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Abstract: We propose a methodology and present a system for generating composite alternative recommendations 
combining user-guided continuous improvement with Pareto optimal trade-off considerations. The system 
consists of (1) a model to generate the recommendation space; (2) metrics for measuring each 
recommendation; (3) an analytics function for computing composite alternative metrics and constraints; (4) 
system configuration settings; (5) an algorithm for calculating Pareto optimal curve of recommendations; 
(6) an algorithm for generating user-guided improvements using relaxed constraints; (6) charting 
functionality for plotting recommendations; (7) and a user interface for enabling users to accept or improve-
upon selected recommendations. 

1 INTRODUCTION 

Composite alternative recommender systems 
recommend a combination of products and services, 
based on multiple criteria such as price, availability, 
and user ratings.  They include recommenders for 
vacation packages, investment portfolios, healthcare 
plans, product bundles, and more.   

Consider an example of a sourcing 
recommender.  In this case, a recommendation is a 
set of orders, where an order contains a set of item 
quantities to be purchased from a particular supplier.  
Sourcing recommendations are associated with 
multiple criteria such as cost, carbon emissions, and 
fulfillment time.  These recommendations are 
composite since they contain multiple suppliers with 
multiple items, and they are multi-criteria because of 
the three metrics mentioned previously.  The result 
of generated recommendations must be Pareto-
optimal. 

There has been extensive research conducted on 
composite alternative recommenders in recent years.  
This research comprises proposed methods and 
presented systems, addressing both domain specific 
and domain-independent recommenders. 

Interdonato et al (2013) propose a graph-based 
framework that uses Page Rank-style algorithm to 
learn packages that conform to a user preference 
model.  The framework is ultimately based on user 

rankings and identifies domain-independence as its 
key feature.  CARD (Brodsky, Henshaw and 
Whittle, 2008) is a proposed framework for 
generating optimal composite alternative 
recommendations.  CARD utilizes a SQL-based data 
model for generating the recommendation space.  It 
also extends the SQL language in order to provide 
diverse recommendations and to provide a 
mechanism for learning user preferences.  CARD is 
a generic framework capable of being applied across 
domains.  There is no current implementation of the 
CARD framework. FlexRecs (Koutrika, Bercovitz 
and Garcia-Molina, 2009) is a proposed framework 
for providing domain-independent 
recommendations.  The recommendation space in 
FlexRecs is generated using workflows designed by 
system implementers.  As with CARD, the FlexRecs 
framework is built on top of relational data models 
and extended relational operators. 

These three frameworks address composite 
recommendations, but do not offer a system that 
implements the framework, nor use methodology on 
which the system functionality can be based.   

Xie, Lakshmanan and Wood (2010) present a 
generic package recommender system that uses a 
variation of the knapsack problem to generate 
optimal top-k recommendations.  The 
recommendation space in their system is generated 
using individual component recommenders.  
Furthermore, ratings are the only metric used to 
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calculate recommendations.  TopRecs+ (Khabbaz, 
Xie and Lakshmanan, 2011) is another generic 
package recommender that uses a variation of the 
knapsack problem to find optimal top-k package 
recommendations.  As with Xie et al above, 
TopRecs+ leverages individual item recommenders 
to generate the composite alternative recommender 
space.  CompRec-Trip (Xie, Lakshmanan and 
Wood, 2011) is a system for recommending travel 
packages by finding the optimal alternatives using 
user-supplied preferences and constraints.  As Xie et 
al’s other work mentioned above, the system uses 
component recommender systems for generating the 
recommendation space.  The system is narrowly 
focused, but allows flexibility through interaction 
with the user. 

These three systems generate composite 
recommendations by aggregating single-item 
recommenders.  However, this aggregation does not 
take into account interaction among the components 
of the composite recommendation.  Therefore, 
neither offers an integrated composite alternative 
methodology, which is often required when 
components have a non-trivial interaction among 
them.  Also, in the case of CompRec-Trip, the 
system is domain-specific and not designed to 
accommodate general recommendation problems. 

Ribeiro, et al (2015) propose two Pareto-efficient 
approaches for recommender systems.  In both 
approaches, they propose using recommendation 
accuracy, novelty, and diversity as the objectives to 
consider when generating a Pareto-efficient list of 
recommendations.  One approach creates a Pareto-
efficient ranked list from multiple competing 
recommendation algorithms.  Their second approach 
creates Pareto-efficient hybrid recommenders built 
from individual recommender algorithms.  While 
both approaches apply Pareto-efficiency to their 
recommendations, it is limited to the criteria of 
accuracy, diversity, and novelty.  However, many 
package recommendations require diverse user-
defined criteria, such as cost, risk, benefit, etc., 
which is outside the scope of (Ribeiro et al, 2015).  
Neither approach considers continuous user 
feedback.  Furthermore, both approaches are 
proposed algorithms that do not include a system to 
implement their methodology. 

To our knowledge, there are no proposed 
recommender systems that combine Pareto optimal 
solutions for arbitrary user-defined criteria with 
continuous user guidance.  Nor is there a system 
with this combination of features designed for 
composite alternatives that have complex 

interactions between them.  Addressing these 
limitations is the exact focus of this paper. 

First, we develop a methodology for 
recommending Pareto-optimal composite 
alternatives based on (1) multi-criteria optimization 
and (2) continuous user-guided feedback.  The 
methodology first generates an initial set of 
recommendations based on Pareto-optimal curve for 
two selected criteria (such as cost and benefit).  
Then, the user iteratively improves the alternatives 
through critique of additional criteria and re-
optimizations to iteratively generate a small subset 
of user-selected Pareto-optimal alternatives.  Finally, 
the user extracts the final recommendation from this 
small set. 

Second, we develop a system called CAPORS 
(Composite Alternative Pareto Optimal 
Recommender System) that implements the 
proposed methodology.  CAPORS is implemented 
using a Decision Guidance Management System 
(DGMS) (Brodsky and Wang, 2008).   In CAPORS 
(as well as the underlying DGMS), the description of 
all possible recommendation alternatives is captured 
by the concept of an Analytical Model.  The 
Analytical Model formally describes (1) criterion of 
interest (such as cost, benefit, risk, etc.) as a function 
of recommendation control variables, and (2) 
feasibility constraints on possible composite 
recommendations.  With the help of DGMS, 
CAPORS manages the workflow of 
recommendations improvement based on two key 
algorithms: (1) generation of Pareto-optimal curve 
for the recommendation Analytic Model along two 
selected criteria and (2) generation of Pareto-optimal 
improvement along the additional criteria that the 
user asks to improve. 

Third, we develop these two key algorithms 
using DGMS. 

Finally, as a case study to demonstrate 
applicability to a real world problem, we implement 
a sourcing recommender based on the domain-
independent CAPORS system and methodology. 

This paper is organized into the following 
sections.  Section 2 demonstrates composite 
alternative recommendation using a supply chain 
sourcing example.  Section 3 gives background on 
some of the technologies relevant to the system.  
Section 4 describes the core algorithms of the 
system.  Section 5 details the system architecture 
and explains its various mechanics.  Section 6 
concludes and offers ideas for future extensions. 
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2 CAPORS FUNCTIONALITY BY 
SOURCING EXAMPLE 

We explain the functionality of the system and 
related methodology through the use of a supply 
chain sourcing example, shown in Figure 1.  Supply 
chain sourcing is the process of locating the sources 
of goods that a company needs to order.  This 
process usually has the goal of finding an order 
configuration that meets the constraints set by the 
company and is optimized according to one or many 
criteria, such as cost, fulfillment time, and carbon 
emissions. 
The components of supply chain sourcing are (1) a 
customer that needs to order items, (2) order 
constraints such as item demand and budget, (3) 
suppliers that offer items at a given price, and (4) an 
order that defines which items are ordered from 
which suppliers and in what quantities. 

 

Figure 1: Supply Chain Sourcing. 

Supply chains orders can potentially be 
configured in so many different ways as to be 
impractical for a human to thoroughly review and 
consider.  One way for decision guidance systems to 
solve this issue is to simply optimize on a single 
metric (e.g. total cost) and produce the least 
expensive option.  However, there may be other 
metrics that the user would want to optimize, even if 
it meant a supply chain configuration yielding a 
higher cost.  For instance, fulfillment time might be 
a crucial metric to the user, so much so that they are 
willing to trade off some cost in order to get an 
alternative with a faster fulfillment time.   

Consider the scenario of a small supply chain 
consisting of items, demand, and suppliers.  The 
goal is to construct an order that will define which 
items will be ordered from which suppliers.  The 
order must meet certain specified constraints, such 
as demand.  Analysis is executed on the order to 
compute metrics, such as order cost, carbon 
emissions, and fulfillment time. 

In this scenario, CAPORS can be used to 
generate a recommendation.  A recommendation is a 
set of orders, with each order defined by (1) a 
supplier id representing a specific supplier, (2) an 

item id representing a specific item, and (3) quantity 
of ordered item. 

Each recommendation is associated with a set of 
metrics: (1) cost per item, (2) carbon emissions 
produced for each item, and (3) fulfillment time, i.e. 
the time in days it will take to fulfill all items in the 
order. 

The methodology used by CAPORS for 
generating the optimal recommended order is 
captured as a state-activity diagram, shown in Figure 
2. 

 

Figure 2: CAPORS Methodology. 

To generate an initial set of recommendations, 
the system needs two components: (1) an analytics 
model and (2) a set of configuration settings.  The 
analytics model contains (1) data needed to generate 
the recommendation space, (2) order constraints, and 
(3) an analytics function for computing order 
metrics.   The configuration settings include the 
number of recommendations to generate, metrics 
definitions, and the initial two metrics to consider 
for the first set of recommendations (defined as core 
cost and core benefit in the configuration settings).  
These settings are captured in the Model & Initial 
Configuration State, depicted in the upper left corner 
of Figure 2.   

After CAPORS receives the analytics model and 
initial configuration, the system generates the first 
set of recommendations for the user to consider.  
Each recommendation consists of an order 
configuration and computed metrics.  The computed 
metrics in this example are order cost, total amount 
of carbon emissions, and the time (in days) that it 
will take to fulfill the entire order.  The Generate 
Recommendation Set activity (shown at the top 
middle of Figure 2) generates the information 
necessary to display in the Recommendation User 
Interface State (shown in the middle of Figure 2). 
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The Recommendation User Interface itself is 
shown in Figure 3.  The Recommendation User 
Interface displays the recommendations using two 
main components: (1) line chart and (2) a table. The 
line chart shows all of the generated 
recommendations, which fall along a Pareto optimal 
curve.  The recommendations are plotted along two 
axes: (1) cost along the y-axis and (2) benefit along 
the x-axis.  In this example, the y-axis represents 
order cost and the x-axis represents carbon emission 
reduction.  Each point on the displayed line chart is 
Pareto-optimal, that is there does not exist a 
recommendation that improves on one metric 
without sacrificing another. 

For the initial recommendation set, the system 
automatically selects three recommendations to be 
part of the Closer Consideration Set displayed as a 
table at the bottom of Figure 3.  The Closer 
Consideration Set contains recommendations that 
the user can interact with (described further below).  
The initial Closer Consideration Set contains (1) the 
recommendation with the minimal cost, (2) the 
recommendation with the maximal benefit, and (3) 
the recommendation with the greatest benefit/cost 
ratio, relative to the minimum cost recommendation 
(the leftmost point).  The recommendations that 
belong to this set appear as bigger circles.   

In addition to the line chart, the 
Recommendation User Interface also displays the 
Closer Consideration Set in a table underneath the 
chart.  The table contains the following information: 
(1) list of metrics, (2) the overall minimum and 
maximum possible for each metric, as constrained 
by the user, (3) the metric values for each 
recommendation in the Closer Consideration Set, 
and (4) buttons for accepting or improving a 
recommendation. 

 

Figure 3: Recommendation User Interface. 

After the Recommendation User Interface 
displays the line chart and Closer Consideration Set 
table, the user has three options: (1) accept one of 
the highlighted recommendations, (2) modify the 
Closer Consideration Set, or (3) request a new set of 
recommendations by improving upon one of the 
recommendations in the Closer Consideration Set. 

The user can accept a recommendation by 
pressing the “Accept” button underneath the selected 
choice.  This puts the system in the terminal Optimal 
Recommendation State (shown in bottom of Figure 
2) as no further improvements are needed. 

Before accepting or improving-upon one of the 
selections, the user can modify the Closer 
Consideration Set.  Modification actions include (1) 
adding a recommendation to the Closer 
Consideration Set, (2) removing a recommendation 
from the Closer Consideration Set, and (3) replacing 
one of the recommendations in the Closer 
Consideration Set.   

A user adds a recommendation by right-clicking 
on one of the small circles on the graph and pressing 
the “Add” button, as shown in Figure 4.  The user 
interface then increases the size of the 
recommendation circle on the chart and adds the 
recommendation metrics to the Closer Consideration 
Set table beneath the chart. 

 
Figure 4: Add recommendation to Closer Consideration 
Set. 

Similarly, a user removes a recommendation 
from the Closer Consideration Set by right-clicking 
and pressing “Remove” (shown in Figure 5).  Again, 
the user interface reflects this new state by reducing 
the size of the recommendation circle and removing 
the recommendation from the table. 
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Figure 5: Remove recommendation from highlighted 
subset. 

To replace a recommendation, the user simply 
drags the circle of the old recommendation over top 
the circle of the new recommendation on the chart.  
The recommendations’ circle size change 
accordingly on the chart and the old 
recommendation is replaced in the table by the new 
recommendation (shown in Figure 6). 

 

 

Figure 6: Replaced recommendation. 

If one of the recommendations is not accepted as 
optimal, the user can generate additional 
recommendations by improving upon one of the 
recommendations in the Closer Consideration Set.  
To do that, the user clicks on the metric to be 
improved (Fulfillment Time, for example), chooses 
the most desirable recommendation, and presses the 
“Improve” button underneath its entry in the 
recommendation table.  By using the selected 
recommendation as a starting point, a new set of 
recommendations is generated that improves the 
selected metric while relaxing the non-dominated 
constraints in the x and y dimensions (cost and 

emission reduction, for example).  The new 
recommendation set is overlaid on the chart and 
displayed using red circles.  The new 
recommendation set is also displayed in the 
highlighted table under the chart.  The new 
recommendations are not automatically placed on 
the graph.  But if the user decides to add to the 
Closer Consideration Set, then they are labelled 
using decimal numbers to indicate which original 
recommendation they were generated from, shown 
in Figure 7. 

 
Figure 7: Improved recommendations. 

3 RECOMMENDATION 
GENERATION 

The implementation of system functionality 
described in Section 2 requires algorithms to 
compute the Pareto-optimal curve and the improved 
recommendations (Figure 7).  These algorithms are 
detailed in Section 4.  To support these algorithms, 
we need to be able to (1) represent a 
recommendation, (2) represent a set of all feasible 
recommendations, and (3) find an optimal 
recommendation in terms of one of the metrics when 
other metrics are constrained.  In this section, we 
explain how these are done, using our example. 

We represent a recommendation using a data 
structure expressed in JSON (JavaScript Object 
Notation, 2016).   JSON is a minimal data structure 
that represents data as objects consisting of 
key/value pairs.  In our sourcing example, a 
recommendation captures purchase quantities for 
each item and each supplier.   

In Figure 8, each outer pair of curly braces 
defines the purchase items for a particular supplier. 
Each supplier is identified by a “supplier” field that 
denotes a specific supplier.  Along with the 
“supplier” field is an array of items to be ordered 
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from that supplier.  Each item contains “item” to 
identify the item, “ppu” containing the price-per-
item, “dayRate” defining the number of items that 
can be fulfilled per day by the supplier, “carbon” 
showing the amount of emissions per item, 
“availQty” for the available quantity for the item, 
and “qty” for the actual quantity to be ordered for 
the item. 

 
Figure 8: Sourcing recommendation JSON. 

Every recommendation (as in Figure 8) is 
associated with metrics (orderCost, orderEmissions, 
orderFulfillment) and the key constraints that are 
true if all feasibility constraints for the order (such as 
satisfaction of demand and supply availability) are 
satisfied.  These metrics and constraints are also 
expressed in JSON.  For the recommendation shown 
in Figure 8, computed metrics and constraints are 
shown in Figure 9. 

 
Figure 9: Metrics and constraints. 

The set of all feasible recommendations are 
represented implicitly by using the notion of an 
analytical model expressed in JSONiq (Fourny, 
2013).  JSONiq is an expressive functional language 
used to query and process JSON data.  An analytical 
model is a function that describes how metrics and 
constraints are computed from a recommendation 
instance (like in Figure 8).  For our sourcing 
example, the function is given in Figure 10.  Given 
an analytical model, the set of feasible 
recommendations is the set of JSON inputs with all 
possible non-negative values for quantities that 
satisfy the constraints (i.e. return a value of true for 

the constraints variable computed by the analytical 
model). 

 
Figure 10: Analytical model. 

Given an analytical model, one may want to find 
an input (the qty fields in Figure 8) that would 
optimize a metric.  For example, one may want to 
minimize the orderCost metric while keeping the 
constraints satisfied and bounding another metric 
(e.g. orderEmissions <= x).  This is done by 
invoking the function argmin (or argmax) of the 
Decision Guidance Analytics Language (DGAL) 
(Brodsky, Luo and Nachawati, 2015).  DGAL is a 
language used to express tasks to be executed by a 
DGMS.  DGAL tasks are expressed using JSONiq 
and operate on analytic models defined using JSON. 

In our sourcing example, a DGAL expression is 
used to minimize and maximize specific metrics in 
order to construct recommendations.  Figure 11 
shows an example of using DGAL to express an 
argmin operation to produce an optimized order, 
given restraints. 

 
Figure 11: DGAL optimization expression. 

For the optimization to work, the input to the 
argmin or argmax function of the DGMS must 
include parametrized fields in its input.  These 
parameterized fields are decision variables that need 
to be optimized.  In the sourcing example, we make 
the “qty” field parameterized, since this is the 
variable that we want to generate for the 
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recommendations.  Figure 12 shows an example of 
the parameterized input that is used for optimization. 

 
Figure 12: Parameterized optimization input. 

The argmin function takes the analytical model 
(from Figure 10) and the parametrized input (from 
Figure 12) and returns a JSON structure containing a 
concrete recommendation (like the one shown in 
Figure 8) as well as computed metrics and 
constraints (as shown in Figure 9). 

4 KEY CAPORS ALGORITHMS 

CAPORS consists of two key algorithms: (1) Pareto-
optimal chart algorithm, and (2) recommendation 
improvement algorithm.   

The Pareto-optimal algorithm accomplishes the 
following: (1) accepts and verifies system input; (2) 
generates bounds for recommendations; (3) 
optimizes recommendations by integrating with a 
DGMS; (4) filters out recommendations that don't 
fall along Pareto-optimal curve; (5) outputs final 
recommendation set of points. 

Function: Pareto-Optimal Recommendations 
Input: M (analytic model), r (metrics), c 
(configuration) 
Output: Pareto-optimal recommendation points 
 
/*find ranges for each metric using model */ 
ranges = calculateMetricsRanges(M, r) 
 
/*find x-axis points from min to max */ 
benefitRange = ranges[benefitMetric] 
n = c.numRecommendations 
bPoints= computeBenefitPoints(benRange, n) 
 
/* optimize cost at each benefit point */ 
costPoints = optimizeCost(M, bPoints) 
 
/* remove points that don’t improve */ 
finalCurve = filterCostPoints(costPoints) 

The recommendation improvement algorithm is 
responsible for generating a set of recommendations 
that improve upon an existing recommendation 

using an alternative metric.  This function calculates 
a set of relaxed bounds for which the DGMS can 
generate a new set of recommendations.  The 
function computes improved values for the 
alternative metric and relaxed values for cost and 
benefit metrics.  DGAL uses these new constraints 
to generate new composite alternatives. 

Function: Recommendation Improvement 
Input: M (analytic model), c 
(configuration), R (starting recommendation 
point), a (alternative metric) 
Output: Pareto-optimal recommendation points 
 
/*calculate alternative metric points */ 
altMetricPts = computeAltMetricPoints(R, a) 
 
/*optimize cost at each altMetric point*/ 
n = c.numAltRecommenations 
e = epsilon 
newPoints = [] 
for i=1 to n do 
  bounds = R.cost + (e * i) 
  p = altMetricPoints[i-1] 
  newRec = optimizeRelaxedCost(M, R, p, 
bounds) 
 newPoints.add(newRec) 
 
/* remove points that don’t improve*/ 
finalCurve = filterAltMetricPts(newPoints) 

5 SYSTEM ARCHITECTURE 

The system consists of two core internal 
components: (1) Recommendation Engine, which 
implements both the Pareto-optimal algorithm and 
the recommendation improvement algorithm, and 
(2) Recommendation User Interface for displaying 
results and enabling user-guided improvement of 
recommendations.  The Recommendation Engine is 
further integrated with DGMS for: (1) generating 
recommendation space and computing metrics, and 
(2) executing argmin and argmax functions.   

 

Figure 13: System Architecture. 

The Recommendation Engine must be 
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configured with several elements, in order to 
generate the initial Pareto-optimal curve: (1) a data 
model used to generate the full recommendation 
space, (2) defined metrics for measuring each 
recommendation, and (3) other miscellaneous 
configuration points, such as number of 
recommendations to produce. 

The Recommendation Engine integrates with a 
DGMS in order to generate the domain-specific 
recommendations based on the input model.  
Furthermore, the DGMS provides the capability of 
calculating metrics on each recommendation.  Any 
DGMS can be seamlessly integrated into CAPORS 
simply by implementing a JSONiq function that 
conforms to a signature specified by CAPORS. 

The JSON output of the recommendation engine 
is fed directly to the user interface.  The user 
interface is written in HTML and JavaScript.  The 
JavaScript functions of the user interface perform 
the following: (1) load the recommendation JSON 
records; (2) bind JSON data to D3JS (Data Driven 
Documents, 2016) charting library; (3) format the 
recommendation chart; (4) determine the initial 
Closer Consideration Set; (5) display Closer 
Consideration Set in a table; (6) draw improved 
recommendations onto chart;  (7) handle all user 
interactions (add, remove, replace, improve, accept). 

6 CONCLUSIONS 

In this paper we proposed a methodology for 
generating composite alternative recommendations, 
based on Pareto-optimal trade-off consideration and 
continuous user feedback.  The methodology 
improves upon earlier research by introducing the 
combination of optimized recommendations along a 
Pareto-optimal curve with the ability of users to 
repeatedly optimize an alternative metric until an 
optimal recommendation is generated and accepted. 

Furthermore, we presented a system, CAPORS, 
which implements the proposed methodology.  
CAPORS utilizes existing technologies such as 
JSON, JSONiq, DGAL, and D3JS to provide a 
working framework for the proposed methodology.  
CAPORS is designed using abstractions such that 
the system is domain-independent, a big 
improvement over the majority of existing 
composite recommenders.  

This work is a first step in our work towards a 
domain-independent, optimal, composite-alternative 
recommender system.  In future work, we will 
extend the capabilities by introducing machine 
learning and data mining concepts to the 
methodology and system. 
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