
Consistent Projectional Text Editors

Stian M. Guttormsen1, Andreas Prinz1 and Terje Gjøsæter2

1Department of ICT, University of Agder, Grimstad, Norway
2Department of Computer Science, Oslo and Akershus University College of Applied Sciences, Oslo, Norway

Keywords: Language Workbench, Projectional Editor, Grammar, Ambiguity, User Interface.

Abstract: For modelling and domain-specific languages, projectional editors have become popular. These editors im-
plement the MVC pattern and provide a direct connection to the underlying model. In particular, projectional
editors allow much more freedom in defining the concrete syntax than traditional grammars. The downside
is that it is possible to define presentations that are of bad quality, and that this is not easily visible. In this
article, we identify some of the problems with projectional editors and propose ways to resolve them. We also
demonstrate a proof-of-concept solution, showing how problematic editor presentations could be identified
automatically.

1 INTRODUCTION

Editing a program in a textual programming language
means editing text and making sure that it follows
the syntactical rules of the language. These rules are
specified by a formal grammar and form the concrete
syntax of the language. The program then gets parsed
and transformed into an abstract syntax tree: a rep-
resentation of the program in memory as a tree struc-
ture. This tree structure can then be analyzed or trans-
formed further.

Projectional editors (Völter et al., 2014) avoid the
parsing of concrete syntax and instead allow editing
the abstract syntax tree directly. This is enabled by
the model-view-controller pattern (MVC), where the
editor shows a view of the model and changes the
model based on user input. This way, the concrete
syntax is just a projection of an already-existing ab-
stract syntax tree. With access to the abstract syntax
tree, projectional editors can easily analyze programs
as they are written (similar to earlier syntax-directed
editors (Lunney and Perrott, 1988)). This type of edit-
ing is common in modelling and domain-specific lan-
guages (DSLs), where the model is an abstract struc-
ture that the user edits through a projection (Völter
et al., 2013). It is the method of choice when editing
graphical UML diagrams.

In projectional editors models are edited in their
internal representation and not as text, therefore they
are very flexible in terms of how the concrete syn-

tax is defined. Basically, only a pretty printing of the
underlying model is defined. This is particularly use-
ful for graphical grammars. It is also true for tex-
tual projections because the text is also just a projec-
tion, and each text element is directly connected to
the model through the projection. The projection can
take on many forms and it is even possible to combine
different types of projections, such as including tables
inside a textual presentation. There is no room for am-
biguous or conflicting grammars because there is no
need for grammars or parsers at all. Defining the con-
crete syntax of a language just means defining how
the abstract syntax gets projected. However, a projec-
tion can still be ambiguous or confusing to the user.
Some projections are really bad and should be re-
jected, which this paper advocates. On a higher level,
this problem is discussed in (Karsai et al., 2014). Our
paper is a more concrete version of their Guideline
16: “Make elements distinguishable."

Meta Programming System (MPS) is a language
workbench that is built around projectional editing
(Toporov et al., 2013). It allows textual, tabular
and graphical projections. As a language workbench
it supports the development of DSLs and the tools
needed to use them. The projectional editor in MPS
plays a key role in allowing different DSLs to be com-
bined to form a single solution; language composition
is one of the benefits that comes easy with projec-
tional editors (Völter, 2011; Völter and Solomatov,
2010).

Guttormsen S., Prinz A. and GjÃÿsÃęter T.
Consistent Projectional Text Editors.
DOI: 10.5220/0006264505150522
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 515-522
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

515

Mixing multiple languages and notations in a sin-
gle program has traditionally been hard with textual
programming languages. It is a difficult task to com-
pose textual syntaxes to form a well-defined grammar.
On the other hand, with projectional editing it is natu-
ral to combine projections because there is no require-
ment stating that the syntax should be unambiguous.

Projectional editors offer a completely different
editing experience compared to traditional text edi-
tors, and this way of editing can be seen as difficult
and cumbersome by developers. Research on current
limitations of projectional editors (as found in MPS)
shows that there are some real issues, and especially
(Völter et al., 2014) highlights many of them. How-
ever, current research seems to mostly focus on com-
paring features which are lacking or difficult in pro-
jectional editors, but which are default or simple in
text editors (such as e.g. support for copy/paste). In
this paper we will look at it the other way; there are
a lot fewer restrictions on the concrete syntax with
projectional editors compared to textual ones and this
may cause problems. The freedom in defining the
concrete syntax is not problematic for the computer,
but it can cause problems for the language user.

Not having to worry about unparseable programs
can be seen as a benefit of projectional editing, but
we argue it is only beneficial to the language designer
and that it can actually be a hinderance to the user.
Ambiguous syntax is not only a problem for parsers,
but a problem that affects humans as well. With pro-
jectional editors there are no sanity checks regarding
the concrete syntax. In this paper we present a solu-
tion to this problem that we developed in (Guttorm-
sen, 2016), showing how projectional editors can be
extended with sanity checks. These checks makes it
possible to automatically identify ambiguities in the
concrete syntax.

Surveying related work shows that there have
been similar experiments on automatic analysis and
model-checking. (Völter, 2014) discusses some dif-
ferent methods for analyzing and checking models,
but the methods discussed are aimed at analyzing pro-
grams—not languages. It differs from our work in
that we focus on analyzing the concrete syntax of lan-
guages.

So the novel contribution of this paper is its fo-
cus on the user when looking at the quality of a con-
crete syntax. This is opposed to the focus on machine
analyzability. The solution we implemented is built
around projectional editors, but the ideas are also ap-
plicable to non-projectional approaches like Xtext.

We continue by discussing text analysis from a
human-machine point of view in Section 2. After that,
we look into human-human communication in Sec-

tion 3, and ambiguity as a problem. We provide a so-
lution in Section 4, before summarizing in Section 5.

2 TEXT ANALYSIS AND
PROCESSING

In order to get a better understanding of the issues
related to projectional editors, we will look into the
handling of program texts and syntax in general.

Handling of syntax started with the advent of com-
pilers, which analyse the input text, make sense out
of it and generate some output text. As far as the in-
put text is concerned, grammars were found to be the
best theory to describe the structure of the input. Sev-
eral classes of grammars were identified. An example
is the Chomsky classification, which was introduced
by Noam Chomsky. He divided grammars into four
classes: unrestricted, context-sensitive, context-free,
and regular grammars.

Finally, for most applications it turned out the con-
text free grammars would do the trick for defining
the syntax, balancing expressivity and analyzability.
However, even those were not easily analyzable in all
cases, and for automatic generation of analysis tools
more restricted classes were introduced. LL(1) was
identified to fit for top-down parsing, and LR(1) for
bottom-up parsing. Finally, analysis techniques be-
came more advanced and LL* tools appeared (e.g
ANTLR (Parr and Quong, 1995)).

At the same time, it turned out that the concrete
syntax was too detailed for efficient analysis. This led
to the focus onto the definition of abstract syntax, in
order to capture the essential features of the language.
From there, the relation to the concrete syntax was
given by a mapping.

To handle graphical languages, meta-modelling
was introduced which started with the abstract syntax
(called meta-model), and attached the concrete syn-
tax to the abstract syntax. This way, the traditional
path from concrete syntax via abstract syntax and ab-
stract code to concrete code was reversed at the be-
ginning. Now, the abstract syntax was the central el-
ement. Thus, it was possible to define graphical lan-
guages, like UML. As an example we show the graph-
ical syntax for a simple class diagram modelling a li-
brary in Fig. 1, here defined using EMF (which is es-
sentially a subset of UML class diagrams). The class
diagram is just the presentation of the abstract syntax,
whose structure is shown in Fig. 2.

Defining a projectional editor involves specifying
how each element of the abstract syntax should be
presented. The editor definition specifies how the user
input should be translated into changes in the abstract

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

516

Figure 1: A graphical syntax projection in EMF of a lan-
guage for libraries. A library can here contain books and
collections of books.

Figure 2: The abstract syntax in EMF of the library lan-
guage, presented in the tree view. (Bear in mind that the
EMF tree view representation is still just a projection of the
actual abstract syntax).

model, and also how the model should be viewed by
the user. In MPS, for instance, (textual) editor defini-
tions of an element consist of a number of cells. Cells
can contain keywords, collections of cells, references
to properties of the element, etc. A cell that refer-
ences a property in the abstract syntax means that user
input on this cell is entered as the property value in
the model. These references ensure a direct connec-
tion between the concrete and abstract syntax, leaving
no room for ambiguity in parsing (from a machine’s
point of view). And so it is up to the language de-
signer to create reasonable editors so there is no doubt
about which element is edited.

So far, we have discussed abstract and concrete
syntax, but languages do not only have syntax, they
also have semantics. It is important that the semantics
is unambiguous as well, and sometimes an ambiguity
in syntax can be remedied by having the same seman-
tics for both cases. In this article, the semantics is
not considered, because it provides a link between the
abstract syntax and the semantic domain of the lan-
guage, hence coming after the problem discussed in
this article.

3 THE HUMAN ASPECT

As described in the previous section, the development
of grammar classes was geared by the need to facili-
tate the interaction between human and machine. The
programmer (human) has to be able to formulate the
tasks in a way that the computer (machine) is able

to understand. Advances in technology have led to
the situation that many earlier restrictions on the in-
put languages could be dropped. We are no longer
restricted to using LL(1) analysis, we can use LL(*)
or even LR(*). We might even consider the advances
in natural language processing as having even less re-
strictions.

However, there is a second side to program texts
and that is about communication between humans.
Modern development methods enable teams of de-
velopers to work together. That implies a far larger
amount of reading of programs than before, such that
reading and understanding and discussing programs
is the main activity. With the advent of (formal) mod-
elling in domain specific languages, this situation is
even more serious, since the people communicating
are not necessarily from the same background, but can
involve administrators, users, and project managers.

For this situation, it is important that programs and
specifications can be easily understood and discussed.
This means they have to be optimized for easy un-
derstanding by humans. A minimum requirement in
this context is the unambiguity of the concrete syntax,
without a need to rely on the abstract syntax. This re-
quirement is often not met by languages built on the
frameworks of projectional editing, since there is no
need to enforce it (for the human-computer interac-
tion).

Let us take a graphical language as an example.
We use a projection of our language for modelling li-
braries (see Fig. 3). It is based on the same abstract
syntax as shown in Fig. 2. The projection is very sim-
ilar to the one shown earlier in Fig. 1, but two of the
names of the associations have changed places.

If we write code based on this perception, we
might want to access the items reference in a library:

Library lib = new Library();
Collection<Book> items = lib.items;

However, this code will lead to a compiler error
“attribute not accessible”. Why is this the case? The
answer is obvious when we consider that the abstract
syntax of the diagram is the same as in Fig. 2.

Here, it becomes clear that the concrete syntax
is misleading; the items and books references have

Figure 3: A different graphical syntax projection in EMF
of the same language for library modelling. Note that the
names on the associations are changed.

Consistent Projectional Text Editors

517

Figure 4: Lay out the classes.

Figure 5: Add reference and adjust.

swapped places in the diagram compared to the ab-
stract syntax, but it is just the projection that is inac-
curate—it is still the same abstract syntax underneath.
Of course, this is an extreme example, but similar sit-
uations can easily appear in large diagrams where the
names are close to each other leading to ambiguities.

Can this realistically happen in the real world?
Fig. 4 to Fig. 7 show step by step how such a situa-
tion can occur while creating a model and moving the
labels around between the references to make them
more easily readable. In some situations it may be im-
possible to distinguish which name belongs to which
reference, and rearranging them may lead to acciden-
tally placing them wrongly. In Fig. 4, we lay out the
classes, in Fig. 5, we add the first reference and suc-
cessfully and unambiguously lay out the classes and
labels for that part. The problems start as we see in
Fig. 6, when we add the two references to Book and
after moving around the labels and classes we reach
a situation where the references and labels are am-
biguous. In Fig. 7, we try to fix it, but accidentally
place the labels wrongly. Some but not all model ed-
itors will show a connection between the label and
its reference when it is being moved, but confusion
can still occur, particularly in more complex models.
With complex models it is typical that the standard
layout is not sufficient and the graphical elements are
moved on the screen. It can very well happen that
such a move leads to unintended results as shown in
Fig. 3. In a larger project, such errors are even more
difficult to spot.

Similar situations can appear in textual projec-
tional editing (in MPS), where the editor does not al-
ways behave the way the user expects. The editing
in MPS can be made very text-like, and e.g. creat-

Figure 6: Add more references and adjust.

Figure 7: Sort out overlappings.

ing a new Java class in MPS is done in almost ex-
actly the same way and with the same keystrokes as
in the Eclipse Java IDE. After creating the file for the
new class you are left with a skeletal implementation
with no name, and the text cursor is at the position
for the class name. There you can enter a name for
the class and press enter; the text cursor then moves
to the body of the class. A field can be created by
e.g. writing "public String name;", i.e. it is identi-
cal to Eclipse. Code-completion can also be used in
the same fashion as in Eclipse. The projectional ed-
itor in MPS imitates textual editors very accurately,
but there are things that are different. For instance,
pressing enter in a text editor would create a new line
at the current cursor position, but in MPS this is not
always the case; pressing enter with the cursor at the
class name would create a new line inside the class in-
stead of before the brackets surrounding the class (as
is normal in Eclipse).

To demonstrate how ambiguities can occur in
MPS we created a language in MPS for defining con-
stants and variables. The language is very simple and
the syntax for the two concepts are similar to those
found in many other popular languages. A constant
is specified with a datatype, followed by the name of
the constant, then an equals-sign and the value of the
constant. The syntax for a variable is identical except
that only the datatype and name needs to be specified.
The following example shows a program written in

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

518

the language.

int x = 2
int y

It describes a constant, x, and a variable y. Open-
ing the inspector MPS allows us to see the nodes in
the abstract syntax tree. The above two lines are dis-
played as follows in the inspector.

[constants]
Constant "x"[6953060390811085594]

in Example.sandbox
[variables]
Variable "y"[6953060390811085603]

in Example.sandbox

Inspecting the program reveals that the first part is
a Constant and that the second part is a Variable.
The editor for this language was defined in MPS as
follows.

editor for concept Definitions
node cell layout:

[-
(- % constants % /empty cell: -)
(- % variables % /empty cell: -)

-]

This describes a collection of constants followed
by a list of variables. The only difference syntacti-
cally is that constants always come before variables.
The empty cell defines what will be shown if there
are no constants or variables, and in this case they are
shown as whitespace. The editor for constants is de-
fined as:

editor for concept Constant
node cell layout:

[- {type} {name} = {value} -]

The constant node contains three properties: type,
name and value. The equals sign is just part of the
projection to make it look more like an assignment.
The editor for variables is identical except that the
value is set as optional. Furthermore, if the value is
empty then the equals sign is hidden as well, indicated
by the question mark in the following definition.

editor for concept Variable
node cell layout:

[- {type} {name} ?= {value} -]

The problem with these editor definitions is high-
lighted in the following example. Similarly to the pre-
vious example there are two definitions of what ap-
pears to be a constant and a variable:

int a = 24
int b

However, the MPS inspector shows that there are
two variables:

[variables]
Variable "a"[6953060390811111363]
in Example.sandbox

[variables]
Variable "b"[6953060390811085603]
in Example.sandbox

So far, we have argued that ambiguous presenta-
tions are not a good idea. However, even unambigu-
ous grammars can lead to problems in understand-
ing. The grammar for SDL-2000 (ITU-T, 1999) is
given in a projectional fashion, and it is intended to
be unambiguous. However, as it stands, the gram-
mar is ambiguous. Moreover, it has plenty of con-
flicts for typical parser tools. There have been at-
tempts at solving these problems in the scope of other
projects (Prinz, 2000), but without success. Instead,
several severe problems have been identified and re-
ported to the standardization group. There are several
valid SDL specifications that have more than one in-
terpretation when LR(1) is used, even though there is
a unique correct solution.

A similar attempt was done using ANTLR (Parr
and Quong, 1995; Schmitt, 2003). Also in this at-
tempt, more than 20 inconsistencies are reported in
the comments to the grammar. Even with an infinite
lookahead, it is not possible to parse all SDL specifi-
cations correctly. In some cases analysis is only pos-
sible with prioritization of alternatives, which is not
faithful to the standard.

The task of disambiguation with a long lookahead
might be feasible for tools, and it is of course also
possible for humans. In some sense, it is done every
day. However, humans use context to aid in disam-
biguation, and the large amount of language-related
jokes proves that this is still difficult and not always
successful.

We would therefore consider long lookahead as
bad style and advocate LR(1) as best practice. Typ-
ically, LR(1) languages suffice for reasonable lan-
guages and in particular for most DSLs. Using a
long lookahead would not necessarily pose a prob-
lem for computers trying to parse the input text, but
it can make it difficult for humans to understand. The
idea behind limiting ourselves to LR(1) languages is
to make it easier for humans to understand—not com-
puters. The problem might be that a grammar for a
language is not LR(1), while the language itself is
LR(1).

Consistent Projectional Text Editors

519

Figure 8: A graphical projection with explicit connections
between references and their labels.

4 SOLUTION

We will now present our ideas for solving some of the
problems related to projectional editors.

4.1 Graphical Languages

Graphical specifications are normally created using
graphical editors, which allow users to create graphi-
cal elements and present these elements in the graph-
ics. So they are all projectional editors and parsing of
graphical specifications is not an issue. Creating full
analyzability of graphical specification is still a major
effort for the future. Even for the handling of projec-
tional editors, there are many open research questions
related to best ways to describe the relationship be-
tween concrete syntax and abstract syntax.

In this paper, we therefore only solve the sim-
pler problem of hidden items in the presentation as
also given in the problem example in Section 3. The
graphical syntax presented earlier showed how the
concrete syntax is not always an accurate presenta-
tion of the abstract syntax. Continuing with our ex-
ample we propose that all connections between ele-
ments should be presented explicitly. Fig. 8 shows
how this is done for the example we showed earlier
(Fig. 3). The labels are connected to their references
with a dashed line (similar to how EMF does when
you move the labels around).

Making explicit the implicit connections between
elements makes the graphical syntax less ambiguous.
However, this is only true if the syntax used to present
the implicit connections does not introduce other am-
biguities; ambiguous syntax that is explicitly defined
is no better than ambiguous syntax that comes from
implicit connections.

The SDL graphical syntax is described using
graphical grammar constructors. It features the fol-
lowing spatial relationships: contains, is associated
with, is followed by, is connected to, is attached to. In
addition, there are graphical base symbols. We will
relate to these basic relationships and symbols in or-
der to present rules for unambiguity. The following
rules should allow basic unambiguity for such graph-

ical grammars.

• The graphical base symbols should be unambigu-
ous, i.e. no two of them should be equal.

• In order to have a proper presentation of contains,
it is important that symbols do not overlap other-
wise, only when they are contained.

• The two relationships is followed by and is con-
nected to are given by explicit connection sym-
bols, so they do not pose problems.

• The relationship is attached to is exactly the prob-
lematic implicit connection, and should be repre-
sented by an explicit connector.

4.2 Textual Grammar

Introducing explicit syntax does also fix the issues
with the textual syntax shown earlier. By e.g. in-
troducing a keyword, const, for the constants in
the example, there would be no ambiguities between
variable- and constant-declarations. Such a solution is
often easy to implement, but it is more critical to find
out when such a solution is needed in the first place.

We have devised a way to find problems. In or-
der to achieve a check of quality for the projectional
syntax, it is first translated into a grammar. The pro-
jectional syntax is very similar to a grammar, so the
translation is not too difficult. The grammar is then
checked according to the LR(1) criteria. The user is
warned when something bad is happening, allowing
him or her to fix possible ambiguities.

We have developed a proof-of-concept solution
for MPS, demonstrating how a projectional editor
could be checked for possible inconsistencies. Our
solution is implemented in a series of steps, where
first the editor definition is mapped into a textual lan-
guage for grammars. Then the generated grammar is
used as input to a parser generator. Finally, any output
from the parser generator will be reported back to the
user in MPS. In this way, the parser generator is re-
sponsible for detecting anything bad in the grammar
(and indirectly the projectional editor definition).

For the example, the following translations are
used. We start with the original syntax definitions as
follows.

editor for concept Definitions
node cell layout:
[-
(- % constants % /empty cell: -)
(- % variables % /empty cell: -)

-]
editor for concept Constant
node cell layout:
[- {type} {name} = {value} -]

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

520

editor for concept Variable
node cell layout:

[- {type} {name} ?= {value} -]

The above editor descriptions are automatically
translated into the following grammar rules.

Definitions ::= Constant* Variable*
NL ;

Constant ::= IDENTIFIER IDENTIFIER
EQUALS INTEGER NL ;

Variable ::= IDENTIFIER IDENTIFIER
(EQUALS INTEGER)? NL ;

In this grammar, IDENTIFIER, EQUALS, INTEGER,
and NL are terminal symbols for identifiers, equals
sign, integers, and newline, respectively. As it stands
now, it will lead to conflicts in the LR(1) analysis. The
problem is that variables and constants are overlap-
ping, which means the grammar is ambiguous; when
reading an identifier, it is not clear if the constant part
should be finished or not.

Our addition to the editor language in MPS is
able to pick up on this type of error. When using
our checking tool on the above editor definition, the
parser generator reports the following back to us in
MPS.

Analyzing: definitions.editor.cup
Warning : *** Shift/Reduce conflict found

in state #3
between Constant_0_Arb ::= (*)
and Constant_0 ::= (*) IDENTIFIER
IDENTIFIER EQUALS STRING

under symbol IDENTIFIER
Resolved in favor of shifting.

Warning : *** Shift/Reduce conflict found
in state #4

between Constant_0_Arb ::= (*)
and Constant_0 ::= (*) IDENTIFIER

IDENTIFIER EQUALS STRING
under symbol IDENTIFIER
Resolved in favor of shifting.

Error : *** More conflicts encountered
than expected -- parser
generation aborted

------- CUP v0.11b 20150930 (SVN rev 66)
Parser Generation Summary

------- 1 error and 2 warnings

The errors reported above also give some indica-
tion as to where they come from. Constant_0 tells
us that it comes from the editor for constants, and the
zero means that it comes from that editor’s first child-
node. So the tool cannot decide whether it should read
the line "int a = 10" as a Constant_0 (Shift), or finish

reading constants and read the line as variable (Re-
duce). At the moment, the error feedback to the user
still can be improved, but the principle stays the same.

The problem with the grammar given by the con-
flicts can easily be resolved by e.g. introducing a
const keyword as mentioned earlier. The grammar
would then look like this.

Definitions ::= Constant* Variable*
NL ;

Constant ::= const IDENTIFIER
IDENTIFIER EQUALS INTEGER NL ;

Variable ::= IDENTIFIER IDENTIFIER
(EQUALS INTEGER)? NL ;

When we build the language again, we get a much
better output.

Analyzing: definitions.editor.cup
------- CUP v0.11b 20150930 (SVN rev 66)

Parser Generation Summary
------- 0 errors and 0 warnings

With the current implementation, MPS can have
several false positives, i.e. warnings that are not really
problems. However, most of them are easily solved,
and when the description does not have problems,
then it is good (no false negatives).

5 SUMMARY

In the past, the development of different grammar
classes was geared by the need to facilicate human-
machine interaction. Then along came graphical lan-
guages, and with them projectional editors. Projec-
tional editors avoid parsing concrete syntax and in-
stead work directly with the abstract syntax. The con-
crete syntax is defined as projections of the abstract
syntax (like views from the MVC pattern). This al-
lows for much more flexible concrete syntax defini-
tions, but there are also downsides to this. Projec-
tional editors can handle programs that would be oth-
erwise difficult to parse. This is positive because it
allows very flexible language definition, but it is nega-
tive when trying to explain programs to other humans;
syntax ambiguities do not only affect parsers, but hu-
mans as well. The problem not only applies to projec-
tional editing, and we also consider textual grammars
with long lookahead (LL*) to be of bad style.

Advocating LR(1) as best practice, we outline
how to improve the concrete syntax definitions for
projectional editing. Avoiding implicit connections
between elements, and avoiding same syntax for
different elements are some measures that can be

Consistent Projectional Text Editors

521

taken. Furthermore, deriving LR(1) criteria for graph-
ical grammars (similar to how it is done with SDL-
2000) can make these grammars more easily analyz-
able. Textual syntaxes for projectional editors can be
checked similarly using LR(1) criteria. The problem
with this approach is that the syntax definitions are of-
ten not given as grammars in projectional editors. A
possible solution is to map the editor definitions into
textual grammars so that these in turn can be analyzed
for possible ambiguities. We have created a proof-of-
concept for the MPS language workbench using this
method. It proves to be a viable method for ambiguity
checking of projectional editors.

In the future, we want to extend the prototype
towards graphical languages. To help leverage the
tools used for analyzing textual grammars also for
the graphical case, we propose deriving LR(1) crite-
ria for graphical grammars. The graphical grammar
is mapped into an LR(1) grammar, which is then ana-
lyzed. This could be achieved similarly to how SDL-
2000 (ITU-T, 1999) uses an extended EBNF in order
to capture its graphical grammar. This way, spatial
relationships are mapped onto normal grammar se-
quence constructs, which would allow sanity checks
for graphics. This approach could be combined with
the sanity checks proposed in (Moody, 2009).

Before projectional editors, technology was the
limiting factor requiring unambiguous grammars.
Now, humans are more limiting, needing unambigu-
ous concrete syntax for communicating with other hu-
mans.

REFERENCES

Guttormsen, S. M. (2016). Changing meta-languages in
MPS. Master’s Thesis, University of Agder, Grim-
stad.

ITU-T (1999). SDL - ITU-T Specification and Descrip-
tion Language (SDL-2000). ITU-T Recommendation
Z.100, ITU-T.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler,
M., and Völkel, S. (2014). Design guidelines for do-
main specific languages. Computing Research Repos-
itory.

Lunney, T. and Perrott, R. (1988). Syntax-directed editing.
Software Engineering Journal, 3:37–46(9).

Moody, D. (2009). The physics; of notations: Toward
a scientific basis for constructing visual notations
in software engineering. IEEE Trans. Softw. Eng.,
35(6):756–779.

Parr, T. J. and Quong, R. W. (1995). ANTLR: A predicated-
LL(k) parser generator. In Software – Practice and
Experience, Vol. 25(7), pages 789–810. ACM Press
New York.

Prinz, A. (2000). Formal Semantics for RSDL: Defini-
tion and Implementation. PhD thesis, Humboldt-
Universität zu Berlin.

Schmitt, M. (2003). Parser for sdl-2000. URL:
http://patakino.web.elte.hu/SDL/Parser/SDLParser.g,
accessed 2015.

Toporov, E., Pech, V., and Shatalin, A.
(2013). MPS User Guide for Lan-
guage Designers. Confluence - JetBrains.
https://confluence.jetbrains.com/display/MPSD32/
MPS+User’s+Guide, accessed 2015-06-05.

Völter, M. (2011). Language and IDE modularization, ex-
tension and composition with MPS. Pre-proceedings
of Summer School on Generative and Transforma-
tional Techniques in Software Engineering (GTTSE),
pages 395–431.

Völter, M. (2014). Generic tools, specific languages. PhD
thesis, TU Delft, Delft University of Technology.

Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander,
M., Kats, L. C., Visser, E., and Wachsmuth, G. (2013).
DSL engineering: Designing, implementing and using
domain-specific languages. Implementing and Using
Domain-Specific Languages. dslbook. org.

Völter, M., Siegmund, J., Berger, T., and Kolb, B. (2014).
Towards user-friendly projectional editors. In Combe-
male, B., Pearce, D. J., Barais, O., and Vinju, J. J., ed-
itors, Software Language Engineering, volume 8706
of Lecture Notes in Computer Science, pages 41–61.
Springer International Publishing.

Völter, M. and Solomatov, K. (2010). Language modu-
larization and composition with projectional language
workbenches illustrated with MPS. Software Lan-
guage Engineering, SLE.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

522

