Audio-visual Cues for Cloud Service Monitoring

David Bermbach and Jacob Eberhardt

Information Systems Engineering Research Group, Technische Universität Berlin, Berlin, Germany

Keywords: Cloud Services, Monitoring, Quality of Service.

Abstract: When monitoring their systems’ states, DevOps engineers and operations teams alike, today, have to choose whether they want to dedicate their full attention to a visual dashboard showing monitoring results or whether they want to rely on threshold- or algorithm-based alarms which always come with false positive and false negative signals. In this work, we propose an alternative approach which translates a stream of cloud monitoring data into a continuous, normalized stream of score changes. Based on the score level, we propose to gradually change environment factors, e.g., music output or ambient lighting. We do this with the goal of enabling developers to subconsciously become aware of changes in monitoring data while dedicating their full attention to their primary task. We evaluate this approach through our proof-of-concept implementation AudioCues, which gradually adds dissonances to music output, and an empirical study with said prototype.

1 INTRODUCTION

Modern cloud-based enterprises increasingly follow the you build it, you run it paradigm where small teams of software engineers no longer only develop an application and then hand it over to other teams for testing and operation. Instead, the developers are also responsible for running the application, i.e., deploying and maintaining the system, so that their responsibility shifts from providing a piece of code to providing a system with strict SLAs to their customers. This is also referred to as DevOps (Bass et al., 2015).

While this has many advantages, it also confronts developers with tasks that traditionally never were theirs to do. A good example for this is monitoring: While a traditional enterprise may have a dedicated operations team that devotes its full workforce to closely observe and, where necessary, manage application state, this suddenly becomes a side task for application developers – a burden they are ill equipped to handle. Some of this complexity can be alleviated through automation: threshold-based mechanisms (e.g., Amazon Autoscaling¹) or machine-learning based approaches can take automatic action to resolve issues (e.g., by spawning additional VMs) or notify developers through alarms. Still, automatic action cannot fully replace human oversight and alarms are inherently limited by their binary state – on or off – leading to a trade-off between false positive and false negative alarm states.

In this paper, we propose a framework and approach that leverages the ability of the human subconscious to detect deviations from a “normal” state. For this purpose, we use cloud monitoring results to control various aspects of the developers’ environment, thus, enabling them to subconsciously become aware of faulty system states, e.g., through color changes in ambient lighting. In contrast to traditional alarms, these environment factors can often be changed gradually so that, for lack of a binary decision, false positives and negatives become a thing of the past. Furthermore, the likelihood of a signal moving from the subconscious to a state of awareness highly depends on the intensity and regularity of the signal as well as the person’s current level of concentration (Vickers, 2011), i.e., developers will in periods of full concentration only become aware of critical system states whereas they will in periods of low concentration also become aware of smaller issues.

For this purpose, we propose the following contributions:

- **MultiSense**, a high-level framework and architecture of a system that uses monitoring data to control environmental parameters.

- **AudioCues**, as an instantiation of MultiSense that uses monitoring data to manipulate and create unobtrusive music which people may listen to while working.

This paper is structured as follows: In sect. 2,
we will discuss basic literature on leveraging the subconscious for presenting information to users. Then, in sect. 3, we present MultiSense and discuss environmental factors that could be controlled through it. Next, in sect. 4, we present AudioCues and its prototypical implementation, describe how we use it to create lounge-like music, and show up future extensions. Afterwards, in sect. 5, we describe our evaluation, before discussing related work in sect. 6.

2 BACKGROUND

In this section, we will discuss based on literature why audio as a non-disruptive information channel is a good choice for observing cloud monitoring data as we did in our AudioCues prototype (sect. 4).

Generally, monitoring of processes can be done in three distinct ways (Vickers, 2011): Direct monitoring (the focus of attention lies on monitoring a process), Peripheral monitoring (the focus of attention lies on another task, monitoring of a process is performed passively and attention shifts in case of critical system states), and Serendipitous-peripheral monitoring (non-critical information is passively monitored, the focus is on another task).

Direct monitoring requires the user’s attention at all times and is thus a pull-based approach. Visual dashboards and comparable data representations tied to a screen are examples for technologies of this category. Peripheral as well as serendipitous-peripheral monitoring, in contrast, are push-based approaches, that draw a user’s attention to the monitored process (the focus of attention lies on another task). Technological advantages of peripheral awareness, e.g., ambient lights or AudioCues, are often referred to as peripheral displays.

Peripheral displays that use audio as primary transmission mechanism while extending traditional, non-peripheral monitoring systems, are called auditory displays; the process of translating data into audio signals is called sonification. They provide two distinct advantages: First, information can be transmitted to users without being disruptive or obtrusive (Jenkins, 1985; Weiser and Brown, 1997; Tran and Mynatt, 2000). Second, auditory displays can increase the bandwidth of computer-human interaction by providing an additional channel for information transmission (Vickers, 2011). This can also be seen in the results of Barra et al. (Barra et al., 2001) who could show that peripheral audio monitoring allows users to extract meaningful information while not getting distracted from their primary task as opposed to visual displays where this is not the case (Maglio and Campbell, 2000).

As auditory display, we can use speech, music, sound effects, or any combination thereof. Speech, in most contexts, carries foreground information and requires more attention than non-speech audio (Mynatt et al., 1998). Sound effects, e.g., traffic noise or bird-song, are used by various systems (Barra et al., 2001; Liechti et al., 1999). These sound effects are very suitable for signal the occurrence of a (binary) event, e.g., when a server has failed, or to provide unobtrusive ambient noise. The main advantage of sound effects is that users can identify the source of the event if the acoustic cue is semantically related, e.g., the sound of pouring a drink instead of a progress bar. However, mapping a stream of values, e.g., as provided by cloud monitoring, to sound effects seems to be difficult. This is why we chose music as a medium for our initial prototype: It offers more options for manipulation than sound effects and can still enable users to recognize the source of the event if an explanation of the mapping of monitoring data to music is provided (Lucas, 1994).

3 MULTISENSE

In this section, we will briefly recapitulate MultiSense and its main components (Bermbach and Eberhardt, 2016) as well as discuss which environmental parameters can be controlled in which way.

Architecture and Components: Generally, MultiSense has a sensor-actuator model comprises three parts, two of which are external services that are integrated through adapter mechanisms.

The first part (fig. 1 on the left) comprises our metric producers. These can be any monitoring services that produces data points for one or more metrics. Examples include open source systems, e.g., Ganglia, custom solutions, or cloud services, e.g., Amazon CloudWatch. Any data source accessible through pull or push mechanisms can be used.

Within the second part, metric consumers periodically poll their metric producer adapters for recent monitoring data from the underlying services and transform this stream of data points into a stream of standard monitoring events. The stream is passed on to metric monitors which serve as some kind of in-

2Not limited to “technical”, OS-like processes.

formation hub. For each registered metric, they have a single metric analyzer which normalizes the events of the stream on a range from 0 (normal) to 100 (critical). MultiSense does not make any assumptions regarding the implementation of metric analyzers—they may implement everything from linear interpolation to complex machine learning-based techniques. Normalized scores are then sent to a pub/sub system.

The third part, the control targets, comprise physical and software systems, which are able to affect the developer’s environment on a (preferably) continuous scale, as well as the controllers which register for topics of the pub/sub system and then send control commands to their respective control targets based on received events.

Control Targets: All control targets share some basic commonalities: they do not have a binary state (in fact, a continuum is preferable) and can be controlled electronically. Furthermore, they all affect how developers feel due to impressions on different senses. The for our purposes most important senses are sight and hearing but the sensory capacity of our skin and the olfactory sense can also be leveraged. In the following, we will briefly discuss which control targets affect which senses in which way.

Hearing: Many people like to listen to music or ambient noise at work. For music, we can have an audio stream that we can manipulate, e.g., when listening to MP3 files, or we may also control the generation of the music, e.g., via MIDI signals and virtual instruments as in our AudioCues prototype.

In case of audio streams, there are three basic tuning knobs that we can use: Overall playback volume, equalizer settings which are basically per-frequency volumes (a simple way of adjusting would be to gradually introduce a high-pass or low-pass filter), and various kinds of audio effects, e.g., reverb, delay, flanger, phaser, distortion, etc., which can be mixed into the audio signal. The latter are typically used with a dry/wet parameter which describes the (volume-based) percentage of the signal that is routed through the effect generator. In MultiSense, we could assign a different effect for each input metric so that developers will not only notice that something is “off” but also where the problem is coming from.

When generating music through MIDI signals, there are additional tuning knobs as we actually control the output signal. As new parameters, we can introduce dissonances which we can vary in volume, kind of dissonance (e.g., minor vs. major second), or the number of concurrent dissonances (e.g., minor second vs. minor second and tritone). As we control individual channels, we can also adjust their respective volume, i.e., change the overall mix, change the instrumentation, detune channels through pitch bend signals, or add imprecision by shifting entire channels or individual notes slightly in time. On a more global level, we can change the tempo of playback, e.g., increase tempo if the system is in a stress state, or affect the “style” of music by changing the way in which we assemble patterns and sounds.

Sight: Usually, people only notice things that they are looking at. Still, sudden changes in the peripheral vision, e.g., movement (Weiser and Brown, 1997), will cause instant awareness as they are still processed by the unconscious and, thus, move “from the periphery of our attention, to the center, and back.” (Weiser and Brown, 1997). For our purposes, movement is a poor control target as there is no continuous “scale” of movement: we become instantly aware of movements in our peripheral vision or do not notice them at all. This leaves us with lighting and the look and feel of what is happening on the developer’s screen:

For lighting, we can adjust brightness, e.g., through dimmable lamps. Ambient lighting is particularly useful where we can control colors of individual or all lighting modules, the speed of color changes, or the continuity of color changes (gradually fading vs. sudden changes). In terms of program look and feel, we can gradually change background colors or text color of program windows and their title bars.

Feeling: Modern smart home appliances can easily be controlled over standard IT protocols. For instance, we can affect temperature, air flow, or humidity through heating systems, air conditioning, or fans; air can be scented. There are virtually no limitations to the range of usable devices.

4 AudioCues

In this section, we will give an overview of AudioCues as an instantiation of MultiSense with specific auditory control targets. We will start by describing the basic functionality of AudioCues in sect. 4.1 before discussing the state of the implementation and its limitations in sect. 4.2.
4.1 Basic Functionality

AudioCues focuses on the sense of hearing and is designed to produce pattern-oriented music – likely candidates include lounge or other electronic music but also Bach-inspired music could be realized. For this purpose, we use a “music graph”, i.e., a directed graph where each node contains information on the notes and their instrumentation for short subsequences (typically patterns) of a piece of music. A player component randomly iterates over the graph and schedules the contents of the respective nodes for playback at the appropriate time. To reduce the number of similar repetitions, our player implementation avoids going “backwards”, i.e., playing the node sequence A-B-A. See fig. 2 for an example of a music graph.

Beyond the information on notes and instrumentation, each node also contains information on the corresponding dissonance sequence. This dissonance sequence is scheduled for playback along with all other entries of the node but a special flag informs the MIDI scheduler to set its volume based on up-to-date information from the corresponding metric monitor.

4.2 Limitation and Discussion

In terms of control targets, we currently support only the volume changes for dissonances and play MIDI signals. The same principle (and much of the prototype’s code), though, could be used for WAVE-based signals. Additionally, using any of the discussed MIDI-based control targets (e.g., instrument changes, etc.—see sect. 3) should not require adding more than a few lines of code to our implementation so that we consider AudioCues a rather complete instantiation of MultiSense for MIDI-based control targets.

Our implementation comprises all components listed in figure 1 apart from the pub/sub system. The prototype currently pulls input data from Amazon CloudWatch or a local generator component for testing purposes; other monitoring solutions like Ganglia or Nagios could be added by simply implementing a client stub. We currently have implemented two metric analyzers that are parameterized with maximum and minimum values which are mapped 0 or 100 respectively and interpolate linearly or quadratically.

The main disadvantage we see in AudioCues is that building the music graphs necessary for a full workday, so as to avoid boredom and fatigue, is non-trivial and time-consuming. Using one of the audio stream-based control targets instead might be a more feasible approach. Still, we found the event-based interaction model of MIDI rather convenient and flexible to use so that it is definitely worth a thought to (mis)use MIDI as communication protocol for non-MIDI control targets as well. Another solution could be to analyze existing MIDI files for repetitive sequences and to generate the necessary instructions for building a music graph from that information. Automatically generating the dissonances track would be relatively easy based on such an analyzed MIDI file.

Furthermore, the system may need to be calibrated individually—i.e., it is likely to depend on the individuals where their personal thresholds of awareness lie. To our knowledge this has not been answered in a general way yet (Ishii et al., 1998) and, thus, requires individual adjustments for a production system.

Finally, the metric analyzer components require some insight into “normal” system states, i.e., what are the values that correspond to scores of zero and one hundred for each metric respectively. An estimate for what is normal can be obtained through benchmarking, e.g., (Cooper et al., 2010; Bermbach and Tai, 2014; Müller et al., 2014), but obviously adds further effort to the system setup.

5 EVALUATION

Our evaluation comprises three parts: First, we have implemented AudioCues as a proof-of-concept and published its code as open source (sect. 5.1). Second, we have recorded a sample output of this system and published the recording on SoundCloud and YouTube, so that readers can easily verify themselves that AudioCues in fact works (sect. 5.2). Third, we asked a number of people to listen to that recording and answer a few questions based on that to gain insight into their perception of dissonances while working on a primary task (sect. 5.3).
5.1 Proof-of-Concept Implementation

We implemented AudioCues as a research prototype and made it available as open source\(^7\). Our prototype is implemented in Java 8, uses the AWS SDK to connect to CloudWatch, and creates MIDI signals through standard Java. AudioCues also plots each observed metric over time using JFreeChart\(^8\). This proof-of-concept implementation shows that it is indeed possible to create varying MIDI output based on the current system state.

5.2 Recorded Output

To create a deterministic sample music output, we have implemented a music graph where every node has exactly one follower. Depending on current monitoring state, the sample music adds tritone dissonances in different volumes which are easy to notice. For the recording, we routed the MIDI output signals of our tool through VST instruments of Cubase\(^9\).

We had already seen in test runs that our system works with CloudWatch. To assert reproducibility in our evaluation, we thus created a stream of cloud monitoring data artificially with metric values between \(-10\) and \(110\) (lower values are better as, e.g., in the case latency). These fake metric values were then translated into normalized scores through linear interpolation: \(100\) was mapped to a score of \(100\), \(-10\) to a score of \(0\). Fig. 3 shows the created metric stream and the resulting scores which we used for our evaluation. You can find a video with a recording of our sample music graph based on the metric input from figure 3 and the corresponding chart on YouTube\(^10\).

The interested reader can use the video to easily verify that the output of our research prototype is able to convey different system states through varying degrees of dissonance in its audio output.

5.3 Empirical Study

We did a small empirical study to better understand whether AudioCues works not only for the authors but also for other people, and whether the degree of concentration of people indeed influences how fast they become aware of the dissonances in our test music.

For this purpose, we asked a group of 18 colleagues to complete a questionnaire on the audio file from sect. 5.2. Specifically, test persons were given the following instructions: Read some basic information on the goal of our research project. Start working on something else while playing the audio file. Whenever you notice a change in the audio signal, answer the following three questions: (i) When you noticed the change, what was your estimated level of concentration on a scale from one (not concentrated at all) to ten (fully concentrated on something else), (ii) when did you first notice the change, and (iii) when, in your opinion, is the system again in a stable state? Test persons were allowed to pause playback but were explicitly asked not to fast-forward or rewind the audio file. We also chose not to tell our test persons that there would be three “events” in the audio file.

Afterwards, we – who were familiar with the audio file and the shape of figure 3 – also listened to the audio file to identify the periods during which the dissonances were hearable. We identified the dissonance intervals \([25;97]\), \([183;281]\), and \([368;451]\) – each in seconds of playback. We did this to calculate the “awareness delay”, i.e., the time between the interval start and the value reported by a test person.

Expected Results. We expected that sudden changes (e.g., the first event in our test) will have a lower awareness delay than slower, continuous changes (e.g., the last two events in our test). We also expected that the awareness delay for continuous changes highly increases with the test persons’s level of concentration\(^{11}\) and that the awareness delay for sudden changes also increases with the test person’s level of concentration but is affected less than in the case of continuous changes.

Actual Results. In our study, we could see our expected results: Indeed, sudden changes had a lower awareness delay than slower, continuous changes. The first event had an average awareness delay of 5.5 seconds, whereas the second and third event had an average awareness delay of 15.7 seconds. Here, we see the only point for critique in the small sample size (18 test persons). Regarding our other expectations, the awareness delay indeed increased with the test person’s level of concentration on some other task. We cannot (and do not intend to) quantify this effect but the results indicate that this seems to be the case.

Figures 4 and 5 show the awareness delay as a function of the individually estimated level of concentration for sudden changes (fig. 4) and slow, continuous changes (fig. 5). We believe that the results are valid even though the level of concentration was individually estimated since both full concentration and no

\[^7\]github.com/dbermbach/audiocues
\[^8\]www.jfree.org/jfreechart
\[^9\]www.steinberg.de/en/products/cubase/start.html
\[^10\]youtu.be/gWJGZOp3K0
\[^11\]To avoid confusion: A high level of concentration means that the test person is paying no attention to our audio signal, instead devoting her full attention to some other task.
concentration are individual values as well. This also conforms to the findings of (Vickers, 2011).

All in all, these findings indicate that AudioCues in fact works: Depending on the individual level of concentration, people become aware of changes in dissonance volumes after different awareness delays and sudden changes create instant awareness. We believe that this is very useful in practice as DevOps engineers will in periods of high concentration only be interrupted by important events (i.e., sudden or extensive changes) whereas they are likely to instantly become aware of small changes during periods of low concentration. This, of course, needs to further analysis which, however, is beyond the scope of this paper.

![Figure 4: Awareness Delay as a Function of Concentration: Sudden Changes.](image)

![Figure 5: Awareness Delay as a Function of Concentration: Slow, Continuous Changes.](image)

6 RELATED WORK

In this section, we will discuss related work starting with approaches that directly relate to AudioCues before broadening the scope of the discussion.

AudioCues and Sonification: Sonification-based process monitoring is used in many areas of application, e.g., health care, industrial plants, environmental awareness, or home monitoring (Fitch and Kramer, 1994; Gaver et al., 1991; Rauterberg and Styger, 1994; Hermann et al., 2003; Bakker et al., 2010; Schmandt and Vallejo, 2003; Tran and Mynatt, 2000). In the early days of computing, auditory output of computers has also been used for monitoring of CPU activity (Vickers and Alty, 2003).

Later, some efforts were made to sonify log data (Dzielaś, 2014; Tarbox, 2008) and to enhance debugging through an acoustic component (Jameson, 1994b; Jameson, 1994a; Finlayson and Mellish, 2005). These systems all transform static files, e.g., logs or source code, into a sequence of sounds which does not qualify as background music.

Other approaches focus on live sonification of data streams comparable to our MultiSense and AudioCues: The ShareMon system (Cohen, 1994) raises awareness of file sharing by using audio to notify users of related events. The Peep system (Gilfix and Couch, 2000) plays natural sounds to sonify network state; this enables peripheral real-time network monitoring. In the context of web servers, others propose model-based sonification of HTTP requests using the SuperCollider programming language (Ballora et al., 2010; Hermann and Ritter, 1999) or playback user-defined sound effects to notify web site creators of visitor awareness (Liechti et al., 1999). All of these approaches trigger discrete sounds based on discrete input events. They are disruptive due to their event-based character and do not support a continuous output “scale”.

More closely related to our approach is WebMelody (Barra et al., 2001) which proposes to combine sounds triggered by web server events with user-selected music to support peripheral monitoring without fatigue. Unlike AudioCues, however, which translates continuous changes in a data stream into gradual changes of music, the WebMelody system triggers predefined binary sound events and plays them along with the music stream. WebMelody could enhance AudioCues by adding highly noticeable binary alarms for select critical system states.

All in all, while there are alternative approaches proposing auditory displays for system monitoring, neither of these systems uses similar sonification techniques as AudioCues or offers non-binary output. Furthermore, all other approaches target a very specific data source for sonification and are, thus, missing the broader scope proposed through MultiSense.

MultiSense and Peripheral Displays: To our knowledge, there is no broad platform comparable to MultiSense\(^\text{12}\) – neither as architectural concept and framework as in MultiSense nor as a prototypical implementation. However, there is some work on peripheral visual displays which have been proposed to enable monitoring for a particular use case, e.g., Live Wire (Weiser and Brown, 1997), Waterland, or Pinwheels (Dahley et al., 1998). These could be used as alternative control targets in MultiSense.

Miscellaneous: There is a lot of ongoing research on cloud monitoring; the focus, however, seems to be on collection and analysis of data rather than on pre-

\(^{12}\text{Early ideas on the MultiSense architecture have been published as a poster (Bermbach and Eberhardt, 2016).} \)
senting the information to developers, e.g., (Kanstrén et al., 2015; Bermbach and Tai, 2014; Alcaraz Calero and Gutierrez Aguado, 2015). There is a plethora of real-time dashboards, e.g., Grafana13, which require the user’s attention to observe the graphically presented data. To our knowledge, there is no dashboard yet that considers using the subconscious or peripheral perception to transmit information to the user.

An alternative to MultiSense are systems that autonomously decide when an alarm should be raised. Threshold-based approaches, e.g., Amazon AutoScale, notify or take action as soon as a metric exceeds a specified threshold value. More advanced techniques, e.g., based on machine learning (Islam et al., 2012) or linear prediction models (Dinda and O’Hallaron, 2000), reduce false positive or negative alarms and are better equipped to deal with random fluctuations around a static threshold. However, all these approaches still force the developer to trade off between timeliness of an alarm against the rate of false negatives due to the binary nature of alarms.

Benchmarking, e.g., (Cooper et al., 2010; Bermbach and Tai, 2014; Müller et al., 2014; Bermbach and Wittern, 2016), can quantify quality of a cloud system before deployment of an application. While it cannot replace monitoring, it may be useful for calibrating MultiSense and AudioCues.

7 CONCLUSION

In this paper, we have proposed a framework and approach that leverages the ability of the human subconscious to detect deviations from a “normal” state. To reach this goal, we use cloud monitoring data to control various aspects of developers’ environments, thus, enabling them to subconsciously become aware of faulty system states, e.g., through color changes in the ambient lighting or dissonances in the music output. Existing approaches, in contrast, could only express binary state changes (alarms) or required developers to dedicate their full attention to observing monitoring data.

For this purpose, we started with a discussion of the foundations of sonification, i.e., the process of translating input data into audible signals, and came to the conclusion that music is, indeed, a very able transport medium for our purposes. Next, we introduced MultiSense, a high-level architecture concept and framework for manipulating various control targets in the surrounding environment of developers. We also discussed three groups of different control targets – hearing, sight, and feeling – and the different ways in which these can be used to transmit a continuous stream of information on various cloud monitoring metrics to a DevOps engineer. As the generic MultiSense is, so far, only an architectural concept lacking an implementation, we then presented AudioCues. AudioCues is an instantiation of MultiSense and continuously changes music output based on the current state of cloud services. We also discussed the AudioCues prototype which adds dissonances in different volumes to the music output depending on, e.g., Amazon CloudWatch data.

Afterwards, we evaluated MultiSense and, especially, its instantiation AudioCues in three different ways: First, we demonstrated through our proof-of-concept implementation that it is indeed possible to build a system that adds dissonances in different volumes to music output based on monitoring data. This prototype is available on GitHub. Second, we created a sample music track and had it played by our prototype. Based on artificially injected monitoring data, we recorded this output for readers to verify themselves that they can distinguish different volume settings for the dissonance track and, thus, gradually become aware of changes in the system state. This recording is available as an audio file on SoundCloud and as a video on YouTube. Third, we asked a number of test persons to listen to this sample recording while working on something else. Our results show that people notice dissonances, albeit later if they are fully concentrated on another task. This demonstrates that our overall approach works: DevOps engineers can use AudioCues for background monitoring and will become aware of severe changes right away while noticing minor changes only in periods of low concentration. Finally, we discussed a comprehensive list of related approaches, all of which support only binary event-based output and mostly come from different application domains.

In future work, we aim to extend our AudioCues prototype to manage additional control targets which more and more become available through IoT.

REFERENCES

