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Abstract: Targeted attacks on IT systems are a rising threat against the confidentiality of sensitive data and the avail-
ability of critical systems. With the emergence of Advanced Persistent Threats (APTs), it has become more
important than ever to fully understand the particulars of such attacks. Grammar inference offers a powerful
foundation for the automated extraction of behavioral patterns from sequential system traces.
In order to facilitate the interpretation and analysis of APTs, we present a grammar inference system based on
Sequitur, a greedy compression algorithm that constructs a context-free grammar (CFG) from string-based in-
put data. Next to recursive rule extraction, we expanded the procedure through automated assessment routines
capable of dealing with multiple input sources and types. This enables the identification of relevant patterns in
sequential corpora of arbitrary quantity and size. On the formal side, we extended the CFG with attributes that
help depict the extracted (malicious) actions in a comprehensive fashion. The tool’s output is automatically
mapped to the grammar for further parsing and discovery-focused pattern visualization.

1 INTRODUCTION

IT systems are threatened by a growing number of
different cyber-attacks. With the emergence of Ad-
vanced Persistent Threats (APTs), the focus shifted
from off-the-shelf malware to attacks that are tai-
lored to one specific entity. These targeted threats are
driven by different motivations and often cause sig-
nificantly more damage thanks to their focus on espi-
onage or high-profile sabotage typically conducted by
dedicated groups within organized crime, industry, or
nation state intelligence.

APTs are increasingly affecting less prominent
targets as well. In 2013 alone, “economic espionage
and theft of trade secrets cost the American econ-
omy more than $19 billion” (Munsey, 2013). 60%
of espionage attacks now target small and medium
businesses whereas each reported data breach exposes
over a million identities on average (Symantec, 2015).
The retail, healthcare, and finance sectors find them-
selves in the crosshairs most often.

While APTs use malware like most conventional
attacks, their level of complexity and sophistication is
usually much higher. This is problematic especially
since defensive measures offered by security vendors

often utilize the same detection approaches that have
been used for years. The major drawback of these pri-
marily signature-based systems is that the binary pat-
terns required for detection are unlikely to exist at the
time of attack, as most APTs are tailored to one spe-
cific target, making them likely to utilize zero-day ex-
ploits (Bilge and Dumitras, 2012; Sood and Enbody,
2013). In addition, meta- and polymorphic techniques
are employed to throw off signature-based systems
while the multi-stage nature of APTs makes it gener-
ally difficult to interpret findings individually (Filiol
et al., 2007; Luh et al., 2016a).

This increased complexity makes it necessary
to explore novel techniques for threat intelligence
and malicious activity detection on multiple layers.
Behavior-based approaches are a promising means to
identify illegal actions. No matter the stealth mecha-
nisms employed, the attacker will sooner or later exe-
cute his or her action on target – be it data theft, sab-
otage, or other fraudulent activity. Behavior patters
and anomalies signifying a deviation from a known
baseline can then be used to detect the threat.

However, both pattern and anomaly detection sys-
tems usually suffer from a lack of semantic inter-
pretation; the so-called semantic gap, the hard-to-
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bridge difference in syntactic event information and
actual attack semantics, remains an issue. Also, pat-
terns are often manually assigned to represent analyst
knowledge, while anomaly detection systems do not
usually attempt to explain the identified deviations.
This makes potential victims vulnerable to unknown
attacks and does little to further the exploration of
meaning behind the actions of malicious actors.

Successfully discovering potentially malicious
system behavior boils down to three major problem
domains: the automated generation of patterns that
contribute to detecting and understanding complex
multi-stage attacks, attack semantics, and the holistic
view on targeted attacks and their many properties.
Arguably, a powerful formal definition of malicious
behavior is the foundation for all of these aspects.

In this paper, we propose an IT system behav-
ior inference and classification methodology based on
the Sequitur algorithm (Nevill-Manning and Witten,
1997) and formalized through a context-free gram-
mar (CFG) extended by semantic attributes (attribute
grammar). The approach combines a condensed
formal definition with the generation of knowledge
linked to the information security and malware anal-
ysis domains: Instead of manually defining the many
terminals and production rules that the description of
a behavior trace would require, we automate the pro-
cess through an extension of Sequitur that is fully ca-
pable of determining and evaluating significant rules.
This eliminates the analysts’ need to come up with
fixed patterns describing harmful or benign behavior.

Specifically, we contribute by:

• Defining an attribute grammar capable of depict-
ing sequential behavior while retaining informa-
tion about triggering process and parameters,

• Developing a grammar inference process based on
the Sequitur algorithm for arbitrary system event
traces,

• Expanding this approach to a knowledge discov-
ery system supporting automated evaluation and
extraction of potentially interesting patterns us-
able in further interpretation or visualization ef-
forts.

The remainder of this paper is structured as fol-
lows: In Section 1.1, similar works in the area of
security-related inference are discussed. In Section
2, the specifics of our input event data, the developed
attribute grammar, and the Sequitur algorithm are ex-
plained. Grammar inference and data analysis is de-
tailed in Section 3. Our implementation and a full
example (Section 4) as well as evaluated applications
of the approach (Section 5) conclude the paper.

1.1 Related Work

In light of the large number of operating systems and
programming languages currently available, a univer-
sal means of abstraction and classification of mali-
cious behavior into a more generic representation is
paramount. (Jacob et al., 2009) present a detection
system based on attribute grammars, where syntac-
tic rules describe possible combinations of operations
constituting certain behavior, while semantic rules
control the data flow between operations and assign
general meaning to a sequence. The authors’ system
is intended as formal foundation for developing ro-
bust intrusion and malware detection automata. On
the modeling side, (Filiol et al., 2007) propose a gen-
eralized model for malware detection which consid-
ers both sequence-based and behavior-based detec-
tion. An evaluation methodology for behavioral en-
gines of existing products is proposed.

In general, the discovery of program behavior is
key to understanding benign and malicious programs.
(Zhao et al., 2010) present a semi-automatic graph
grammar approach to retrieving the hierarchical struc-
ture of an application’s activity. This is achieved by
mining recurring behavioral patterns from execution
traces. The inferred graph grammar and a syntactic
parse tree visually represent reused structures found.

On the more traditional anomaly detection side,
(Creech and Hu, 2014) introduce a host-based detec-
tion method that uses discontiguous system call pat-
terns. The authors use a context-free grammar to de-
scribe (but not infer) benign and malicious call traces.
Several decision engines were tested and compared
in the paper, making it a good starting point for the
selection of learning algorithms applicable to system
call sequences.

In a patent submitted by (Eiland et al., 2012),
the authors describe an intrusion masquerade detec-
tion system that includes a grammar inference engine
based on Minimum Description Length (MDL) com-
pression. The compression algorithm is applied to
sets of input data to build user-specific grammars. The
use of intrusion masquerade is ultimately based on the
determined distance between template and observed
algorithmic minimum sufficient statistic.

Visualization is a predominant theme in this field.
With GrammarViz, (Senin et al., 2014) introduce a
grammar mining and visualization tool based on CFG
induction. While GrammarViz does not specifically
consider attributes or malicious software scenarios in
general, it describes a practical approach to manually
analyzing time series data. (Senin et al., 2015) ex-
pand on the concept of algorithmic incompressibility
for anomaly detection and present practical examples.
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2 PRELIMINARIES

In this chapter, we introduce the type of system event
data used as the foundation of semantic pattern analy-
sis, the formal definition of this information as part of
an attribute grammar, as well as the Sequitur compres-
sion algorithm we use to determine interesting pat-
terns.

2.1 Event Data

The proposed system is based on so-called event
traces, which are typically defined as descriptions of
operating system kernel behavior invoked by appli-
cations and, by extension, a legitimate or illegitimate
user. More often than not, these events are abstrac-
tions of raw system and API calls that yield informa-
tion about the general behavior of a sample (Wag-
ner et al., 2015). Raw calls may include wrapper
functions (e.g. CreateProcess) that offer a sim-
ple interface to the application programmer, or na-
tive system calls (e.g. NtCreateProcess) that rep-
resent the underlying OS or kernel support functions.
In the context of our system, event data is collected di-
rectly from the Windows kernel. We employ a driver-
based monitoring agent (Marschalek et al., 2015). de-
signed to collect and forward a number of events to
a database server. This gives us unimpeded access
to events depicting operations related to process and
thread control, image loads, file management, registry
modification, network socket interaction, and more.
For example, a shell event that creates a new text
file on a system may be simply denoted as a triple
explorer.exe,file-create,document.txt. Ad-
ditional information captured in the background in-
cludes various process and thread ID information re-
quired to uniquely identify an event within a system
session.

2.2 Attribute Grammars

On the formal side, our system uses a context-free
grammar extended by attributes, known as attribute
grammar (Aho et al., 1986). This decision followed
a comprehensive review of several grammars and
languages, including graph grammars, state transi-
tion graphs based on NLC (Rozenberg, 1997), trace
languages, and the aforementioned attribute gram-
mars. The reason for our choice was grounded in the
fact that semantically interesting connections between
system events are often expressed by their parame-
ters; parameters, that can be aptly modeled by the at-
tributes of a context-free grammar. Performance and

the availability of parsing tools also factored into the
decision.

In order to enable the conversion of any kind of
trace into an applicable ruleset for behavioral classifi-
cation, it is necessary to formally define relevant (ma-
licious) actions through distinct patterns that can be
integrated into the grammatical hierarchy. We do not
manually map system activity to concrete events but
use inference to automatically determine likely rules.
The derived patterns and, by extension, the full gram-
mar, can be defined as follows:

Let AG = (G,A,R,V ) be an attribute grammar,
where:

• G = (N,T,P,S) is a context-free grammar

– N... Set of non-terminal symbols (variables)
– T ... Set of terminal symbols (alphabet)
– P... Production rules
– S... Start symbol

• A is a finite set of attributes

• R is a finite set of attribution rules (semantic rules)

• V is a finite set of values assigned to an attribute

Every symbol X ∈ (N ∪T ) is assigned a finite set
of attributes A(X). The attribute a ∈ A(X) is denoted
X .a. Every attribute a ∈ A(X) also has a set of values
V (X .a). Typically, an attribute a of symbol X ∈ (N ∪
T ) that is e.g. assigned the value ”0” is denominated
as X .a = 0.

Our methodology uses attributes to store parame-
ters of system events, such as the names of particular
files that are being accessed or IP addresses that are
being contacted in the course of a network operation.
Attributes are also used to retain the connection to the
invoking process of an event. In above example, these
attributes would be the name of the file being created
(namely document.txt) and the name of the process
triggering the operation (e.g. explorer.exe).

Formally, the result is an attribute grammar
AG = (G,A,R,V ), where a1 ∈ A(X) is the at-
tribute trigger name and a2 ∈ A(X) is defined as
element name. The value vi ∈ V (X .a1) identifies the
actual name of the observed process responsible for
triggering the individual event X ∈ (N ∪ T ). Value
v j ∈ V (X .a2) denotes the process or file system ele-
ment the process interacted with.

Raw system events captured by our monitoring
agent are processed by the adapted Sequitur algo-
rithm, which infers a full grammar in accordance to
above definitions. This grammar is able to depict an
arbitrary number of input traces instead of only sin-
gle files (see Section 3.2 for details), thereby enabling
further parsing and semantic analysis.
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2.3 Sequitur Algorithm

Sequitur is a greedy compression algorithm that cre-
ates a hierarchical structure from a sequence of
discrete symbols by recursively replacing repeated
phrases with a grammatical rule (Nevill-Manning and
Witten, 1997). The result is a representation of the
original sequence, which effectively results in the cre-
ation of a context-free grammar. The algorithm cre-
ates this representation through two essential proper-
ties, which are called rule utility and bigram unique-
ness. Rule utility checks if a rule occurs at least twice
in the grammar, while bigram uniqueness observes if
a bigram occurs only once. A bigram in this context
describes two adjacent symbols or terms. Assuming
we have a string abcdbcabcd, the first bigram would
be ab, followed by a second bigram bc, and so forth.
See Table 1 for a complete example of the process.

Table 1: Operation of Sequitur after (Nevill-Manning and
Witten, 1997). Property application is highlighted.

Sym String Grammar Remarks

1 a S→ a
2 ab S→ ab
3 abc S→ abc
4 abcd S→ abcd
5 abcdb S→ abcdb
6 abcdbc S→ abcdbc bc appears 2x

S→ aAdA bigram uniq.
A→ bc

7 abcdbca S→ aAdAa
A→ bc

8 abcdbcab S→ aAdAab
A→ bc

9 abcdbcabc S→ aAdAabc bc reappears
A→ bc
S→ aAdAaA bigram uniq.
A→ bc aA appears 2x
S→ BdAB bigram uniq.
A→ bc
B→ aA

10 abcdbcabcd S→ BdABd Bd appears 2x
A→ bc
B→ aA
S→ CAC bigram uniq.
A→ bc B used only 1x
B→ aA
C→ Bd
S→ CAC rule utility
A→ bc
C→ aAd

The system introduced in this paper also evalu-
ates the inferred grammar in addition to applying the
Sequitur algorithm and automatically highlights rules
describing potentially relevant behavior.

3 INFERENCE AND ANALYSIS
PROCESS

3.1 Preprocessing

Before Sequitur can be used on log files, behavioral
traces or other, sequential reports describing the ac-
tivity of malicious programs, the traces need to be re-
duced to their core components. In this normalization
stage, we have the choice to either strip away all at-
tributes or to retain them in an abstracted fashion as
part of the set of terminals. As we want to construct
a full, semantics-aware attribute grammar, most in-
formation is typically kept. We only reduce volatile
information such as (user) IDs, memory addresses,
and registry paths to a more manageable set of termi-
nals. Names of known system processes and libraries
are not modified in any way while unknown binaries
and modules (which are possibly randomly named)
are represented by extension-aware placeholders (e.g.
1.txt or 2.exe).

In order to compare the impact of different levels
of detail and granularity, we defined a total of three
input formats. An example input and output scenario
is discussed in Section 4.2.

Verbose – This trace format uses full, attribute-
enabled events as individual words of the cor-
pus. In verbose mode, the input data is trans-
formed into the following format: triggering-
process,operation,element-name, which
translates to vi ∈ V (X .a1),tx ∈ T ,v j ∈ V (X .a2). For
example, a specific file creation operation triggered
by the known explorer.exe process would be
preprocessed into the following textual input format:
explorer.exe,file-create,1.txt.

Reduced – In this preprocessing mode, we omit
attribute a2 to generate a quick view of the high-level
activity exhibited by the processes under scrutiny.
Here, v j is not processed, resulting in a reduced for-
mat of triggering-process,operation, depicted
as e.g. explorer.exe,file-create.

Granular – The goal in granular mode is to inves-
tigate operations not as single word, but as elemen-
tary components. Each of the elements processed
in verbose mode is treated by Sequitur as one ter-
minal of the bigram. To maintain a level of sep-
aration between event triplets, a forth item denot-
ing the start of a new event is prepended before
each vi. This results in the following input (items
delimited by semicolon): <start>;triggering-
process;operation;element-name.
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3.2 Rule Extraction

Since Sequitur only takes a single input file per de-
fault, the algorithm had to be adapted to regard traces
individually while retaining all information of origin.
This way, grammar inference can be applied to sev-
eral files at once without simply concatenating the
input into a single, non-attributable compound trace.
Specifically, we altered Sequitur to be capable of con-
structing rules across file boundaries denoted by a
unique separator, which is ignored by the inference
engine. This ultimately enables comparative analy-
ses of larger, disconnected data sets that do not neces-
sarily share repeating behavior within a single trace,
which, under normal circumstances, is required for
the inference process to trigger.

The main stages of the rule extraction process are
the following:

Lexical Analysis – In this initial step, each unique
terminal t ∈ T is assigned a corresponding symbol,
called a token. This numerical representation is used
to streamline the process by reducing the processing
complexity of string-only comparisons. Each new
terminal is additionally stored in a translation (sym-
bol) table for later reference.

Grammatical Inference – After the lexical analysis
process the Sequitur algorithm is applied to generate
an execution trace grammar consisting of tokenized
terminal symbols. The first rule p ∈ P of each gram-
mar is the start rule, or ‘zero rule’, which depicts the
full grammar of the compressed input data. Every line
thereafter contains the following extracted informa-
tion:

• Rule – The rule consists of a left-side rule name
(variable), which is sequentially numbered, as
well as right-side variables and terminals. The
non-terminals are, again, references to finer-
grained rules while the terminals represent the ac-
tual system events. In line with the definition of
CFGs, there is only one single variable on the left
side of a rule.

• Resolved rule – In order to provide a detailed view
on individual rules, we recursively resolve each
sequence of non-terminals n ∈ N to their base ter-
minals t ∈ T .

3.3 Rule Evaluation

As part of the evaluation process, the final grammar is
parsed to determine how many times a specific deriva-
tion occurs in each of the investigated input files.

Semantically interesting patterns include specific se-
quences that e.g. occur exactly once in each input
trace, making them potential common denominators
for a class of malicious behavior. Parsed information
includes:

• File Rule (FR) Count – This number shows how
many times a rule occurs in the current derivation
of the input file.

• Grammar Rule (GR) Count – The overall count
across all supplied input files is specified here. For
a single trace, this number is identical to the FR
count.

• Prevalence Count – This value specifies the num-
ber of input files a particular derivation has been
found in. The result is displayed as x/y (x in y),
where x is the number of files the pattern is preva-
lent and y is the overall count of individual input
files.

• Match Flag – The extraction of interesting rules
is facilitated by determining rules that are iden-
tical in occurrence and number across all of the
processed input files, indicated by a Boolean flag.

• Rule Length – this value defines the overall num-
ber of items seen in the entire derivation (i.e. the
resolved rule). Multiples of the input file count
y are likely to represent recursively compressed
rules.

• Rule Density – this support metric facilitates
anomaly detection by calculating the ratio be-
tween inferred rules and single terminals that are
present in rule zero.

The various counts calculated always include ref-
erences to the original input files, which help retain
each pattern’s connection to its semantic source. In
Section 4.2, we show an exemplary scenario for a
’verbose’ (see Section 3.1) input set.

3.4 Rule Transformation

In order to transform the newly inferred rules into
an attributed grammar as defined in Section 2.2, a
set mechanism is required. In the initial version
of our tool, we map each operation to an attribute-
enhanced terminal while rule identifiers are trans-
formed into descriptive variables: Specifically, each
rule is dubbed in accordance to its semantic nature.
For example, a rule describing a process-create
operation followed by a file-delete operation is
transformed into the descriptive variable CREATE-
PROC DELETE-FILE. A rule that describes the load-
ing of two image files is dubbed LOAD2-IMG.
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The full naming schema NS is currently defined as
follows:

• NS = (O,E,MO,ME,L), where

– Operation O = {CREA, MOD, START, LOAD,
KILL, DEL, CONN}

– Event type E = {PROC, THR, IMG, FILE,
REG, NET}

– Operation mapping rules MO = {
CREA→ create,
MOD→ modify | change | edit,
START→ start | spawn,
LOAD→ load,
KILL→ kill | stop | terminate,
DEL→ delete,
CONN→ connect
}

– Event mapping rules ME = {PROC→ process,
THR → thread, IMG → image, FILE → file,
REG→ registry, NET→ network}

• and labeling rules L, where

– (O1|| ”-” ||E1||” ”, ...,On|| ”-” ||En)

– If On == On+1 then On|| ”2”

The triggering process and element name are then
transformed into the attributes t p and en. Recursive
variable descriptors are supported – above naming
schema always considers the fully resolved rule. See
Section 4.2 for several examples of automatically de-
termined variables.

Future versions of the tool will replace the current
mapping with a true semantic descriptor that identi-
fies specific attacker actions or objectives. While a
manual assignment of such variables is already possi-
ble (Dornhackl et al., 2014), it is not feasible in larger
analysis scenarios. The automation of the process is
an import research challenge to come.

4 IMPLEMENTATION

4.1 System Overview

Our grammar inference and evaluation tool is based
on the Sequitur application developed by Eibe Frank1.
All core and extended functionality (such as rule re-
solving, multi-file capabilities, and statistical assess-
ments) has been fully implemented in Java. The data
used as basis for the analysis process is collected us-
ing a kernel driver agent deployed on 10 actively used
and malware-free Windows 7 machines within a cor-
porate environment. An additional virtual Windows

1https://github.com/craignm/sequitur/tree/master/java

Figure 1: Overview of the implemented system.

instance is used for dynamically analyzing malicious
software. The collected events are stored and pro-
cessed on a dedicated Postgres database server that
generates verbose or reduced traces (see Section 3.1)
of specific processes or even entire system sessions.
These traces are ultimately used as input for the Se-
quitur tool. See Figure 1 for a process overview.

In practical scenarios, it might be prudent to use
clustering algorithms to pre-classify traces that might
share common behavior. While these algorithms typ-
ically do not yield insight into event semantics, this
intermediate step helps an analyst to select sequences
that e.g. belong to a similar class of malware or de-
scribe a comparable attack stage. In such a scenario,
our inference tool can be used to specifically extract
behavioral patterns for a particular use case. In our
initial tests, we used Malheur (Rieck et al., 2011) for
this very purpose.

4.2 Example

With or without preselection, our grammar inference
and evaluation tool will generate variables and pro-
duction rules for a dynamically growing number of
terminals and attributes. Below example demon-
strates the use of our tool for two simplified ’ver-
bose’ input files generated from aforementioned ker-
nel event traces.

Input file 1: Verbose mode. Delimiter: newline.

explorer.exe,file -create ,1.exe

explorer.exe,process -start ,1.exe

1.exe,image -load ,kernel32.dll

1.exe,image -load ,advapi32.dll

1.exe,registry -modify ,hklm/software/microsoft

1.exe,registry -modify ,hklm/software/microsoft
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1.exe,process -create ,cmd.exe

cmd.exe,process -create ,net.exe

1.exe,registry -create ,machine/system

1.exe,registry -modify ,hklm/software/microsoft

1.exe,registry -modify ,hklm/software/microsoft

cmd.exe,process -kill ,net.exe

1.exe,thread -terminate ,thread

explorer.exe,file -delete ,1.exe

The second input file has been determined by Mal-
heur to be similar, however the commonalities are yet
unclear. This is where our pattern evaluation exten-
sion comes in.

Input file 2: Verbose mode. Delimiter: newline.

explorer.exe,file -create ,1.exe

explorer.exe,process -start ,1.exe

1.exe,thread -create ,thread

1.exe,image -load ,kernel32.dll

1.exe,image -load ,advapi32.dll

1.exe,image -load ,ws2_32.dll

1.exe,registry -modify ,hklm/software/microsoft

1.exe,registry -modify ,hklm/software/microsoft

1.exe,process -create ,cmd.exe

cmd.exe,process -create ,net.exe

cmd.exe,process -kill ,net.exe

1.exe,thread -terminate ,thread

explorer.exe,file -delete ,1.exe

Sequitur now infers the following rules and eval-
uates the frequency, prevalence and similarity of the
input (zero rule, resolved rules and the output for in-
put file 2 have been removed for legibility):

Output: Rule; File rule count; Grammar rule count;

Prevalence count; Match flag; Rule length

1 -> explorer.exe,file -create ,1.exe explorer.exe,

process -start ,1.exe; 1; 2; 2/2; true; 2

2 -> 1.exe,load -image ,kernel32.dll 1.exe,load -

image ,advapi32.dll; 1; 2; 2/2; true; 2

3 -> 4 1.exe,process -create ,cmd.exe cmd.exe,

process -create ,net.exe; 1; 2; 2/2; true; 4

4 -> 1.exe,registry -modify ,hklm/software/microsoft

1.exe,registry -modify ,hklm/software/microsoft

; 2; 3; 2/2; false; 2

5 -> cmd.exe,process -kill ,net.exe 1.exe,thread -

terminate ,thread explorer.exe,delete -file ,1.

exe; 1; 2; 2/2; true; 3

In our example, the tool has successfully extracted
rules that describe behavior observed in both input
files. The output is transformed into an attribute
grammar as described in Section 2.2. Since seman-
tics is a major factor of rule construction, we assign
variables based on the nature of the inferred event.
Specifically, above example can be formalized into a
grammar as follows:

Let AG1 = (G1,A,R,V ) be an inferred CFG ex-
tended by attributes, where:

• G1 = (N,T,P,S), and where:

– N = {CREA-FILE START-PROC; LOAD2-
IMG; MOD-REGCREA2-PROC; MOD2-
REG; KILL-PROC KILL-THR DEL-FILE}

– T = {
file-create.t p,en = explorer.exe, 1.exe;
process-start.t p,en = explorer.exe, 1.exe;
image-load.t p,en = 1.exe, kernel32.dll;
image-load.t p,en = 1.exe, advapi32.dll;
process-create.t p,en = 1.exe, cmd.exe;
process-create.t p,en = 1.exe, net.exe;
registry-modify.t p,en = 1.exe, hklm/sw/ms;
process-kill.t p,en = cmd.exe, net.exe;
thread-terminate.t p,en = 1.exe, thread;
file-delete.t p,en = explorer.exe, 1.exe
}

– P = {
ZERO-RULE → CREA-FILE START-PROC
LOAD2-IMG MOD-REG CREA2-PROC
registry-create.t p,en = 1.exe, hklm/sys MOD2-
REG KILL-PROC KILL-THR DEL-FILE;
CREA-FILE START-PROC → file-
create.t p,en = explorer.exe, 1.exe process-
start.t p,en = explorer.exe, 1.exe;
LOAD2-IMG → image-load.t p,en = 1.exe,
kernel32.dll image-load.t p,en = 1.exe, ad-
vapi32.dll;
MOD-REG CREA2-PROC → MOD2-REG
process-create.t p,en = 1.exe, cmd.exe process-
create.t p,en = cmd.exe, net.exe;
MOD2-REG→ registry-modify.t p,en = 1.exe,
hklm/sw/ms registry-modify.t p,en = 1.exe,
hklm/sw/ms;
KILL-PROC KILL-THR DEL-FILE →
process-kill.t p,en = cmd.exe, net.exe
thread-terminate.t p,en = 1.exe, thread file-
delete.t p,en = explorer.exe, 1.exe
}

– S = {ZERO-RULE}
• A = {tp; en}
• R is described as part of the preprocessing stage

and defines which portion of the data translates
into triggering process t p (vi), operation (tx), and
element en (v j).

• V = {explorer.exe; 1.exe; kernel32.dll; ad-
vapi32.dll; cmd.exe; net.exe; machine/soft-
ware/microsoft; thread}
Above attribute grammar has been generated au-

tomatically and can now be used as the foundation
for further (attribute-based) parsing efforts. The in-
ferred variables, if stored, can be used as new behav-
ioral templates for comparable input data sets. The
next Section discusses practical applications of this
approach.
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5 PRACTICAL APPLICATIONS
AND EVALUATION

The introduced system has a wide variety of ap-
plications. Ranging from preliminary knowledge
extraction in malware analysis scenarios to under-
standing more complex attacks, the adapted inference
methodology is versatile in both terms of input data
as well as practical benefit. Below, we introduce and
evaluate some of its applications and discuss future
and ongoing work.

5.1 Preparatory Data Reduction

5.1.1 Concept

In many malware and APT attack stage analysis sce-
narios, analysts are forced to deal with huge amounts
of data. Be it kernel events, raw system calls or even
assembler-level information, abstraction and reduc-
tion of input data is essential to decrease the complex-
ity of many an analysis task. Our solution provides
the means through its easily adaptable prepocessing
mechanism (see Section 3.1) and the grammar infer-
ence system itself. By using the Sequitur approach,
it is possible to reduce the input corpus to only rel-
evant bigrams, instead of working with the full, un-
filtered set of event or code snippet unigrams. The
grammar transformation mechanism (see Section 3.4)
also enables us to work with an automatically gen-
erated placeholder variable n ∈ N instead of several
compound terminals.

5.1.2 Evaluation

Current efforts of the team include the pre-abstraction
of behavior graph data subsequently used for edit dis-
tance calculations (Luh et al., 2017). Minimizing the
amount of data to process drastically reduces the com-
putation requirements of expensive graph transforma-
tion operations. Specifically, we evaluated several
days’ worth of benign system events monitored by our
kernel driver, collecting 10k, 100k, and 200k sequen-
tial events across 525 uniquely named processes run-
ning on 10 clean Windows 7 machines. Under normal
circumstances, this data would have to be assessed
in its entirety, as it is used for creating baseline tem-
plates utilized in behavior deviation analysis. Thanks
to our Sequitur-enabled data reduction, we can focus
on event sequences (rules) that are representative for
specific processes, significantly speeding up all sub-
sequent, potentially exponential complexity graph op-
erations.

In our largest exemplary dataset of 200k Windows
kernel events, we reduced the number of events to
13,275 (-93.4%), which effectively cut the process-
ing time for both graph template generation and graph
transformation calculations by >97%, saving a total
of 162 minutes by removing a large number of excess
events not required for the analysis. This bumped the
graph-based anomaly detection process significantly
closer to real-time capabilities for smaller corpora.
Performance evaluation showed a maximum memory
utilization of around 3.6 GiB, with a total process-
ing time of 22.8 minutes on a 64-bit Intel Core i7-4*
workstation equipped with 16 GiB of RAM.

The overall process has been determined as scal-
ing at quadratic time O(n2), putting it in line with
many basic sorting algorithms. Sequitur without any
evaluation and rule dissemination is known to oper-
ate in linear time O(n) (Nevill-Manning and Witten,
1997), providing room for future optimization.

5.2 Anomaly Detection

5.2.1 Concept

In our above preprocessing example, we use grammar
inference to determine interesting repeating patterns
that are representative of the corpus under investiga-
tion. However, the reverse is also a viable scenario:
By focusing attention on patterns that do not exces-
sively reoccur, our approach can be used to identify
anomalies in a sequence or set of sequences. Parts of
the trace that are not replaced by variables during rule
construction (i.e. the remaining terminals in between)
represent unique events that, in such a scenario, are
of particular interest. Rule density (see 3.3) is also
important in scenarios where stable behavior is ex-
pected: the higher the share of terminals, the higher
the overall entropy, and, by extension, the likelihood
of anomalous behavior. All anomaly detection efforts
can be aided by visualization tools such as Grammar-
Viz (Senin et al., 2014) and our own ongoing research
introduced in Section 5.3 below.

5.2.2 Evaluation

The Sequitur tool is not limited to system events
but can be used with a wide range of sequential in-
put data formats. We specifically evaluated an APT
anomaly detection scenario on a set of temperature,
speed, and photoelectric sensor data generated by
a Siemens Simatic industrial control system (ICS)
within a testbed environment. We assessed 12 full
production runs in total, whereas one of the runs was
maliciously altered by illegally interfering with the
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Table 2: Extracted and evaluated rules for ICS sensor data traces with low rule density (≤ 40%) and prevalence count (≤ 2).
Each rule describes an anomaly not typically seen in other input data. FR...file rule, GR...grammar rule.

File Rule FR count GR count Prevalence Length

Ben-2 3→139 139 2 2 1/12 16
Ben-2 4→140 140 3 3 1/12 4
Ben-2 11→1-0-1-0-1-1-1-1-1-0-1-0-32 1-0-1-0-1-1-1-1-1-0-1-0-32 2 4 2/12 2
Ben-2 12→1-0-1-0-1-1-1-1-1-0-1-0-40 1-0-1-0-1-1-1-1-1-0-1-0-40 2 2 1/12 2
Ben-2 23→1-0-1-0-1-1-1-1-0-0-1-1-56 1-0-1-0-1-1-1-1-0-0-1-1-56 2 2 1/12 2
Ben-2 52→53 53 3 5 2/12 4
Ben-2 69→1-0-1-1-1-1-1-1-0-0-2-5-59 1-0-1-1-1-1-1-1-0-0-2-5-59 2 2 1/12 2
Ben-2 75→0-0-1-1-1-1-1-1-1-0-2-5-52 0-0-1-1-1-1-1-1-1-0-2-5-52 2 4 2/12 2
Ben-2 76→152 152 3 6 2/12 4
Ben-2 98→1-0-1-1-1-0-1-1-0-0-2-8-60 1-0-1-1-1-0-1-1-0-0-2-8-60 2 2 1/12 2
Ben-2 102→0-0-1-1-1-1-0-1-1-0-2-8-54 0-0-1-1-1-1-0-1-1-0-2-8-54 2 2 1/12 2
Ben-2 139→4 4 2 2 1/12 8
Ben-2 140→0-0-0-0-0-0-1-1-1-0-0-0-20 0-0-0-0-0-0-1-1-1-0-0-0-20 2 2 1/12 2

Mal-1 52→1-0-1-0-1-1-1-1-0-0-1-4-56 1-0-1-0-1-1-1-1-0-0-1-4-56 2 4 2/12 2
Mal-1 57→1-0-1-1-1-0-1-1-0-0-2-4-60 1-0-1-1-1-0-1-1-0-0-2-4-60 2 2 1/12 2
Mal-1 72→1-0-1-0-1-1-1-1-0-0-1-6-52 1-0-1-0-1-1-1-1-0-0-1-6-52 2 2 1/12 2
Mal-1 81→82 82 2 2 1/12 64
Mal-1 82→83 83 3 3 1/12 32
Mal-1 83→157 157 3 3 1/12 16
Mal-1 84→85 85 3 3 1/12 4
Mal-1 85→1-0-1-0-1-0-1-1-1-0-2-7-60 1-0-1-0-1-0-1-1-1-0-2-7-60 3 3 1/12 2
Mal-1 86→1-0-1-1-1-1-1-1-1-0-2-7-59 1-0-1-1-1-1-1-1-1-0-2-7-59 2 2 1/12 2
Mal-1 157→84 84 2 2 1/12 8

rotation. This caused a number of atypical sensor
readings that are nigh impossible to spot manually.

The full evaluated grammar for a total of 34,000
observed events was constructed almost instanta-
neously. Sequitur inferred a total of 2,155 rules (sans
zero rules), resulting in a 93.7% data compression
rate. In stage one, anomaly detection was conducted
by assessing rules with a low rule density value. By
that metric alone, it was already possible to single
out the anomalous trace. With a terminal-to-rule ra-
tio (TRR) of 62.8% (rule density of 37.2%), the ma-
licious sample contained less uniform behavior pat-
terns than the remainder of 11 traces with a mean ratio
of 57.3%. Only two benign traces came close to that
number, exceeding a TRR of 60%. The comparatively
small margin is due to the fact that, in this scenario,
anomalous data did not cause sensor spikes but rather
triggered a slow, continuous change in behavior.

Further analysis of the possibly deviating behav-
ior was (and is typically) required to solidify the ini-
tial verdict. To this end, we used our evaluation
system (Section 3.3) to filter rules that are present
in only a minority of files and that have a preva-
lence count of ≤2 out of 12. Armed with the pre-
selection based on rule density, we particularly fo-
cused on the 3 traces with a TRR of >60%. In benign
trace 1 (not pictured), only one rule was determined
as unique, effectively disqualifying the candidate. Be-
nign trace 2 (”Ben-2” in Table 2) contained 13 rules

that were not seen in the majority of the remaining
corpus, whereas the malicious trace (”Mal-1”) con-
tained 10 nearly unique rules. A direct comparison of
the two remaining anomalous candidates highlighted
one particularly interesting, recursively compressed
block per trace, which resolved into 16 (benign) and
64 (malicious) terminals, respectively. Patterns with
a higher average length are particularly interesting as
they identify larger, uninterrupted sequences unique
for the dataset under scrutiny.

A domain expert is now able to investigate further
and determine the individual events t that describe il-
legal sensor readings, thereby indicating an attack on
the production line.

See Table 2 for a direct comparison of the two de-
viating behavior traces. Rule 3 of ”Ben-2”, which re-
solves into 8 terminal pairs as inferred by rule 140 (a
rare, but valid sensor state), contributes most to the
trace’s analysis verdict. For ”Mal-1”, the same ap-
plies to rule 81 (32 iterations of rule 85), effectively
identifying the anomalous sensor state.

The extracted, semantically relevant rules can now
be formalized and stored for future parsing runs.
While this can be done textually, a visuals-assisted
solution promises even better results. In the next sec-
tion, we introduce a practical approach to discovering
new knowledge and assisting with anomaly detection
efforts through a dedicated visual event analysis tool
based on our Sequitur output.
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Figure 2: Illustration of the Knowledge-assisted Malware Analysis System (KAMAS) designed to support malware analysts
in their work. This system contains a (1) ‘Knowledge Base’ for automated analysis and knowledge sharing between the
analysts, a (2) ‘Rule Exploration’ area, and a (3) ‘Call Exploration’ area used to investigate individual events. Various filters
at the bottom help to remove redundant data.

5.3 Visualization & Knowledge
Discovery

One of the major uses of our tool is undoubtedly the
extraction of new domain knowledge. Inferred pat-
terns can be compiled into a permanent grammar used
to detect similar behavior in unknown traces. This
process can be supported by interactive visualizations
to drastically improve usability. This area of research
is typically referred to as visual analytics (VA).

5.3.1 Visual Analytics

Specifically, VA is “the science of analytical rea-
soning facilitated by interactive visual interfaces”
(Thomas and Cook, 2005).

A major tenet of VA is that analytical reason-
ing is not a routine activity that can be automated
completely (Wegner, 1997). Instead it depends heav-
ily on the analyst’s initiative and domain experience,
which is exercised through interactive visual inter-
faces. Such interfaces, especially information visu-
alizations, are high bandwidth gateways for the de-
piction of structures, patterns, and connections hid-
den in the data. Furthermore, visual analytics of-
ten involves automated analysis methods that perform
various computations on potentially large volumes of
data.

When analysts solve real world problems they typ-
ically have large volumes of complex and heteroge-
neous data at their disposal, as is evidenced by above
application scenarios (see Sections 5.1 and 5.2). Ex-
ternalization and storing of implicit knowledge will
make it available as explicit domain knowledge, which
is defined as knowledge that “represents the results
of a computer-simulated cognitive process, such as
perception, learning, association, and reasoning (...)”
(Chen et al., 2009).

Through visualization, explicit knowledge can be
used to graphically summarize and abstract a dataset.
Put simply, it enables quicker and more precise anal-
yses of complex input data such as the set of traces
used in the above ICS example.

Using VA for security applications is a widely ac-
cepted practice. In (Wagner et al., 2014), the authors
surveyed tools for behavior-based malware analysis in
addition to visual representations best suited to vari-
ous domain challenges. Through a data–users–tasks
analysis (Miksch and Aigner, 2014), they ascertained
that the parse tree of a cluster grammar (such as the
one generated by the Sequitur algorithm), can be ab-
stracted to a directed acyclic graph, where each node
represents part of a sequence. This is where our VA
prototype comes in.
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5.3.2 Prototype Implementation

Based on above findings, we created an early proto-
type, KAMAS, that can be used to visualize and fur-
ther assess the data generated by the Sequitur tool.
Figure 2 depicts a screenshot of the KAMAS inter-
face.

The ”knowledge base” (1) contains the explicit
knowledge used for automated analysis. Newly ex-
tracted patterns can be stored in a database for later
use, whereas existing ones serve as real-time filter that
automatically highlights known patterns. In the ”rule
exploration” area (2), the analyst can see the different
rules (left side only) generated by Sequitur, includ-
ing all information pertaining to its file and gram-
mar count as well as its length. Selecting a specific
rule unfolds the fully resolved rule for further study.
Additionally, an arc diagram will be shown to high-
light events that constitute a known sequence. The
”call exploration” area (3) lists all events contained
in the loaded file(s). To cope with the potentially
huge amount of data, the analyst has the ability to use
different, regular-expression-enabled filters to locate
data of interest. New rules discovered through visual
analysis can be added into the knowledge base via a
simple drag and drop action.

A full evaluation of KAMAS (including a com-
prehensive usability study) will be disseminated at a
later date.

6 FUTURE WORK

One of the main areas of future improvement is un-
doubtedly the automated semantic interpretation of
inferred variables, which, in the tool’s current iter-
ation, are assigned based on the operations (termi-
nals) that constitute the respective rule. In the future,
this representation will be changed to include actual
attacker goals and actions. Ultimately, we plan to
link the process to the team’s previous work, which
focuses on the development of a targeted attack on-
tology (Luh et al., 2016b). Automatically extracted
events will be mapped to said ontology, thereby pro-
viding a complete view on likely attack scenarios in-
duced by the events in question.

In terms of validation, future work will encompass
a detailed proof of soundness for the attribute gram-
mar specification used in the paper. Furthermore,
we will test our behavioral engine against evaluation
systems such as the one introduced by (Filiol et al.,
2007). Specific applications such as the anomaly de-
tection functionality discussed in Section 5.2 will also
be evaluated in greater detail.

On the knowledge discovery side, it is planned
to finalize development of the KAMAS visualization
tool mentioned in Section 5. Specific functional-
ity enabling further statistical assessment will be in-
cluded to facilitate (malware) forensics, automated
sample classification, and various intrusion detection
scenarios coupled with a database of explicit domain
knowledge.

In general, the cross-integration of visual analytics
and knowledge discovery methods will be an integral
part of our future research into the practical applica-
tions of the Sequitur approach.

7 CONCLUSION

In this paper, we presented a grammar inference sys-
tem based on an adapted version of Nevill-Mannings’
Sequitur algorithm. Thanks to its versatile nature, the
tool offers various benefits for the information secu-
rity community, ranging from knowledge discovery
in sequential system activity or malware execution
traces, to applied anomaly detection and grammar-
enabled behavior interpretation.

We have successfully tested the induction and
analysis system with several classes of input data.
When used to streamline input traces for other, com-
putationally expensive processes, we have achieved a
significant reduction in complexity by extracting rep-
resentative variables that describe relevant patterns.
Anomaly detection based on the rule density met-
ric showed promising results in identifying deviating
traces and their behavioral sequences in close to real
time. With KAMAS, we additionally introduced a vi-
sual analytics platform that uses the generated data to
assist analysts in extracting relevant rules.

All in all, the grammar inference tool can be used
to quickly and accurately discover and highlight re-
curring patterns in sequential sets of arbitrary host
and network activity, thereby aiding in bridging the
semantic gap between captured event traces and at-
tacker behavior.
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