragment is attached to two exclusive fragments containing a duplicated task, then associate it to the actor who has the permission to perform it.

Table 1 summarizes the effects of these rules on the metrics. The minus sign (-) means the metric should be minimized to improve the model, while the plus sign (+) means the metric should be maximized to improve the model quality; the sign NA means that the metric is not affected by the rule.

We propose a greedy algorithm for the rule application order identification problem (see Algorithm 1). The algorithm expresses an optimum local choice in the hope to produce a global optimization. Once made, a choice cannot be unperformed, even if, in one step, this choice is detrimental to the production of an optimal solution.
<table>
<thead>
<tr>
<th>Perspectives</th>
<th>Rules</th>
<th>Complexity and coupling metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CW</td>
<td>CFC</td>
</tr>
<tr>
<td>Behavioural</td>
<td>R1-Beh</td>
<td>-</td>
</tr>
<tr>
<td>Organizational and functional</td>
<td>R2-org</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R3-org</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R1_Org,V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R4-org</td>
<td>-</td>
</tr>
<tr>
<td>Informational</td>
<td>R5_Bif</td>
<td>NA</td>
</tr>
<tr>
<td>Multi-perspectives</td>
<td>R6_Multi</td>
<td>-</td>
</tr>
</tbody>
</table>

Algorithm 1

Input: Model M, a Set of Rules SR, Choice selected perspectives, a set of Metrics SMeas divided to SMeas to minimize and SMeas to maximize

Output: Metric Values newVMeas, A Set of Selected Rules SRF to apply, and the restructured model M1

1. Main()
2. GQM[]=calGlobalQuality(M);
3. F[]=decompose(M);
4. k=1
5. While (not empty(F[])){
6. Max=0; Min=99999;
7. For (j=1; j<count(F[]); ++j) {
8. SRF[k][j]=identifyRules(Choice[],SR[],F[]); // SRF: A set of rules to apply based on the chosen perspective(s)
9. ARF[k][j]=chooseApplicableRule(SRF[k][j], F[j], M); // ARF: set of applicable rules
10. M=transform(M, ARF[k][j]);
11. GQM[]=calGlobalQuality(M1);
12. If SMeas=SMeas then {
13. if (max>GQM[]) then{ max=GQM[];
14. BRF[k]=ARF[k][j]; } // this is: best rule to apply in this iteration
15. else if (min>GQM[]) then{ min=GQM[];
16. BRF[k]=ARF[k][j]; } }
17. M=transform(M, BRF[k]);
18. F[]=decompose(M, R+k);
19. Function chooseApplicableRule(ARF, F, M) return string{
20. VMeas[]=calMeasuresValues(SMeas, M);
21. If (ARF is empty) then exit;
22. Else For each rule R in ARF do
23. (M=transform(M,R);
24. newVMeas[]=calMeasuresValues(SMeas, M);
25. If SMeas=SMeas then{ // R invokes measures to minimize
26. flag=True;
27. For (i=1; i<count(VMeas[]); i++) {
28. If (newVmeas[i]<Vmeas[i]) then
29. flag=false; end if;
30. If (flag==True) then return R;
31. Else(// Compare gains to losses
32. gain=computeGain(VMeas[],newVMeas[] "to_minimize”);
33. Loss=computeGain(VMeas[],SMeas[] "to_minimize")); End if;
34. If gain>loss then return R;
35. Else if SMeas=SMeas’ then // R invokes only measures to maximize
36. flag=True;
37. For (i=1; i<count(VMeas[]); i++) {
38. If (NewVmeas[i]<Vmeas[i]) then
39. flag=false; end if;
40. If (flag==False) then // Compare gains to losses
41. (gain=computeGain(VMeas[],newVMeas[] "to_maximize”);)
42. Loss=computeGain(VMeas[],SMeas[] "to_maximize”); End if;
43. If gain>loss then return R;
44. Else // R invokes mixed measures
45. (NSum=0; Sum=0;
46. For (i=1; i<count(VMeas[]); i++) {
47. NSum+=NewVmeas[i]; Sum+=Vmeas[i];
48. If NSum/Sum<=1 then return R;
49. Function calGlobalQuality(M) {
50. Var total=0;
51. VM[i]=calMeasuresValues(SMeas, M);
52. For (i=1; i<count(VMeas[]); i++) {
53. total+=VM[i]*VM[i];
54. return (square(Total));
55. Function computeGain(VMeas[], newVMeas[],objective) return number{
56. NSum=0; Sum=0;
57. For (i=1; i<count(VMeas[]); i++) {
58. NSum+=NewVmeas[i]; Sum+=Vmeas[i];
59. If (objective="to_minimize") then
60. Return (1-(NSum/Sum));
61. Elseif (objective="to_maximize") then
62. Return (1-(Sum/NSum));
63. Function computeLoss(VMeas[], newVMeas[], objective) return number{
64. NSum=0; Sum=0;
65. For (i=1; i<count(VMeas[]); i++) {
66. NSum+=NewVmeas[i]; Sum+=Vmeas[i];
67. If (objective="to_minimize") then
68. Return (1-(NSum/Sum));
69. Then (Return (1-(Sum/NSum)));
As described in Algorithm 1, the heuristic identifies, for each instance \(M_i \) of the model in an iteration \(i \), all rules applicable to the fragments identified in \(M_i \) while respecting the perspectives chosen by the designer (lines 5-8). Then, the algorithm examines, for each rule, if it improves the overall quality (See Exp. 1) of a model \(M_i \) in order to determine their applicability and retain it as candidate (lines 19-48). This decision takes into account how the metrics affected by each rule will be interpreted to obtain a good quality model. This leads to three possible cases: all metrics must be minimized (lines 25-34), all metrics must be maximized (lines 35-43), or the metrics are the mixture of the two cases (line 44-48). In each case, the rule is retained only if the new metrics’ values are not against their tendency as shown in Table 1.

If the designer chooses a perspective and there is no applicable rule, the algorithm considers all rules on an equitable basis. Once the rules to be applied are identified, the algorithm selects the best rule that improves the overall quality lines (12-17).

The overall quality is calculated based on all metrics that are assumed to be minimized or maximized. Given the metrics and their values, \(v_1, \ldots, v_n \), the overall quality of a model \(M \) is defined as follows:

\[
Q(M) = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}
\]

(1)

Note that Algorithm 1 stops if the model \(M \) does not contain any fragments or no rule is applicable.

3 EVARES QUALITY EVALUATION

EVARES proposes an evaluation method based on a quantitative measurement and an interpretation. The evaluation method can be driven by either the perspectives or the quality sub-characteristics.

3.1 Perspective-driven Measurement and Interpretation

In EVARES, the measurement activity pilots the restructuring process based on the selected perspectives, and it estimates the added value of the restructuring process. The quality metrics measurement compares the initial BPMN model and the restructured one. It calculates all metrics and classifies them in the two levels (Khlif et al., 2017). At the first level, the metrics belong to one of three categories: complexity, coupling and cohesion. At the second level, the metrics of each category are associated to perspectives.

Each time a rule relative to the designer’s perspective is identified as applicable, the values of all its impacted metrics are calculated and saved in a report classified according to its quality sub-characteristics. The interpretation uses the initial model report (\(M_i \)) and the restructured one (\(M_R \)). It calculates the improvement ratio \(R_{im} \) (lines 55-69).

A positive \(R_{im} \) indicates that the transformation improves the model quality; otherwise, it degrades it.

3.2 Quality Sub-characteristics-driven Measurement and Interpretation

Even when the calculated improvement Ratio (RI) indicates an improvement in the restructured model based on the business/organizational goals, what about the model’s intrinsic quality? That is, what is the impact of restructuring based on quality sub-characteristics such as understandability, modifiability and reusability? The model quality depends on the metrics’ tendency associated with each sub-characteristic.

3.2.1 Case of Metrics to Minimize or Maximize

The measurement activity produces for each quality sub-characteristic the associated metrics and their values. The interpretation of the quality metrics gives an evaluation of the business process quality based on the following information for each metric:

- a priority order between the metrics based on their use frequency. It is deduced from the literature (Cardoso et al., 2006).
- a threshold interval that reflects the optimal value of a metric. It is the result of empirical studies (Sánchez-González et al., 2010).

Given the priorities and the values, the interpretation activity determines the sum \(\sigma_k \) weighted by the priorities and the metrics values associated to the same quality sub characteristic \(D_k \). Formally, for each sub-characteristic \(D_k \), the global quality model \(\sigma_k \) is calculated as follows:

- Let \(p_1, \ldots, p_n \), the priorities assigned to each metric in \(D_k \). The weight of each metric is:

\[
\alpha_{ik} = \frac{p_{ik}}{\sum_{j=1}^{n} p_{ij}}
\]

(2)
Let v_1, \ldots, v_n be the metrics’ values determined by the measurement activity. Then:

$$\sigma_k = \sum_{i=1}^{n} \alpha_{ik} v_{ik}$$ \hspace{1cm} (3)

After that, we calculate the sum σ_{min} (resp. σ_{max}) of the metrics threshold minimal values (resp. maximal values) in a sub-characteristic D_k. These values are weighted by the metrics priorities α_{ik}.

$$\bar{\sigma}_{\text{min}} = \sum_{i=1}^{n} \alpha_{ik} v_{i\text{min}}$$ \hspace{1cm} (4)

$$\bar{\sigma}_{\text{max}} = \sum_{i=1}^{n} \alpha_{ik} v_{i\text{max}}$$ \hspace{1cm} (5)

The comparison between σ_{min} et σ_{max} provides an assessment (efficient, medium or inefficient) of the model according to the sub-characteristics D_k.

$$\alpha_{\text{min}} \leq \alpha_k \leq \alpha_{\text{max}}$$ \hspace{1cm} (6)

3.2.2 Case of Mixed Metrics

To assess the BPM quality in the case of mixed metrics (i.e., they have tendencies to be minimized and maximized) in the same sub-characteristic, we use fuzzy logic (Zadeh, 1965) which is based on “degrees of truth”. Fuzzy sets have elements with degrees of membership. In fact, we calculate, for each category of metrics’ tendency, the membership degrees of the metrics.

For the metrics that should be maximized

We calculate the membership degree q_i associated to each measure m_i that should be maximized:

$$q_i = \frac{v_i - v_{\text{min}}}{v_{\text{max}} - v_{\text{min}}}$$ \hspace{1cm} (7)

Where

v_i : the metric value,

v_{min} : the metric threshold minimal value

v_{max} : the metric threshold maximal value

Fuzzy logic allows different degrees of response to the question "Is the metric value high?" (Figure 1):

- Below or equal v_{min}, the metric value is high with a 0% confidence level.
- Above or equal to v_{max}, the metric value is high with a 100% confidence level.
- In $[v_{\text{min}}, v_{\text{max}}]$, the metric value v_i has a high value with a q_i confidence.

For the metrics that should be minimized

We calculate the membership degree q_i associated to each measure m_i that should be minimized:

$$q_i = \frac{v_{\text{max}} - v_i}{v_{\text{max}} - v_{\text{min}}}$$ \hspace{1cm} (8)

Where v_i : metric value,

v_{min} : metric threshold minimal value

v_{max} : metric threshold maximal value

Fuzzy logic also allows to respond to the question "Is the metric value minimal?" (Figure 2):

- The metric value is minimal with 100% confidence level if it is equal or below v_{min}.
- The metric value is minimal with 0% confidence level if it is equal or above v_{min}.
- In $[v_{\text{min}}, v_{\text{max}}]$, the metric value v_i is minimal with a q_i confidence degree.

In each case (metrics that should be maximized or minimized), the membership degree is equal to:
If \(q_i \geq 1 \) then \(q_i \leftarrow 1 \) \((9) \)

If \(q_i \leq 0 \) then \(q_i \leftarrow 0 \) \((10) \)

Let \(q_{1k}, \ldots, q_{nk} \) the membership degrees of metrics that belong to a sub-characteristic, then we calculate the average values \(q_k \) obtained from metrics values that should be minimized and maximized:

\[
q_k = \frac{1}{n} \sum_{i=1}^{n} q_{ik}
\]

We assess the quality model as follows:

- If \(q_k \geq 1 \) then the model is very efficient;
- If \(q_k \leq 0 \) then the model is inefficient;
- If \(q_k \in [0, 0.5] \) then the model is medium;
- If \(q_k > 0.5 \) and \(q_k < 1 \) then the model is efficient.

To facilitate the application and evaluation of our method, we have implemented a tool named EVARES Quality as an Eclipse TM plug-in (Eclipse, 2011). It is composed essentially of two components:

1) The BPMN model restructurer contains the Rule application order identification and Transformer; and
2) The BPMN quality evaluator contains the Calculator and the Interpreter.

In order to illustrate the functioning of our tool, we apply it to the “Loan process” model shown in Figure 3.

4 EVARES QUALITY TOOL

4.1 BPMN Model Restructuring

Once the designer chooses his/her perspective(s) of interest, the rule application order identification module displays the set of rules corresponding to all combinations of the chosen perspectives (Figure 4).

For instance, in the case of organizational and informational perspectives, the heuristic promotes at each iteration, the applicable organizational and informational transformation rules that will be retained even if they don’t produce the best model quality. By selecting the "Show details” button in Figure 4, the rule application order identification represented by Figure 5 will display the result of the running example. In this GUI, the designer retains those rules he/she thinks are convenient. In the running example, suppose we retain the informational...
rule R5_INF even though it increases the quality model. Based on the selected rules, the tool displays the applicability order of rules that provides the best quality by favouring the chosen perspective(s). In the example, the best order is: R2_Og, R4_Og, R5_Inf, R_Lit_XOR, R1_Beh. Figure 6 presents the model after transformation.

4.2 BPMN Quality Evaluator

The metrics calculator produces the metrics values before and after the transformation of the model. Afterward, the interpreter calculates the ratio improvement (RI) of metrics, and compares the obtained results to threshold values of metrics deduced from empirical studies (Sánchez-González et al., 2010). Some threshold are introduced by the user with stars (*). Based on the quality sub-characteristic, the interpreter gives an evaluation of the business process under analysis (Figure 7).

Figure 5: Rules order applied to "Loan Process" for the informational and organizational perspectives.

Figure 6: Loan Process after the last transformation.

Figure 7: Quality model evaluation.
5 RELATED WORKS AND CONCLUSION

Refactoring/transformation-based approaches to improve the quality of BPM stand on three pillars: quality assessment means, refactoring operations, and their application strategy.

For model quality assessment, our method EVARES relies on a set of metrics mapped to quality sub-characteristics (ISO/IEC 25010, 2011). It assesses more quality sub-characteristics than existing propositions, e.g., (Fernández-Ropero et al., 2013) cover understandability and modifiability whereas Rolon et al. (Rolon et al., 2015) evaluate usability and maintainability. In particular, this paper showed how EVARES uses metrics to assess understandability, modifiability and reusability. In addition, EVARES characterizes the metrics’ tendency for each quality sub-characteristic.

As for the second pillar, several researchers proposed refactoring operations (La Rosa et al., 2011), e.g., *R-lit-XOR* that replaces two or more nested gateways of the same type with a single one.

EVARES offers transformations that account for both the structural and semantic information, which more open quality improvement opportunities. In addition, EVARES classifies the proposed transformations into the perspective(s).

Finally, except for (Fernández-Ropero et al., 2013), none of the proposed works define an application order strategy for their transformations. Indeed, the authors use a statistical approach to identify the best order of applying three categories of refactoring operators (i.e., irrelevant, granularity and completeness). To do so, they first propose six execution orders of operators. Second, they execute the six orders and collect the metrics’ values for each BPM. Finally, they apply a univariate general linear model test on the collected values to show that one particular order best improves understandability and modifiability: reducing the granularity, then removing irrelevant elements. Nonetheless, in each category, the transformation order is left undefined.

This statistical approach of identifying the transformations’ application order is impractical for a large number of transformations.

We by passed these difficulties by adopting a heuristic approach that accounts for the metrics’ tendency. More specifically, we presented a heuristic, greedy algorithm that, iteratively, selects applicable transformations in order to optimize locally the model according to both the designer’s perspectives and quality sub-characteristics.

Evidently, our heuristic approach to the identification of transformation application order operates through a local optimization technique whose result depends tightly on the correlation among the rules. Hence, our future work focuses on analyzing the correlations among the transformation rules. In addition, we will examine restructuring BPM that is based on temporal constraints.

REFERENCES

