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Abstract: Curvature spectrum is a useful feature in surface classification but is difficult to apply to cases with high noise
typical e.g. to natural resource point clouds. We propose two methods to estimate the mean and the Gaussian
curvature with filtering properties specific to triangulated surfaces. Methods completely filter a highest shape
mode away but leave single vertical pikes only partially dampened. Also an elaborate computation of nodal
dual areas used by the Laplace-Beltrami mean curvature can be avoided. All computation is based on trian-
gular setting, and a weighted summation procedure using projected tip angles sums up the vertex values. A
simplified principal curvature direction definition is given to avoid computation of the full second fundamental
form. Qualitative evaluation is based on numerical experiments over two synthetical examples and a prostata
tumor example. Results indicate the proposed methods are more robust to presence of noise than other four
reference formulations.

1 INTRODUCTION

Wide-scale point clouds have become accessible to
analysis everywhere. The point cloud surface regis-
tration typically has an approximate or accurate De-
launay triangular or tetrahedral mesh generation as a
preliminary step. The surface models are called irre-
gular triangularized networks (TIN) for historical re-
asons. The application domains can be roughly di-
vided to three categories by the target environment:
built environment, natural resource data and medical
3D imaging.

The ratio 0 ≤ σh/r ≤ 0.3 of the perpendicular
noise component σh and the nominal surface radius r
describe the difficulty of curvature registration. The
built environment data has usually high point den-
sity and small noise ratio compared to the natural re-
source data (Mitra and Nguyen, 2003). Built surfa-
ces are usually solid, curvature values change slowly
over distance, and it is desirable to be able to detect
the local curvature accurately. A typical mean curva-
ture method for such data is based on the Laplace-
Beltrami (L-B) operator (Meyer et al., 2003; Mes-
moudi et al., 2012).

Other two application domains have
the noise ratio much higher, approximately
σh/r = 10−2...10−1 (Schaer et al., 2007). Sur-

Figure 1: The voluminous highest noise component ari-
ses either from the scanning process (LiDAR point clouds,
left), or from the voxel granularity (right). Neither case
should require any parameters to filter. Occasional anoma-
lies (circles) should be transferred intact to pattern recogni-
tion phase.

faces, e.g. the terrain surface, are porous, covered
with vegetation or mathematically undefined. Natural
resource data is gatherer by aerial light detection
and ranging (LiDAR) or by spatial photogrammetry.
Natural resource data has shape recognition tasks
where the point samples per target ratio reaches
one (Nevalainen et al., 2016), i.e. one single elevated
hit is a possible target (e.g. a surface stone), see
Fig. 1. Detection of an individual target is naturally
uncertain in the presence of noise, but one can cluster
larger areas e.g. to stony or non-stony ones using
e.g. the curvature spectrum (Nevalainen et al., 2015).
On the other hand, there is a natural frequency limit
defined by the nominal mesh length. Excitation of
this frequency over a large area (see Fig. 1 left side) is
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usually a numerical artifact which should be filtered
at some point of the processing.

Medical 3D applications, especially magnetic re-
sonance imaging (MRI), often have non-isotropic
voxels causing excitation at the frequency limit, see
right part of the Fig. 1. Numerical methods should be
resilient to effect of noise, low sampling and discreti-
zation patterns.

Surface registration is reminiscent of interpola-
tion, whereas noise reduction is filtering. Typically,
these two operations can be performed in any order, or
combined together. Spatial filtering requires several
parameters, and it is worthwhile to seek curvature re-
gistration methods, which would handle the highest
frequency as depicted in Fig. 1:

1. leaving single pikes to be handled by later pattern
recognition and filtering steps.

2. eliminating automatically large excitations of the
highest frequency.

Naturally, if such a behaviour is squarely against
the needs of a specific application, there is an abun-
dant supply of existing curvature registration met-
hods, which should be employed instead. Alternative
methods have several opposing properties for discrete
differential operators (Wardetzky et al., 2007) used as
building blocks for curvature analysis. If a new appli-
cation field arises, one has to be aware of the trade-
offs between different properties.

The Gaussian and mean curvature completely de-
fine the local curvature of any continuous surface. It
is the consensus of the current research that the local
Gaussian curvature is best estimated on TIN models
by so called angle deficit (see e.g. (Crane et al., 2013),
and the result is robust to noise. This reference met-
hod is named as vertex Gaussian in this paper.

This paper uses the classical differential geometric
definition of the average Gaussian curvature (Press-
ley, 2010): it is the ratio of the total orientation change
over a surface area, a TIN triangle in this case. It is
pointed out in Sec. 3.1 that this simple definition leads
to a triangular Gaussian curvature estimation on ver-
tices, which fills the requirements 1 and 2 mentioned
before.

The mean curvature is numerically more difficult
target than Gaussian curvature. One starting point for
computation has been neglected in the literature thus
far. It is possible to define the mean curvature by the
local rate of change of the surface area when the sur-
face is mapped towards the direction of its unit nor-
mal (Pressley, 2010). This definition is related to the
theory of minimal surfaces and it can be applied di-
rectly to the triangulated surface with defined vertex
normals. Also this novel mean curvature formulation

has the earlier mentioned properties 1 and 2, as rumi-
nated in Sec. 3.1.

The rest of the paper has the following struc-
ture: Section 2 introduces the triangular Gaussian and
mean curvatures, and a collection of competing defi-
nitions. Also the problem of finding the principal cur-
vature direction has been addressed there. Section 3
has a practical example (prostata tumor), and two
synthetical test cases to verify the properties 1 and 2
of the proposed method. Section 4 brings in the con-
clusions.

2 TRIANGULAR CURVATURE

The following notation will be used throughout the
presentation. The set of cloud points P ⊂ R3 is gi-
ven. A triangle t = (a,b,c), a,b,c ∈ T ⊂ P 3 is de-
fined by three vertex points which can be referred in
cyclic fashion in counterclockwise order (with three
possible combinations considered identical). To shor-
ten the notation, the vertex membership a ∈ t and
the geometric insidence q ∈ t have the same nota-
tion, when the intended meaning is clear from the
context. A vertex p has a set of surrounding triang-
les Tp = {t ∈ T |p ∈ t} ⊂ T . The edge neighborhood
Np =∪t∈Tp t \{p} is a counterclockwise cyclically or-
dered set of points connected to p by a triangle edge.

The triangle t = {a,b,c} has a unique face normal
nt (oriented outwards) and an area At :

Nt = (b−a)× (c−a)
At = ‖Nt‖/2 (1)
nt = N0

t , (2)

where Nt is a temporary cross product term and vec-
tor power v0 = v/‖v‖ of a vector v denotes the vector
normalization.
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Figure 2: Triangle concepts: tip angles φt p are indexed by
vertices p of triangles t. Also the vertex normal np and face
normal nt depicted.

The local curvature state of the surface is comple-
tely defined after finding out both mean curvature H
and the Gaussian curvature G. Sections 2.1- 2.7 pre-
sent the curvature quantities both in a triangle t and at
a vertex p.
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2.1 Triangular Gaussian Curvature

The tangential orientation change ∆α over a length l
defines κ, the average of the curvature of a 2D curve
over the same length: κ = ∆α/l. Analogous to this,
the average of the Gaussian curvature of a smooth sur-
face S ⊂ R3 can be defined (Pressley, 2010, p.166-
168) as the ratio GS = ωS/AS, where AS is the surface
area of S and ωS is the solid angle of which the sur-
face normal n(q),q ∈ S traces. This definition can be
applied to a triangle t = {a,b,c} with vertex normals
na,nb,nc with the exception that the accurate surface
S is not known and the triangle area At is a lower
bound approximation of the hypothetical smooth area
meas(Sq). Ramifications of this fact will be addressed
in Sec. 3.1.

The solid angle ωt in Eq. 3 is the total trace of
normal n(q), q ∈ t and, assuming a barycentric inter-
polation scheme, it equals the solid angle of a vec-
tor tri-blade na, nb, nc (van Oosterom and Strackee,
1983):

tan(ωt/2) = na·nb×nc
1+na·nb+nb·nc+nc·na

(3)

Gt = ωt/At . (4)

The numerator in Eq. 3 equals zero when at least two
vertex normals are parallel, which results in require-
ments 1 and 2 of Sec. 1 to be fulfilled as far as trian-
gular Gaussian Gt of Eq. 4 is concerned. This will be
elaborated further in Sec. 3.1.

2.2 Triangular Mean Curvature

Considering a triangle t = (a,b,c) and the associa-
ted surface normal approximants na,nb,nc at verti-
ces a,b,c, and a barycentric dependency of normals
n(q),q ∈ t in the triangle t, one can define a nor-
mal mapped parallel triangle tu = {q+un(q)|q ∈ t}.
Using a definition of (an averaged) mean curvature
in (Pressley, 2010, p. 207), one gets:

Ht =
1

2At

( d
du Atu |u=0

)

= (nb−na)×(c−a)+(b−a)×(nc−na)
4At

·nt . (5)

Note that triangular mean curvature Ht ≡ 0 when all
the vertex unit normals are parallel i.e. na = nb = nc.
This leads to requirements 1 and 2 of Sec. 1 to be
fulfilled.

2.3 Projective Tip Angles as Weights

The vector angle function acos() and the projected
vector angle function acosn() simplify the upcoming
presentation. The projection angle φ′12 is the angle φ′12
between vectors v1 and v2 when seen from direction

n. See the right part of the Fig. 3. A projection matrix
P(n) = I−n0n0T is used to define acosn(.):

acos(v1,v2) = cos−1(v0
1 · v0

2) (6)
v′i = P(n)vi, i = 1,2

acosn(v1,v2) = acos(v′1,v
′
2). (7)

Note that acos(v1,v2)≡ acosv1×v2 (v1,v2).
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Figure 3: Left: the angle φ12 between two vectors v1,v2 and
the projected angle φ′12 between projected vectors v′1,v

′
2.

Right: Definition of the edge angles φ′t ′q and φt ′q′ of an edge
(p,q).

The projective tip angles φ′t p are used systemati-
cally to average all triangular quantities Xt , t ∈ T to
corresponding vertex quantities Xp, p ∈ P :

φ′t1a = acosnp(p−a,b−a) ( See Fig. 3) (8)

φ′p = ∑t∈Tp φ′t p (9)

Xp = ∑t∈Tp φ′t p Xt/φ′p. (10)

This weighting procedure of a quantity X will be de-
noted as: Xt → Xp in the rest of the text.

Good numerical properties of tip angle weighting
pointed us to amortize the computational costs by ap-
plying it to produce the following vertex properties:
normals np, triangular mean curvature Hp, triangu-
lar Gaussian Gp and principal curvature direction vp.
Another benefit was the unified handling of the boun-
dary points, since the angle sums φ′p ≤ φp ≤ 2π give
an excellent weighting at the boundary. This is impor-
tant because e.g. the natural resource data is prune to
have missing values and holes in the point cloud, and
the boundary points are thus common. When a point
p is not in the border, the sum of projected angles
equals: φ′p ≡ 2π. There are other weighting schemes
in the literature, these are being discussed in Secti-
ons 2.5 and 2.6.

2.4 Vertex Gaussian

Since the projected tip angles have been introduced,
it is possible to define an alternative vertex Gaussian
using the spherical excess (Crane et al., 2013) formu-
lation. The vertex Gaussian of Eq. 12 serves as a re-
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ference method:

φp = ∑t∈Tp φt p (11)

Gp = (φ′p−φp)/(Ap/3). (12)

2.5 Vertex Normals

Vertex normals np are weighted from triangle normals
nt using the generic scheme of projected tip weighting
defined in Eq. 10: nt → np. There are several other
possible definitions. Vertex normals can be conside-
red pointing towards the new altered vertices after the
local surface is varied, or they somehow represent a
continuous but unknown reference positions. The al-
ternatives satisfying DDG convergence requirements
listed in (Crane et al., 2013) are reproduced here for
discussion. The vertex normal can be:

1. The vector area: np =
(

∑t∈Tp Atnt

)0

2. The area (or volume) gradient np = (dAp/d p)0,
when one vertex p is varied in R3.

3. The normal of a sphere which inscribes vertex p
and its edge-neighborhood points Np. See (Max,
1999; Crane et al., 2013).

Such a sphere fitting required by the alternative 3 is
impossible with usual point clouds, but just applying
the definition from a case of a perfect sphere fit to any
general triangle neighborhood, the resulting normal
vector np behaves smoothly:

np =


 ∑

t=(a,p,b)∈Tp

nt

‖b− p‖‖a− p‖




0

.

According to (Jin et al., 2005), versions 1 and 2 are
simple but prune to noise, projected tip angle weig-
hting (our choice) is reliable and simple, and version
3 is rather good but also somewhat expensive.

2.6 Other Mean Curvature Definitions

This short survey omits all methods based on a local
fit of a smooth interpolant, see e.g. (Yang and Qian,
2007). These methods show resilience to noise, but
tend to have an uncontrollable loss of high frequen-
cies and are usually computationally more expensive
than the methods presented in the following.

The mean curvature through the discrete Laplace-
Beltrami (also known as the cotan-Laplace) operator
has been documented in (Mesmoudi et al., 2012). It
is one of the best methods according to (Mesmoudi
et al., 2012). The mean curvature Hp at a vertex p
becomes:

Hp =
1

4A′p
‖∑b∈Np(

1
tanφ t1a

+ 1
tanφ t2c

)(b− p)‖, (13)

where triangles t1, t2 ∈ Tp have a common edge (p,b)
with opposite vertex angles φt1a,φt2b. See Fig. 3. The
vertex specific area A′p ≈ AP/3 is the area of so called
mixed Voronoi cell. Using A′p instead of Ap/3 reduces
the area contribution of possible obstuse angles φt p in
a way, which is detailed in (Mesmoudi et al., 2012).
The exact value of A′p depends on the geometry of
the triangle set Tp but is always rather close to the
above given expected average. The variance in A′p
adds numerical stability of the estimates of the vertex
mean curvature Hp but is rather costly to calculate.
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Figure 4: The edge angle βt1t2 is positive when the edge
folds downwards (or inwards in case of tumors).

The concentrated Gaussian curvature by (Mes-
moudi et al., 2012) equals Eq. 12. The concentrated
mean curvature by (Mesmoudi et al., 2012) is re-cast
to the notation in this paper as:

sgn(t1, t2) = −sgn((b− p) ·nt1) (14)
βt1t2 = acos(nt1 ,nt2)sgn(t1, t2) (15)

ωp = 2π−∑t1∈Tp βt1t2 (16)

Hp =
1

4A′p
(2π−ωp), (17)

where the edge angles βt1t2 are depicted in Fig. 4,
the angle sum ωp is the inwards opening solid angle
at vertex p, and the summation is done over edges
(p,q), q ∈ Np.

The sign of the edge angle βt1t2 is determined by a
vector blade handedness sign (a determinant sign) of
an edge (p,q) = t1∩ t2 between triangles t1 = (a, p,q)
and t2 = (q, p,b), see Eq. 14. Note that the edge sign
is positive for pikes (the situation depicted in Fig. 4)
and symmetric: sgn(t1, t2) = sgn(t2, t1). The normals
nt are a result of earlier stages of the computational
process.

Also the solid angle ωp in Eq. 17 is already avai-
lable from the preceding solid angle filtering (SAF),
which can be done to reduce the noise level of the
point cloud or for filtering out the foliage signal (Ne-
valainen et al., 2016), or before any shape classifica-
tion via curvature spectrum. Availability of spatial an-
gles ωp makes this method computationally the chea-
pest one.
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In some applications like tumor detection in elec-
tron magnetic resonance (EMR) imaging, the orienta-
tion of the surface normal np is completely free (but
outwards from the tumor). That is why the edge sig-
num refers only to two adjoined triangles t1 and t2
which are both oriented outwards. The signum in
Eq. 15 requires one vector operation (saxpy, see (Go-
lub and Van Loan, 1996)) of R3 vectors.

Barycentric interpolation (Theisel et al., 2004) is
based on normalized linear change of the normal n
over the triangle t from where a generic expression
for Gaussian and mean curvature can be deduced. For
our purposes only the mean curvature Ht p of triangle
t = (a,b,c) at a vertex point p ∈ {a,b,c} needs to
be considered. The Eq. 18 is adapted to our notation
from (Theisel et al., 2004; Nevalainen et al., 2015):

h = na× (c−b)+nb× (a− c)+nc× (b−a)
Ht p = (np ·h)/(2np ·Nt) (18)
Ht p→ Hp, (19)

where h is a temporary vector multiplicant.
There is also a triangular approximation of the se-

cond fundamental form (Crane et al., 2013; Rusinkie-
wicz, 2004), which is used in (Rusinkiewicz, 2004)
to derive the principal curvatures, mean and Gaussian
curvature principal and directions directly. This met-
hod requires iteration of a least squares problem, and
it seems to be computationally more expensive than
the methods covered here.

There are other possible interpolation schemes
over a triangle, e.g. using radial basis or by applying
the well-known Rodriguez rotation formula (Dorst
et al., 2007) twice (first over one edge, then between
edge and a vertex of interest). Preliminary tests indi-
cate that these options seem to lead to more complex
formulas yet the numerical results stay very close to
the schemes included to this study. This holds to both
the triangular and the vertex values.

2.7 Principal Curvature Orientation

The curvature eigenvalues κt1 and κt2 of a triangle t
are the curvature extremals when tracing a continuous
surface S through point p by a perpendicular plane:

κtl = Ht ±
√

H2
t −Gt , l = 1,2 (20)

Object and shape recognition may use any subset of
the four curvature characteristics G,H,κ1,κ2.

The barycentric surface normal map t → tu was
used to derive Eq. 5. By applying it again, but this
time to find a trajectory with most drastic curvature
effect per traversed arc length on a triangle t, one gets
the principal curvature direction vt of a triangle t. This

is a direction with the largest curvature (eigenvector
of κ1). The second eigenvector is not of interest, since
it will be dictated by the first eigenvector. Another

Figure 5: Averaging principal curvature direction vt from
triangles (above) to vertices vp (below).

way to express vt is based on constraining the second
fundamental form to be diagonal and solving the prin-
cipal direction from this constraint at Eq. 21. This is
different from (Rusinkiewicz, 2004), where whole the
second fundamental form is solved by least squares
fitting a set of linear constraints. Below are the equa-
tions leading to the eigenvalue problem:

′ma = P(b− c)(a− c) (before scaling)
′mb = P(a− c)(b− c) (before scaling)

ma =
′ma

′ma·(a−c)

mb =
′mb

′mb·(b−c)

Dt = (na−nc)mT
a +(nb−nc)mT

b

P(nt)Dtvt = λvt , (21)

where ′ma,
′mb,m′amb are constituents of a constant

matrix Dt = dnt/dq, the rate of change of the normal
at triangle t. Note that eigenvalue λ is not proportional
to principal curvature, since the barymetric mapping
does not preserve the unity of the normals.

The weighted summation scheme vt → vp of
Eq. 10 is not directly applicable, since the principal
directions±vt are defined by the orientation only, wit-
hout a coherent sign. The summation must take this
into account. The following heuristics relies on the
monotonic nature of the vector summation of the non-
unit cumulative vector v̂p:

v̂p(S) = P(np)∑t∈Tp φ′t p sgnt p vt

S∗ = argmaxS ‖v̂p(S)‖
vp = (v̂p(S∗))

0 , (22)

where S is the set of signums S = {sgnt p}t∈ Tp , which
can be found performing O(|Tp|) scalar products
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v̂p current · vt by a single enumeration and reversing a
subset of signums if necessary.

The weighting scheme in Eq. 22 relies on the pro-
jected tip angle weights φ′t p, which have multiple ap-
plications and thus can be amortized from computa-
tional cost. The weighting scheme in (Rusinkiewicz,
2004) uses triangular contributions of the vertex spe-
cific area A′p. This weighting scheme has not been
tested by us. Overall, avoiding the least squares fit
and area weighting makes our method less expensive
computationally.

3 NUMERICAL EXPERIMENTS

Two synthetical models and a visual inspection of
a practical problem have been covered, see Secti-
ons 3.1- 3.3. The following mean curvature methods
have been compared:
1. triangular average mean curvature (our method)
2. L-B (Meyer et al., 2003)
3. concentrated mean curvature (Mesmoudi et al.,

2012)
4. barycentric interpolation of the normal (Theisel

et al., 2004)
Two Gaussian curvatures have been compared, trian-
gular average Gaussian (our method, Eq. 4), and ver-
tex Gaussian (Crane et al., 2013). Since there are 3
vertex normal definitions, 2 weighted summation po-
licies, 4 mean curvature and 2 Gaussian curvature de-
finitions, results of only the most interesting combi-
nations have been provided.

3.1 A Local Pike

This model demonstrates the different character of
each methods with respect to noise in the surface nor-
mal direction. Especially the two noise modes presen-
ted in Fig. 1 are modelled. The case 1 in Fig. 6 is an
apex of a larger regular formation. The case 2 is a sin-
gle pike which can be either noise or a useful feature.
The case 3 demonstrates a large noise field at the hig-
hest possible frequency dictated by point cloud den-
sity. The geometrical mean

√
|G|= κG derived from

the Gaussian curvature G is used for the comparisons,
since it has the same physical dimension (inverse of
radius) as the mean curvature.

The abscissa value h is the height of point p.
When h→ 0, it is the planar special case with nominal
radius r→ ∞ and κr→ 1.

The barycentric method exaggerates curvature at
large h values, which are likely to be noise. The bary-
centric mean curvature and the triangular curvatures

10
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Figure 6: Four mean curvature methods and two Gaussian
curvature methods compared in various settings with one
point protruding out. The square root of the Gaussian cur-
vature is used for comparison. The analysis point at height
h has been circled.

(our methods, both G and H) tend to dampen a sin-
gular pike (case 2). The barycentric method is losing
its dampening tendency at high values of h, which are
more likely to be noise.

The output value of the vertex mean and Gaussian
curvatures (and barycentric mean curvature) is scaled
downwards (dampened) by a ratio w, value of which
depends on the case. The cases 1,2,3 have dampe-
ning ratios w = 1, 1/3, 0. A singular pike (case 2) has
dampening factor 1/3 which is still adequate to con-
tribute in the curvature spectrum or to be detected by
later pattern recognition phase.

The egg cell pattern of case 3 gets completely
dampened by triangular curvatures G and H, and by
the barycentric method. The vertex normals defined
by Eqs. 2 and 10 become parallel, which then cau-
ses the triangular curvatures of the involved triangles
t to be zero, see Eqs. 5 and 4. This can be a use-
ful property in some applications, e.g. in stone de-
tection (Nevalainen et al., 2016), or in reducing the
granularity effect produced by voxels.

The concentrated curvature, vertex Gaussian, and
Laplace-Beltrami are closely related in all cases. The
behaviour of all six methods is rather similar to each
other in the hyperbolical case (a saddle point) and this
case has not been included in this presentation.

3.2 A Torus

A torus of radii r = 1, R = 2.5 has been used. This is
a classical test case, since the curvature aspects of the
ideal shape are analytical, yet both elliptic and hyper-
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bolic local surface metrics occurs.
Two torii, a dense one with |P |= 820 and a sparse

one with |P |= 220 were used. Fig. 7 shows the sparse
torus with uniform local height distribution. A uni-
form distribution is used also on the tangential mani-
fold metrics. The height noise concerns point loca-
tions and the tangential noise concerns triangulation
irregularity. The height noise std. was varied between
0 ≤ σh ≤ 0.3r. The upper end of the noise is typi-
cal to many LiDAR applications. The height noise
distributions from real LiDAR data are not uniform
nor Gaussian. The main curvature spectrum seems to
depend mainly on the std of the uniform or natural
height distribution, not from the choice between the
two.
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Figure 7: The triangular mean curvature and triangular
Gaussian curvature and two curvature eigenvalues on a to-
rus as a function of the angle φ associated with the smaller
radius. The height noise is at the maximum σh/r = 0.3.

3.3 A Prostate Tumor

The main difficulty with MRI point clouds arises from
the anisotropy of the point cloud. The voxels are
elongated 2.75× 0.48× 0.48 mm3 and this demands
a lot from the curvature analysis methods. Informa-
tion about the curvature spectrum of the tumor has
been applied to e.g. breast cancer classification (Lee
et al., 2015). It is possible that the curvature spectrum
will be an important feature alongside spatial texture
patterns, 3D Fourier transform, overall size and loca-
tion of the tumor for clustering algorithms. The Gaus-
sian curvature and principal curvature direction can
help in e.g. descriptor based vectorization (Vranic
and Saupe, 2001). Fig. 10 depicts a prostate lesion,
which shows a typical developable shape: the lesion
could be spread back to planar (its Gaussian curvature
is approximately zero).

3.4 Results

Our method, when referred, means triangular mean
and Gaussian (Eqs. 5, 4, 10) and the principal curva-
tures derived from them. Tests reach the high noise
amplitude range σh/r = 0.3 typical to the natural re-
source data, see Fig. 7. Effects of noise filtering of L-
B and our method have been depicted in Fig. 8. L-B
is bound by its fidelity to local geometry. Difference
at smooth surface (the left part of the abscissa) is due
to the irregularity of the triangles, which brings some
advantage to an averaging method like ours.
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Figure 8: The root mean square error of the mean curva-
ture H estimation error under different perpendicular noise
levels σh (std.) on a torus with radii r and R.

Fig. 9 has curvature spectrae based on L-B and
our method. Other methods were inferior at the noisy
end and had to be excluded. The presence of noise
spreads the detected spectrum from the ideal smooth
case. L-B manages the task only if the triangulariza-
tion is rather regular and the height noise almost zero.
Our method captures two-thirds of the mean curva-
ture distribution, yet suffers from the spectrum spread
caused by the noise, which is inevitable. Both Gaus-
sian approximations perform as well enabling e.g. the
curvature spectrum classification to be possible under
wide range of noise levels. Other two methods (con-
centrated and barycentric) perform worse than L-B.

Fig. 10 depicts the prostate lesion with the Gaus-
sian curvature close to zero everywhere meaning its
surface is mostly developable (a so called ruler sur-
face). This is an artifact caused by a combination of
the elongated voxels and the method used for trian-
gularization. The surface has high energy noise com-
ponent caused by the voxel granularity. Our methods
dampen this highest geometric noise component au-
tomatically. Also concentrated and barycentric mean
curvatures performs surprisingly well. L-B suffers
from its fidelity to the highest shape frequency com-
ponent.

The computational cost of the barycentric method
is too high when compared to its performance, see
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Table 1: Evaluation of the mean curvature methods. Proposed methods in boldface.

Method Vector opers/t Spectrum quality Singular noise w Massive noise w
vertex G 15 good 1 1
triangular G 15 good 1/3 0
triangular H 15 good 1/3 0
LB 18 average 1 1
concentrated 2 poor 1 1
barycentric 32 poor 1/3 0
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Figure 9: The ideal curvature spectra of a torus with r = 1,
and Laplace-Beltrami and triangular approximations. The
effect of height noise σh/r = 0.1 spreads out the approxi-
mated spectrae.
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Figure 10: Upper row: the principal curvature components.
Lower row: Distributions of the mean and Gaussian curva-
tures by different methods.

Table 1. L-B has the best accuracy when the perpen-
dicular noise is small and the triangulation is rather
regular, but fails when the perpendicular noise is high.
The spectrum quality is given a qualitative judgement.
See the definition of the dampening ratio w at Sec. 3.1.

4 CONCLUSIONS

The proposed method (triangular mean and Gaussian
curvature) has about the same computational demand
as the reference method (LB mean and vertex Gaus-
sian curvature) in case where the vertex specific area
A′p of the mixed Voronoi cell is computed exactly as
recommended in (Mesmoudi et al., 2012). Based on
the good performance under height noise, it seems
that the triangular method should be used in such na-
tural resource data applications, where the curvature
spectrum is required, and the spectral range should
reach near the highest shape frequency, but excluding
the large excitations of the mentioned frequency.

The above definition may seem contrived, but e.g.
a typical rasterization process is lossy and tuning the
filtering process requires a lot of parameters, which
concern the highest shape frequency naturally contai-
ned with the methods proposed here. Further valida-
tion is necessary with e.g. track analysis of forestry
harvesters (Pierzchala et al., 2016).

Principal orientation computation presented in
Sec. 2.7 is closely related to other two methods pre-
sented, e.g. it uses the same projected tip angle weig-
hts. One has to inspect in the future how useful the
principal orientations are in micro-topographic analy-
sis. It may be that a multi-scale approach for produ-
cing several TIN models with coherent curvature and
principal orientation information is needed.

There is a huge bulk of raster analysis methods
and a lot of experience in applying these methods for
e.g. height raster data analysis. Emerging triangular
analysis tools based on DDG will not outdate these
methods, but in some cases there seems to be potential
to improve the curvature spectrum range closer to the
theoretical limit dictated by the point cloud sample
density and the known sample accuracy.
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