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Abstract: Hitag2 is an encryption algorithm designed by NXP Semiconductors that is used in electronic vehicle immo-
bilizers and anti-theft devices. Hitag2 uses 48-bit keys for authentication and confidentiality, and due to that
feature it is considered an insecure cipher. In this contribution we present a comparison of low cost technolo-
gies able to break a known protocol based on this cipher in a reasonable amount of time. Building on top of
these solutions, it is possible to create an environment able to obtain Hitag2 keys in almost negligible time.
The procedure can be easily expanded in order to consider other protocols based on the same cipher.

1 INTRODUCTION

Hitag2 is a 48-bit stream cipher used widely in both
automotive Remote Keyless Entry (RKE) and Passive
Keyless Entry (PKE) systems. An RKE system con-
sists of an RF transmitter embedded into a car key
that sends a short burst of digital data to a receiver in
the vehicle, where it is decoded. In this context, users
have to actively initiate the authentication process by
pressing a button in their car key. The frequency used
by RKE systems is 315 MHz in the US and Japan, and
433 MHz in Europe.

In comparison, in PKE systems users are able to
automatically unlock their cars when they approach
the vehicle without having to actively press any but-
ton, as a bidirectional communication takes place
beetween the car key and the vehicle when the trans-
mitter is within the system’s range. PKE systems ty-
pically operate at the frequency of 125 KHz.

In this contribution, we have focused on the usage
of Hitag2 as a PKE system in a publicly known pro-
tocol (Verdult et al., 2012). Given the short length of
Hitag2’s keys, this stream cipher has been considered
insecure for some years, and as such it can be attacked
by using expensive devices such as COPACOBANA
(Guneysu et al., 2008). In addition to that, Hitag2
suffers from more elaborated cryptographic attacks
(Courtois et al., 2009; Courtois et al., 2011; Stem-
bera and Novotny, 2011; Verdult et al., 2012; Garcia
et al., 2016).

Thus, our goal is not to show that Hitag2 is inse-
cure, but to compare low cost technologies that can

be used to obtain the transmitter’s key with a sole
computer in the scope of the aforementioned proto-
col. In this sense, we have developed three implemen-
tations, two of them using an only-software approach
(Java and C++/OpenMP), and the other one based on
a CUDA-capable graphics card.

The rest of this paper is organized as follows:
In Section 2, we present a brief overview of the
Hitag2 algorithm. Section 3 describes the Java,
C++/OpenMP, and CUDA platforms, including part
of the code used in the CUDA implementation. In
Section 4, we offer to the readers the experimental re-
sults obtained with our implementations. Finally, our
conclusions are presented in Section 5.

2 HITAG2

2.1 Algorithm

Hitag2 is a stream cipher which consists of an inter-
nal 48-bit Linear Feedback Shift Register (LFSR) and
a non-linear filter functionf , as it can be observed in
Figures 1 and 2. Hitag2 is the successor of Crypto1,
another proprietary encryption algorithm created by
NXP Semiconductors specifically for Mifare Radio
Frequency Identification (RFID) tags.

In addition to the 48-bit key, this cipher uses a
32-bit serial number and a 32-bit Initialization Vec-
tor (IV). After a set-up phase of 32 cycles, the cipher
works in an autonomous mode where the content of
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Figure 1: Hitag2 initialization phase.
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Figure 2: Hitag2 encryption phase.

the registry defines both the next encryption bit and
how the registry is updated. Thus, the total number
of cycles is defined by the length of the bitstream that
needs to be encrypted.

The filter function f consists of three different
functions fa, fb and fc. While fa and fb take as input
four bits and produce as output one bit,fc uses five
bits in order to generate the final result in the form of
a single bit.

The three functions, which are used both in the
initialization phase and the encryption phase, can be
modelled as boolean tables allowing easy implemen-
tations, so the output of those functions for the inputi
is thei-th bit of the values given below:

fa(i) = (0x2C79)i
fb(i) = (0x6671)i
fc(i) = (0x7907287B)i

In the initialization phase (see Figure 1), the reg-
ister is initially filled with the 32 bits of the serial
number and the first 16 bits of the key. If the se-
rial number is expressed asidi (0 ≤ i ≤ 31) and the
key is expressed aski (0≤ i ≤ 48), the register bitsri
(0≤ i ≤ 47) adopt the following initial state:

ai = idi (0≤ i ≤ 31)
a32+i = ki (0≤ i ≤ 15)

In each cycle, the bit generated byfc is XORed
with the corresponding bits of the IV and the key,
generating a bit that is inserted in the register at the
position 47, shifting the register one bit to the left.
The new bit is computed according to the following
expression:

fc ⊕ idi ⊕ ki+16 (0≤ i ≤ 31)

In the encryption phase (see Figure 2), the new
bit of the keystream is directly the output offc, while
the bit inserted at the register at position 47 in each
cycle is the result of the concatenated XOR operations
r0⊕r2⊕r3⊕r6⊕r7⊕r8⊕r16⊕r22⊕r23⊕r26⊕r30⊕
r41⊕ r42⊕ r43⊕ r46⊕ r47⊕.

2.2 Protocol

In the PKE protocol analysed in this contribution,
which was reversed engineered and published online
in 2008 (Wiener, 2008), the communication between
a reader (vehicle) and a transponder embedded in the
car key starts with the reader, which sends an authen-
ticate command to the transponder. Upon reception
of this command, the transponder replies with a 32-
bit message containing its serial number. Then, the
reader generates a 32-bit IV and uses that value, to-
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gether with the 48-bit key belonging to the transpon-
der, in order to encrypt the value 0xFFFFFFFF. If
the transponder validates the reader by recovering the
0xFFFFFFFF value, it will send to the reader in en-
crypted form some configuration bytes only known to
both of them (Verdult et al., 2012; Verdult, 2015).

This protocol provides an easy attack scheme, as
any eavesdropper is able to obtain both the plaintext
and the ciphertext from the protocol’s operation. As
the number of keys is larger than the number of possi-
ble ciphertexts (48 bits vs 32 bits), an attacker will be
able to compute many keys which convert the same
plaintext into the same ciphertext. Thus, a brute force
attack such as the one described in this contribution
needs an additional step in order to correlate the keys
obtained from several encryption pairs.

In this phase of our study, we have focused on
the implementations that are able to compute those
potential keys. In the next phase, we will focus on
improving the retrieval step by including Field Pro-
grammable Gate Array (FPGA) devices in the com-
parison of technologies, and on determining the aver-
age number of pairs needed to isolate the correct key.

3 IMPLEMENTATION
PLATFORMS

3.1 C++ and OpenMP

C++ is a programming language designed by Bjarne
Stroustrup in 1983, and that is standardized since
1998 by the International Organization for Standard-
ization (ISO). The latest version is known as C++14
(ISO/IEC, 2014).

OpenMP (Open Multi-Processing) is an Appli-
cation Programming Interface (API) that supports
shared-memory parallel programming in C, C++, and
Fortran on several platforms, including GNU/Linux,
OS X, and Windows. The latest stable version is 4.5,
released on November 2015 (OpenMP, 2016). When
using OpenMP, the section of code that is intended to
run in parallel is marked with a preprocessor directive
that will cause the threads to form before the section
is executed. By default, each thread executes the par-
allelized section of code independently. The runtime
environment allocates threads to processors depend-
ing on usage, machine load, and other factors.

3.2 Java

The Java programming language was originated in
1990 when a team at Sun Microsystems was work-
ing first in the design and development of software

for small electronic devices, and later in the emerging
market of Internet browsing. Once the first official
version of Java was launched in 1996, its popularity
started to increase exponentially.

Currently there are more than 10 million Java de-
velopers and, according to (Oracle Corp., 2016), the
figure of Java enabled devices (mainly personal com-
puters, mobile phones, and smart cards) is numbered
in the thousands of millions. On January 2010, Ora-
cle Corporation completed the acquisition of Sun Mi-
crosystems (Oracle Corp., 2010), so at this moment
the Java technology is managed by Oracle. The latest
version, known as Java 8, was launched in 2014.

3.3 CUDA

GPGPU is the term that refers to the use of a Graph-
ics Processor Unit (GPU) card to perform computa-
tions in applications traditionally managed by a Cen-
tral Processing Unit (CPU). Due to their particular
hardware architecture, GPUs are able to compute cer-
tain types of parallel tasks quicker than multi-core
CPUs, which has motivated their usage in scientific
and engineering applications (NVIDIA Corp., 2016).
The disadvantage of using GPUs in those scenarios is
their higher power consumption compared to that of
traditional CPUs (Mittal and Vetter, 2014).

CUDA is the best known GPU-based parallel
computing platform and programming model, created
by NVIDIA. CUDA is designed to work with C, C++
and Fortran, and with programming frameworks such
as OpenACC or OpenCL, though with some limita-
tions. CUDA organizes applications as a sequential
host program that may execute parallel programs, re-
ferred to as kernels, on a CUDA-capable device.

In order to work with CUDA applications, the pro-
grammer needs to copy data from host memory to de-
vice memory, invoke kernels and then copy data back
from device memory to host memory.

The code displayed in Listing 1 contains the de-
tails of the CUDA kernel, where only one key is tested
by each thread.

As one of the goals of our study was to determine
if the amount of time copying elements back and forth
between host and device memories was to some ex-
tent comparable to the running time of the kernel, we
developed a second version of the CUDA application
which is able to request each thread to test a specified
number of keys before it finishes its execution.
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1 #define bit (x ,n) (((x )>>(n ))&1)
2 #define g4(x ,a ,b ,c ,d) ( bit (x ,a) + bit (x ,b )*2 + bit (x ,c )*4 + bit (x , d )*8)
3 #define f5(a ,b ,c ,d ,e) (a + b*2 + c*4 + d*8 + e*16)
4 #define fa 0 x2C79
5 #define fb 0 x6671
6 #define fc 0 x7907287B
7

8 __global__ void hi tag2_en( uint32_t * c iphertext , u int64_t *key , uint32_t * plaintext ,
9 uint64_t * last_key , uint32_t * last_encrypted , uint64_t * numtot , u int64_t * serial , u int32_t * iv)

10 {
11 uint64_t index = blockIdx.x* blockDim.x + threadIdx.x , a = * ser ia l;
12 uint32_t x = * pla intext;
13 uint32_t y = * ciphertext;
14 uint64_t a = * ser ia l;
15 uint32_t b = * iv;
16 uint64_t z = *key + index;
17

18 uint64_t LFSR = 0;
19 uint32_t func = 0;
20 uint32_t bstream = 0;
21 uint32_t resul t = 0;
22

23 // Phase 1: Initilization
24

25 LFSR = (((z & 0 xFFFF00000000) >> 32) + (a << 16)) & 0 xFFFFFFFFF FFF;
26

27 for ( int r = 0; r < 32; r ++)
28 {
29 func = bit ( fc , f5 (bit ( fa , g4(LFSR , 45 , 44 , 42 , 41)) , bit ( fb , g4(LFSR , 39 , 35 , 33 , 32)) ,
30 bit ( fb , g4(LFSR , 30 , 26 , 24 , 21)) , bit ( fb , g4(LFSR , 19 , 18 , 1 6 , 14)) ,
31 bit ( fa , g4(LFSR , 13 , 4, 3, 1))) ) ;
32 LFSR = (LFSR << 1) + (( bit (z , (31 - r )) ˆ bit (b , (31 - r )) ˆ func )) ;
33 }
34

35 // Phase 2: Encryption
36

37 for ( u int32_t i = 0; i < 32; i++)
38 {
39 bstream <<= 1;
40 func = bit ( fc , f5 (bit ( fa , g4(LFSR , 45 , 44 , 42 , 41)) , bit ( fb , g4(LFSR , 39 , 35 , 33 , 32)) ,
41 bit ( fb , g4(LFSR , 30 , 26 , 24 , 21)) , bit ( fb , g4(LFSR , 19 , 18 , 1 6 , 14)) ,
42 bit ( fa , g4(LFSR , 13 , 4, 3, 1))) ) ;
43 bstream += func ;
44

45 LFSR = (LFSR << 1) + (( bit (LFSR , 47)) ˆ ( bit (LFSR , 45)) ˆ ( bit ( LFSR , 44)) ˆ (bit (LFSR , 41)) ˆ
46 (bit (LFSR , 40)) ˆ (bit (LFSR , 39)) ˆ (bit (LFSR , 31)) ˆ (bit (L FSR , 25)) ˆ
47 (bit (LFSR , 24)) ˆ (bit (LFSR , 21)) ˆ (bit (LFSR , 17)) ˆ (bit (L FSR , 6)) ˆ
48 (bit (LFSR , 5)) ˆ (bit (LFSR , 4)) ˆ (bit (LFSR , 1)) ˆ ( bit (LFSR , 0))) ;
49 }
50

51 resul t = bstream ˆ x;
52

53 __syncthreads();
54

55 if ( resul t == y)
56 {
57 *key = z;
58 }
59

60 if ( index == * numtot - 1)
61 {
62 * last_encrypted = resul t;
63 * last_key = z;
64 }
65 }

Listing 1: Portion of code belonging to the CUDA application.
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4 TESTS

All the tests whose results are presented in this
section were completed using a PC with an Intel Core
i7 processor model 3370 at 3.40 GHz. The CUDA-
capable graphics card used in the tests is a GeForce
GTX 950 card with 768 processor cores, a base clock
of 1024 MHz, a memory bandwith of 6.6 GB/s, a
floating point performance of 1,572.9 GFLOPS, and
a texture rate of 49.2 GTexels per second (GT/s). The
GTX 950 is a graphics card that can be purchased by
approximately 175 euros. In comparison, the most
powerful Nvidia card, the GTX 1080 Ti, uses 3,328
processor cores and can be obtained by 900-1,000 eu-
ros.

While the CUDA and C++/OpenMP applications
have been compiled with Visual Studio 2010, the Java
application has been compiled with NetBeans 8.0 us-
ing the JDK (Java Development Kit) version 1.8.0-
101.

In all the tests that have been performed, each ap-
plication has to check the first 234 possible keys (an
arbitrary value large enough in order to obtain valid
conclusions) using an encryption/decryptionpair gen-
erated with the following values:

• Serial number: 0x87654321.

• IV: 0x75b5de65.

• Plaintext: 0xFFFFFFFF.

• Ciphertext: 0x1CE18551.

Table 1 shows the running time in seconds of the
C++/OpenMP and Java implementations when using
a different number of concurrent threads. Table 2
includes the running time of the CUDA application
when executed with different grid sizes but a con-
stant block size of 512. Table 3 presents the results
when using the second version of the CUDA appli-
cation when using different grid sizes but the same
block size of 512. Table 4 includes the running time of
the CUDA application when executed with different
grid sizes but a constant block size of 1024. Table 5
presents the results when using the second version of
the CUDA application when using different grid sizes
but the same block size of 1024.

Table 1: Running time in seconds using the C++ and Java
multi-threaded implementations.

1 2 4

C++ 18126.60 9084.68 4625.80
Java 17548.88 8461.70 4496.55

8 16 32
C++ 3749.45 3748.61 3747.32
Java 3744.72 3694.46 3817.03

Table 2: Running time in seconds using the first CUDA im-
plementation with a block size of 512.

Grid size
512 1024 2048

180.66 175.90 173.78

Table 3: Running time in seconds using the second CUDA
implementation with a block size of 512 and the kernel loop.

Iterations in the kernel loop
1 2 4 8

174.88 173.11 172.35 171.88

Table 4: Running time in seconds using the first CUDA im-
plementation with a block size of 1024.

Grid size
512 1024 2048

175.38 172.56 171.80

Table 5: Running time in seconds using the second CUDA
implementation with a block size of 1024 and the kernel
loop.

Iterations in the kernel loop
1 2 4 8

175.02 172.58 171.40 170.82

5 CONCLUSIONS

The tests presented in the previous section provide
an interesting result, in the sense that the mul-
tithread Java application slightly outperforms the
C++/OpenMP application in most of the tests. Given
that both implementations are almost identical, the
most probable explanation is the use of basic data
types in both cases, which allowed us to avoid slow-
performance Java classes such asBigInteger . Be-
sides, as the Java compiler used in the tests was re-
leased in 2016 while the C++ compiler belonged to
Visual Studio 2010, it is reasonable to expect that the
Java compiler contained the latest advances when ex-
ecuting interpreted code.

Even though we decided to use in the Java and
C++/OpenMP tests a number of concurrent threads
that surpasses the theoretical limit provided by the i7
processor (which has four physical cores and eight
logical ones), and as such the C++ implementation
does not improve its performance, the Java applica-
tion provided better results when requesting a higher
number of concurrent threads. We assume that this
is due to optimizations of the Java virtual machine,
which apparently manages more efficiently a higher
number of threads when communicating with the op-
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erating system.
Regarding the CUDA implementations, when

comparing the version which tries one key in each
thread with the version that tries several keys, it is
possible to detect a slight improvement when using
the second version of the CUDA application. How-
ever, the difference is not significant, which implies
that the delays created by the passing of data elements
between the host and device memories are not a bot-
tleneck in this kind of applications.

When comparing the results of the Java and
C++/OpenMP vesions and the results of the CUDA
versions, it is clear that, even when using the 8 logical
cores of the i7 processor, the non-GPU implementa-
tions are not a match for the GPU application. Us-
ing the best result obtained with the CUDA versions,
it can be extrapolated that the whole set of 248 keys
could be tested in approximately one month.

As a work-in-progress study, in the next phase we
are planning to include in the comparison an imple-
mentation using a low cost FPGA. In addition to that,
we will work on the determination of the number of
plaintext/ciphertext pairs needed to correctly isolate
the correct key in the analysed protocol as well as in
other protocols also based on Hitag2.
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