
Privacy-aware Data Storage in Cloud Computing

Rémy Pottier and Jean-Marc Menaud
IMT Atlantique, 4 rue Alfred Kastler, 44307 Nantes, France

Keywords: Cloud Computing, Storage, Privacy, Security.

Abstract: The increasing number of cloud storage services like Dropbox or Google Drive allows users to store more
and more data on the Internet. However, these services do not give users enough guarantees in protecting the
privacy of their data. In order to limit the risk that the storage service scans user documents, for example, for
commercial purposes, we propose a storage service that stores data on several cloud providers while prohibing
these providers to read user documents. Indeed, the proposed sky storage service (i.e., a service composed
of several cloud services) named SkyStore, protects the user privacy by breaking user documents into blocks
and spreading these blocks over many cloud storage providers. The architecture of this service ensures that
SkyStore can not read user documents. It connects directly users to cloud providers in order to avoid trusting
a third-party. This paper consists of two parts. First, the sky service architecture is described to detail the
different protections provided to secure user documents. Second, the consequences of this architecture on the
performance are discussed.

1 INTRODUCTION

Nowadays, the cloud computing offers a very wide
variety of services like cinema programs, weather
forecast or television series streaming. Moreover,
these services are readily available for free download
from application stores like the Apple App Store or
Google Play. These applications, for desktop comput-
ers or mobile phones, change the way we interact with
online services. In promising to access our documents
(pictures, movies, text files) from anywhere, the num-
ber of users of cloud storage services like Dropbox
grows rapidly. However, storing personal data in the
cloud needs trusted storage services that ensure the
protection and the privacy of our data. For exam-
ple, some mail services scan the content of emails
for tailored advertising, so it does not appear impossi-
ble to consider that some storage services could scan
the content of our files in our own best interest, as
they say. With storage services like Dropbox, users
must have full trust in the cloud provider manag-
ing their data because providers can read user docu-
ments and retrieve information about users. So, some
users subscribe to storage services that use encryp-
tion at the user side like SpiderOak. As data is en-
crypted before outsourcing it to a cloud provider, the
user privacy is strengthened because the provider can
not read user documents. However, the recent FBI-

Apple encryption dispute1 or successful side-channel
attacks (Genkin et al., 2014) have shown us that de-
crypting data is possible. Moreover, in countries like
France, the size of the encryption key is limited to
128 bits with all the consequences that involves for
the data privacy.

In order to help users to ensure the privacy of data
stored on different cloud providers, we proposed a
storage service based on many cloud providers run-
ning exclusively on the user side. To ensure the data
privacy without using encryption, users break their
documents into blocks and these blocks are stored on
cloud providers. By ensuring that each cloud provider
owns only one part of blocks, cloud providers can not
read or deliver user documents. To avoid the use of
a trusted third-party that could threaten the data pri-
vacy, the storage service is not hosted on the cloud
but it runs on user devices and it connects directly to
cloud providers. So, user data and the organization
of the data on cloud providers, i.e., the metadata, are
only managed by users, and so, only users can read
their documents. Consequently, the trust is placed in
the application on the user device rather than in the
storage service on the cloud.

In the remainder of this paper, we describe mech-
anisms for ensuring the user data privacy in the pro-

1http://www.cnbc.com/2016/03/29/apple-vs-fbi-all-
you-need-to-know.html

Pottier, R. and Menaud, J-M.
Privacy-aware Data Storage in Cloud Computing.
DOI: 10.5220/0006294204050412
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 377-384
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

377

posed cloud storage service. Section 2 gives an
overview of existing works about privacy-aware sys-
tems and cloud storage. Section 3 shows the architec-
ture of the storage service and it describes the man-
agement of both the data and the metadata associated
with user documents. Section 4 analyzes the per-
formance of a prototype of the storage service and
it compares this prototype to existing cloud storage
services. Section 5 provides a conclusion and future
works.

2 RELATED WORKS

In the early 2000s, many works contribute to possible
solutions for anonymous storage accessible by the In-
ternet based on peer-to-peer architectures (Dingledine
et al., 2000)(Waldman and Mazieres, 2001). These
systems permit to store and access documents while
protecting the anonymity of users. The cooperation
of the high number of nodes in the architecture al-
lows to hide where the data is really stored and the
user that stores or reads the document. Tangler and
The Free Haven Project break documents into smaller
blocks by using redundant distribution schemes, such
as erasure code algorithms (Luo et al., 2009) or infor-
mation dispersal algorithms (Rabin, 1989), in order to
efficiently replicate documents. In these peer-to-peer
systems, the high number of nodes is critical to en-
sure a large storage space and the anonymity of both
users and documents. Additionally, the system can
not guarantee optimum performance because it can
not control node capabilities.

For the purpose of providing a reliable storage
space on the Internet with a competitive price, storage
providers use the possibilities offered by the cloud. To
avoid being dependent on one single cloud provider,
RACS (Abu-Libdeh et al., 2010) and SCMCS (Singh
et al., 2011) propose cloud storage services using sev-
eral cloud providers to improve the data availability
by maintaining redundancy in data distribution and to
preserve the data privacy. In these systems, the pri-
vacy is achieved by dividing documents into blocks
and distributing these blocks among several clouds or
providers. In this way, cloud providers only host a
part of user documents, and so, it can not read them.
To reconstruct the whole document, cloud providers
must collude with each other to exchange the parts
of the document. In fact, the use of redundant distri-
bution schemes could be used to cut user documents
into blocks and shuffle the block content in order to
make the document hard to reconstruct (Cincilla et al.,
2015). So, even with all data blocks, reading doc-
uments is not an easy task. However, the architec-

ture proposed by RACS and SCMCS involves a third-
party that knows the block organization. So, users
must trust the third-party instead of cloud providers.
Although this third-party does not own the user data,
it could read user documents before storing them in
cloud providers, ask the blocks to cloud providers or
give the block organization to cloud providers. In
some way, the issue of the data privacy is moved to
cloud providers to the third-party on the cloud. In
our approach, the third-party does not exist. Users
connect directly to several cloud providers with their
cloud accounts from the SkyStore application. In this
architecture, users do not share critical data like the
block organization with anyone but they must trust the
application not to release personal data.

In this paper, we explore the possibility of pro-
tecting the user privacy from a storage service us-
ing several cloud storage providers in the same way
as RACS and SCMCS. So, the system breaks user
documents into smaller blocks and stores blocks to
different providers. The privacy is protected by two
main ideas. First, the storage service does not store
all the data in the same cloud provider. In this way,
the first step in reading documents is to retrieve every
block. The second step is to assemble the blocks to
reconstruct documents. The storage service shuffles
the data before building blocks and cloud providers
do not know the shuffle algorithm. So, putting the
blocks together is not a straightforward task. To in-
crease the complexity of these two steps, the storage
service stores blocks of every user with no organiza-
tion on cloud providers. So, at the provider level, a
large amount of blocks belonging to users is stored
with no information. As in peer-to-peer systems, the
more blocks there are, the more complicated is to
reconstruct documents. Unlike RACS and SCMCS,
the information to reconstruct documents, namely the
metadata, is not owned by a third-party that does not
exist in our architecture. Consequently, users are the
only ones who can read the data, i.e., their documents.

3 USER DATA PRIVACY

In our cloud storage service SkyStore, the role of
users is far more important than just selecting doc-
uments to upload on the cloud. Indeed, users are
responsible to break their documents into blocks be-
fore sending them to the cloud storage service. This
operation, called the encoding process, allows users
to choose the algorithm to build blocks and select
providers. So, users install the storage service to
communicate with cloud providers on their device,
e.g., a desktop computer. Then, users choose cloud

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

378

providers from the list of available ones. At least
two providers are required to distribute data blocks
but a higher number of providers increases the pri-
vacy by decreasing the amount of data stored on each
provider. Users also choose the algorithm used to
break their documents. By selecting their algorithm,
users may choose to use cut-and-shuffle (Cincilla
et al., 2015) or erasure code algorithms depending on
the characteristics choosen. The cut-and-shuffle algo-
rithm ensures the respect of the user privacy by mix-
ing the data and breaking it into blocks. The erasure
code algorithm (Luo et al., 2009) allows the loss of
blocks to prevent cloud provider outage but the size
of documents is increased. For instance, when users
store 100 MB of data on three providers by using the
erasure code algorithm, 150 MB of data are stored on
cloud providers but only two providers are required to
reconstruct the data. So, in case of a single provider
failure, user documents can be downloaded.

During the encoding process, metadata is gener-
ated at the user side as shown in Figure 1. The meta-
data is the information to retrieve all blocks of doc-
uments and assemble these blocks. The metadata of
one document consists of the encoding algorithm, the
number of blocks, the block names and the location
of blocks, i.e., the cloud providers used to store the
blocks of the document. Metadata can not be stored
to user devices because of device failures and theft of
devices. The loss of metadata means the loss of user
documents. So, metadata is stored on cloud providers
with the same encoding process than user documents
and the required information for retrieving it is com-
puted from functions as detailed in Section 3.2.

Figure 1: Metadata generation during the encoding process.

3.1 Data Storage

In our previous work, we proposed a cloud stor-
age service, named TrustyDrive (Pottier and Menaud,
2016), based on a traditional architecture. This archi-

tecture, also used in above-mentioned works (Abu-
Libdeh et al., 2010)(Singh et al., 2011), connects
users and cloud providers by means of a third-party.
Although the main concern of TrustyDrive is the
anonymity, the use of a third-party forces users to trust
another component. This component is responsible
for managing and storing the metadata, and so, it can
exploit or disclose it without user consent that could
reduce the privacy of users. In the proposed architec-
ture, users and cloud providers are directly connected
and users have access to the storage space of cloud
providers.

The first advantage to store blocks of one docu-
ment on several providers is that each provider has
only one part of the data. Moreover, the data is mixed
by the encoding algorithm, and so, even one block of
a plain text is illegible. As a result, one provider, or
someone with an access to the provider, who wants
to exploit the data of the user could not do it without
retrieving the blocks hosted in other providers. An
attacker, or a malicious organization, that wants to re-
trieve blocks from every provider, has to hack or pres-
sure several providers. Actually, it is easier to operate
on a single provider instead of several ones because
there are more weakness to find and exploit.

In the improbable case of the attacker succeeds
in retrieving every block from providers used by the
storage service, he has to reconstruct documents. As
the attacker has collected lots of blocks, he could try
to limit the number of blocks to decrypt by analyz-
ing only the blocks associated with a specific user or
a specific document. However, the cloud providers do
not have any information about the block organiza-
tion, and so, the attacker can not group blocks by user
or by document from the hack of the storage service.

In fact, the attacker may have some information
about blocks coming from every provider like the
creation date and the block size. These information
are available from common cloud providers and they
could compromise the user privacy.

From the creation date, the attacker could group
blocks by date and assume that every block with
nearly equal dates belong to the same document. This
information threatens the privacy because the attacker
can now try to decrypt the document from a small
amount of blocks. In common file systems, the cre-
ation date of a file could be customized with basic
commands (e.g., on Linux, the bash command touch
could modify date attributes of a file2). Unfortunately,
such customizations (e.g., modification of the cre-
ation date) are not available from cloud provider API
like the Dropbox API, and so, the application can not
hide this information from attackers.

2http://tinyurl.com/nnopzzj

Privacy-aware Data Storage in Cloud Computing

379

Assuming that the encoding algorithm breaks one
document into blocks with a same size, the attacker
can also group blocks by their size in order to easily
detect blocks belonging to the same document. The
privacy is, once again, threatened. To solve this is-
sue, encoding algorithms could make blocks with ran-
dom sizes but it is easier to design algorithms that
create blocks of equal sizes for all documents. As
the design of encoding algorithms is already compli-
cated, this option is rejected. Another option is to use
blocks with a fixed size, either using padding or mak-
ing small blocks. In order to have blocks with equal
sizes, the system fills blocks with useless data, called
padding, until the required size. The main disadvan-
tage of padding is to increase the size of the data to
upload for one document. An alternative of padding is
to build small blocks with a fixed size to increase the
number of blocks with equal sizes on each provider.
In that case, the number of blocks generated for one
document increases in order to drown blocks associ-
ated to one document in a sea of blocks. This solu-
tion allows to protect the privacy without uploading
more data than necessary but increase dramatically
the number of blocks to upload. We choose the last
option by counting on simultaneous downloads and
uploads of blocks to reduce the loss of performance.

3.2 Metadata Storage

Once users have encoded their documents, the meta-
data of these documents contains the entire informa-
tion required to reconstruct them. So, the protec-
tion of metadata is a determining factor to preserve
the user privacy. Moreover, metadata must be saved
in a safe storage because the loss of metadata pre-
vents users to reconstruct their documents. As a com-
puter and a mobile phone can be stolen, the backup
of metadata must be stored in a remote storage. In
our approach, this remote storage is the sky storage
service itself. To minimize the potential damage of a
theft, metadata is never written to the local drive of
the user device but it remains in the device memory.
So, when users close the application, their metadata
is destroyed.

The permanent storage of metadata is performed
by breaking it into blocks from the encoding algo-
rithm before sending the generated blocks to the cloud
storage service. Two pieces of information are re-
quired to store the metadata blocks: a list of cloud
providers and a list of block names. To store the
metadata, all registered providers are used. Conse-
quently, users must obtain access to every provider
to retrieve their metadata from other devices. So,
users must manually connect to the right providers

before retrieving their metadata, and so, their docu-
ments. This seems to be restrictive but it is necessary
for the security of the application in order to avoid to
give cloud provider credentials, mostly passwords, to
a third-party. However, credentials are stored on user
devices, and so, users have to authenticate just once
on cloud providers. An additional password is asked
at the storage service startup to protect user docu-
ments in case the computer or the phone is stolen.
To compute the list of metadata block names, cryp-
tographic functions calculate the block names from
the password, the name of the provider and the email
of the provider account. For example, the function
SHA-1 could be used for calculating names of blocks
required to save the metadata of the user from its pass-
word as follows: SHA1(password + providerName +
email).

In conclusion, the retrieval of metadata is based
on (i) the correct list of cloud providers, (ii) the cre-
dentials of these cloud accounts, (iii) the block names
defined from passwords, emails and provider names
of cloud provider accounts.

3.3 Architecture Comparison

In the storage service proposed in this paper, users
control their data by choosing the encoding algorithm
and by avoiding that cloud providers can read their
metadata. In TrustyDrive (Pottier and Menaud, 2016),
the anonymity provides a stronger data privacy by
hiding the owner of the data but it is achieved by us-
ing a third-party but users must trust the cloud storage
service for not saving metadata. In the remainder of
this section, we discuss the benefits and the disadvan-
tages of connecting users directly to cloud providers
or by the means of a third-party.

A direct connection between users and cloud
providers means that users create one account on each
cloud provider. For an architecture with three cloud
providers, the creation and the connection do not take
a long time but, for seven or more cloud providers,
this operation can quickly become cumbersome and
tricky. Moreover, inexperience people may find diffi-
cult to know exactly the features of the cloud provider,
for example, the transfer rates, the location of the
data, etc. This features could be analyzed and pro-
posed by expert third-parties. The last, but not the
least, disadvantage is the number of blocks stored on
cloud providers. In the architecture without any third-
party, cloud providers are used by one single user. So,
the number of blocks could not be sufficient to ensure
the data privacy and credentials to connect to cloud
providers can lead to the user identity.

By using a third-party as a proxy to connect to

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

380

cloud providers, users only connect to one service.
They only have to create one account on the third-
party. Moreover, as one third-party is used by many
users, the number of blocks stored on cloud providers
dramatically increases that improves the data privacy.
Indeed, as the third-party of the TrustyDrive architec-
ture can not link users to documents, retrieving all the
documents of a specific users is technically unfeasi-
ble unless the third-party is corrupted or malicious.
However, as users do not own the credentials of cloud
providers, they can not have access to the physical
storage space to check the content of the blocks, for
instance, to check that blocks are illegible. In the ar-
chitecture described in this paper, users have full ac-
cess to the storage space, and so, they can check the
data stored on every cloud provider.

4 THE COST OF THE PRIVACY

The storage service presented here proposes to store
documents on the cloud while ensuring the user pri-
vacy. In this section, we analyze the cost associated
with uploading and downloading documents from a
prototype designed as a privacy-aware storage ser-
vice.

One part of the extra cost is related to prevent
the theft of documents. Unlike other cloud stor-
age services like Dropbox, Google Drive, Microsoft
OneDrive, etc., the system does not keep a local copy
of documents. So, the theft of the user device (laptop,
mobile phone) does not involve the theft of documents
but users have to frequently download documents to
read or edit them.

Another additional cost comes from both the gen-
eration and the transfert of blocks. As data encryp-
tion involves a performance overhead, encoding al-
gorithms consume both processor and memory re-
sources. So, the time to build blocks slows down doc-
ument transfers. Moreover, documents are divided
into several blocks that increases the number of up-
load and download requests to handle documents, and
so, times to upload and download documents raise.

Metadata describes the organization of user doc-
uments and every modification of this organization,
like uploading new documents, renaming or moving
documents, modifies the metadata. In common cloud
storage services like Dropbox, when a document is
uploaded, the only piece of metadata to upload is the
document name. The organization of the document
data only concerns the cloud storage service. Users
does not know how their data is stored (e.g., is the
document stored on one single file or on many files
?). As the proposed storage service manages the user

metadata on the user side, users must upload it. In
addition, the local metadata on the user side is differ-
ent from the metadata stored on the cloud after every
modification of user documents. To maintain the syn-
chronization between the local metadata and the re-
mote one, the application uploads it after every mod-
ification. So, metadata is frequently uploaded which
has a direct negative impact on the performance of the
system.

One parameter that influences the performance of
the system is the block size because it defines the
number of blocks necessary to encode one document.
As mentionned in Section 3.1, this feature of the sys-
tem is used to generate a sufficient number of blocks
in order to ensure the privacy. However, an excessive
number of blocks reduces the performance of the sys-
tem. A balance must be struck between the privacy
and the performance of the system.

The next section describes the prototype of a stor-
age service guided by above mentionned principles.
In the Section 4.2, the evaluation of the prototype clar-
ifies the impact of the block size on the performance
of the system. A comparison between our prototype
of the storage service and existing cloud storage ser-
vice is given in the Section 4.3.

4.1 Prototype Description

Unlike TrustyDrive (Pottier and Menaud, 2016),
which chooses an architecture with a third-party as
described in the Section 3.3, the proposed cloud stor-
age service connects directly users to cloud providers.
The proposed prototype allows users to store their
documents while respecting the user privacy from an
application that installs on the client device running
a Windows 10 operating system. For a more real-
istic evaluation, this application does not use an in-
frastructure designed for this specific experiment but
three of the main cloud storage providers available
on the market, i.e., Dropbox, Google Drive and Mi-
crosoft OneDrive. So, users must first create at least
two accounts on these cloud providers before using
the application.

The application saves the documents of users on
every registered cloud provider by breaking them into
blocks. The number of blocks created for one doc-
ument represents a multiple of the number of cloud
providers to ensure an equal distribution of the data.
The number of created blocks on each provider to en-
code one document is caculated according to the fol-
lowing formula:

Nblock = dSdoc/Nprovider/Sblocke,
where Nblock is the number of blocks per provider,

Privacy-aware Data Storage in Cloud Computing

381

Sdoc is the size of the document,
Nprovider is the number of registered providers,
Sblock is the size of one block

From the number of providers Nprovider, the en-
coding algorithm opens Nprovider buffers and starts to
read the document content one byte at a time. Bytes
are alternately distributed in each buffer as described
in Figure 2. When buffer sizes reaches the block size,
buffers are uploaded and Nprovider new buffers are cre-
ated and filled. The process continue until the end of
the document content. From this encoding algorithm,
most of the blocks have an equal size and only the last
Nprovider blocks are smaller than the block size. Obvi-
ously, the block size Sblock has a huge impact on the
number of blocks.

Figure 2: Distribution of one user document into 3 blocks.

The information required to reconstruct docu-
ments, i.e., the metadata, consists of a list of block
names and a list of cloud providers on which blocks
are stored. From these two pieces of information,
the application manages blocks by uploading, down-
loading or deleting them by using the cloud provider
REST API. We assume that users do not share their
cloud accounts and the storage space provided by
cloud providers is only used by one person. Conse-
quently, the number of blocks generated by the user
will not be mixed with blocks of other users, and so,
it must be sufficiently high to protect the user privacy.

In the following experiments, three accounts of
cloud providers are registered in the application (one
Dropbox account, one Google Drive account and one
Microsoft OneDrive account). The prototype will be
compared with two cloud storage services: Dropbox
and BoxCryptor. Dropbox is one of the famous cloud
storage services. It allows users to easily save doc-
uments on the cloud. To upload documents, users
move their documents in the Dropbox folder. This
folder is automatically synchronized with the cloud
folder. A local copy remains at the user side to read
and edit the document. BoxCryptor allows users to
save documents on the cloud while protecting their

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 b

lo
ck

s
(s

)

Block Size (kB)

50 B file
5 MB file

12 MB file

(a) Number of blocks to encode documents with
different block sizes

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

U
pl

oa
d

tim
e

(s
)

Block Size (kB)

50 B file
5 MB file

12 MB file

(b) Time to upload documents with different
block sizes

Figure 3: The impact of the block size on document up-
loads.

privacy by using encryption. BoxCryptor connects to
many cloud providers like Dropbox to save encrypted
documents but the entire document is saved on a sin-
gle provider. As BoxCryptor does not save user pass-
words, both cloud providers and BoxCryptor can not
read user documents. So, users must trust BoxCryptor
to not store their passwords. Moreover, the underly-
ing cloud providers has entire documents so it can try
to decrypt them.

As both Dropbox and BoxCryptor keep a local
copy of user documents, users do not have to down-
load their documents before reading or editing them.
In our prototype, this local copy is deleted to mini-
mize the consequences of theft of user devices. So,
user documents are most often downloaded. As doc-
uments are not downloaded with Dropbox and Box-
Cryptor, we choose to compare upload times in the
following experiments. The Section 4.2 shows the im-
portance of the block size on the performance of the
prototype. The Section 4.3 compares the prototype
with Dropbox and BoxCryptor.

4.2 Performance Assessment

The prototype developped in this study is available
from the Windows Store3 for mobile phones and
desktop computers running a Windows 10 operating

3https://www.microsoft.com/en-
us/store/p/trustydrive/9nblggh52pq6

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

382

system. Every experiment is performed on a desktop
computer with 4 GB of memory and a dual core pro-
cessor (T8100 2.10GHz). Three documents are up-
loaded on the three registered providers:

• a text document with a small size of 50 B. This
document could help users to save important pass-
words which are rarely used ;

• an audio file with a medium size of 5 MB. This
document could be an interview about a sensitive
topic ;

• a JPEG picture of 16 Mpixels with a size of
12 MB. The user does not want to disclose it.

The proposed storage service protects the user
privacy by breaking user documents into blocks,
and then, distributing these blocks to many cloud
providers. Additionally, there is no third-party be-
tween users and cloud providers and only users know
the metadata to prevent providers reading documents.
In this section, we will examine the performance of
the prototype by uploading the 3 documents described
above with different block sizes. The first part of
this evaluation shows the impact of the block size on
transfer times. In a second phase, the system is used
with a fixed block size and the encoding process is
examined very carefully to differentiate computation
times and transfer times.

The number of blocks used to encode one docu-
ment is defined by the block size as described in Sec-
tion 4.1. When the block size grows, the number of
generated blocks per document decreases quickly to-
ward the minimal number of 3 blocks per document,
i.e., one block per provider. As 3 providers are regis-
tered to the application, the encoding process builds at
least 3 blocks that it fills alternatively with document
data. When blocks reach the maximum block size,
3 additional blocks are created. So, a file with a size
smaller than 3 times the block size is always encoded
on 3 blocks. The 12 MB file is encoded on 246 blocks
with 50 kB blocks and 15 blocks with 1 MB blocks
as shown in Figure 3(a). Reducing the number of
blocks allows to decrease the number of upload re-
quests. When the number of upload requests drops,
the time to upload documents is improved as shown
in Figure 3(b). When blocks vary in size from 50 kB
to 500 kB, upload times of both the 5 MB file and the
12 MB are significantly improved because the number
of connections to cloud providers decreases.

The upload of one document consists of filling
blocks by reading and mixing the document content,
uploading blocks and uploading the metadata. In the
next experiment, we measure the time consumed by
each of these steps to determine which one is the most
consuming task. The first step is to read the docu-

Table 1: Calculation times and upload times during the en-
coding process.

5 MB File
Block Calculation Upload

size (B) time (s) time (s)
50 000 2.040 23.552

100 000 1.703 13.180
250 000 1.597 6.074
500 000 1.536 4.305
750 000 1.531 4.445

1 000 000 1.515 4.195
12 MB File

Block Calculation Upload
size (B) time (s) time (s)
50 000 4.854 49.678

100 000 3.809 25.837
250 000 3.463 11.496
500 000 3.328 8.438
750 000 3.344 6.055

1 000 000 3.219 5.758

ment content and fill blocks while mixing their con-
tent. This step is a CPU-intensive task, and so, its
duration is highly dependent on the hardware. The
time to execute this step is called the calculation time.
The second measurement is the upload of every block
belonging to the document. This time is called the
upload time and it does not include the metadata up-
load time. Metadata consists of block names used
by the three documents and providers that store these
blocks. So, the metadata size depends on the num-
ber of blocks determined by the block size. As the set
of documents is small, the size of the metadata varies
from 3 kB to 30 kB depending on the block size but
the time to upload it is almost constant. Actually, this
time varies from 0.8 s to 1.2 s but this change is more
dependent on the network quality than the metadata
size. Calculation times and upload times with differ-
ent block sizes are summarized in the table 1.

For both the 5 MB file and the 12 MB file, a re-
duction in upload times is observed while the num-
ber of blocks abruptly decreases due to an increase of
the block size. These new results confirm the previ-
ous ones. For small block sizes, calculation times are
negatively impacted. When the block size is greater
than 100 kB, calculation times are stable. Conse-
quently, reducing the number of blocks improves up-
load times but it may compromise the user privacy,
and so, a tradeoff between the performance and the
security must be found, for example, by using 500 kB
blocks.

Privacy-aware Data Storage in Cloud Computing

383

Table 2: Upload times (s) on different cloud storage ser-
vices.

File Size (MB) 20 50 100
Dropbox 14.0 26.8 65.2

BoxCryptor 18.1 30.3 65.5
Our Prototype 14.9 25.4 59.7

4.3 Storage Service Comparison

Many cloud storage services are available to store
gigabytes of data like Dropbox, Google Drive, Mi-
crosoft OneDrive. These services provide a free and
large storage space for users without ensuring the user
privacy. Few storage services care about privacy with
zero knowledge cloud solutions based on encryption
like SpiderOak or BoxCryptor. To compare the per-
formance of our prototype with other storage services,
we choose two cloud services: Dropbox and Box-
Cryptor. Dropbox is one of the leader in storage ser-
vices and BoxCryptor proposes free accounts with
AES-256 encryption.

For this experiment, three files are tranferred: one
20 MB file, one 50 MB file and one 100 MB file. The
prototype is configured to use 500 kB blocks. The
upload times of these files are shown in the Table 2.

The results show that our prototype initially ap-
pears a little more performant but BoxCryptor and
Dropbox begin by copying user documents on the lo-
cal storage before uploading them. Our prototype do
not use local copies. However, our prototype uploads
documents to multiple cloud providers by means of
concurrent block uploads that could speed up the file
transfer. According to network disturbances and the
accuracy of the measurement, the difference between
the upload times are not sufficient to determine the
fastest cloud storage service.

5 CONCLUSION

In this paper, we propose a cloud storage service that
protects the privacy of users by breaking user docu-
ments into blocks in order to spread them on several
cloud providers. As cloud providers only own a part
of the blocks and they do not know the block organi-
zation, they can not read user documents. Moreover,
the storage service connects directly users and cloud
providers without using a third-party as is generally
the practice in cloud storage services. Consequently,
users do not give critical information (security keys,
passwords, etc.) to a third-party.

To improve the presented prototype, the ability of
sharing documents between users should be available.

As every cloud service has this feature, our prototype
does not have to copy blocks from cloud providers of
the first user to providers of the second user. It just has
to share the metadata of the file, and then, download
the blocks from sharing links.

REFERENCES

Abu-Libdeh, H., Princehouse, L., and Weatherspoon, H.
(2010). Racs: A case for cloud storage diversity.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 229–240, New York,
NY, USA. ACM.

Cincilla, P., Boudguiga, A., Hadji, M., and Kaiser, A.
(2015). Light blind: Why encrypt if you can share?
In SECRYPT 2015 - Proceedings of the 12th Interna-
tional Conference on Security and Cryptography, Col-
mar, Alsace, France, 20-22 July, 2015., pages 361–
368.

Dingledine, R., Freedman, M. J., and Molnar, D. (2000).
The free haven project: Distributed anonymous stor-
age service. In In Proceedings of the Workshop on De-
sign Issues in Anonymity and Unobservability, pages
67–95.

Genkin, D., Shamir, A., and Tromer, E. (2014). RSA
Key Extraction via Low-Bandwidth Acoustic Crypt-
analysis, pages 444–461. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Luo, J., Xu, L., and Plank, J. (2009). An efficient
xor-scheduling algorithm for erasure codes encoding.
In Dependable Systems Networks, 2009. DSN ’09.
IEEE/IFIP International Conference on, pages 504–
513.

Pottier, R. and Menaud, J. M. (2016). Trustydrive: a multi-
cloud storage service that protects your privacy. In
2016 IEEE 9th International Conference on Cloud
Computing.

Rabin, M. O. (1989). Efficient dispersal of information for
security, load balancing, and fault tolerance. J. ACM,
36(2):335–348.

Singh, Y., Kandah, F., and Zhang, W. (2011). A secured
cost-effective multi-cloud storage in cloud comput-
ing. In Computer Communications Workshops (IN-
FOCOM WKSHPS), 2011 IEEE Conference on, pages
619–624.

Waldman, M. and Mazieres, D. (2001). Tangler: A
censorship-resistant publishing system based on doc-
ument entanglements. In Proceedings of the 8th ACM
Conference on Computer and Communications Secu-
rity, CCS ’01, pages 126–135, New York, NY, USA.
ACM.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

384

