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Abstract: This paper proposes a 3D face recognition approach based on facial pose estimation, which is robust to 

large pose variations in the unconstrained scene. Deep learning method is used to facial pose estimation, and 

the generation of partial MARS (Multimodal fAce and eaR Spherical) map reduces the probability of 

feature points appearing in the deformed region. Then we extract the features from the depth and texture 

maps. Finally, the matching scores from two types of maps should be calculated by Bayes decision to 

generate the final result. In the large pose variations, the recognition rate of the method in this paper is 

94.6%. The experimental results show that our approach has superior performance than the existing 

methods used on the MARS map, and has potential to deal with 3D face recognition in unconstrained scene.  

1 INTRODUCTION 

Face recognition is one of the most popular 

biometric feature recognition methods with the 

characteristics of nonintrusive, contactless, 

accessible and informative. However, the single 

features from human face image are susceptible to 

the variations of age, expression and pose. Ear 

recognition is another biometric recognition method 

with the advantages of its insusceptible to the age 

and expression variations. A multi-biometric feature 

fusion and recognition method based on face and ear 

has been proposed, which is more robust to pose and 

expression issues. However, there are still some 

questions to be solved of 3D face recognition in 

unconstrained scene. In this paper, we propose a 

method based on partial MARS map, which 

represents the better recognition performance of 

dealing with large pose variations in the 

unconstrained scene. 

Many face recognition algorithms have been 

proposed over the decades which based on global 

features and local features. The first methods require 

normalization of the images lacking of robustness, 

and the second methods always neglect the global 

information. Then a new method of fusing the global 

and local features is presented (Melzer et al., 2003). 

In order to improve the recognition result in the 

unconstrained scene, some studies take the use of 

multi-view 3D point clouds to identify human faces 

(Zhang and Gao, 2009). Considering the positional 

relationship of face and ear, some researchers (Liu et 

al., 2015; Wang et al., 2015; Huang, 2015) propose a 

new method based on MARS depth map and texture 

map. They merge 3D face point clouds from the 

multi-view without any influence factors to a new 

point cloud with more information including the 

complete face and ear. Then they transform the 

expression of Cartesian coordinates into spherical 

coordinates, and generate the MARS depth and 

texture maps. The sphere depth map (SDM) and 

sphere texture map (STM) of the candidate 3D face 

point clouds are also required to be matched with 

MARS depth maps and MARS texture maps of 

gallery set respectively. This method presents a 

better recognition performance compared with other 

general methods in the case of complete ear and 

incomplete face. However, in other unconstrained 

conditions, especially existing large pose variations, 

it doesn’t work well.  

In the case of large pose variations, SDM and 

STM always present a certain degree of 

deformation, which will increase the recognition 

difficulty when matching with the entire MARS 

depth and texture maps without any deformation. 

This paper proposes a new method based on partial 

MARS map to deal with large pose variations. In 

this paper, we estimate the facial pose situations 

based on deep learning, and then generate the partial 

MARS maps corresponding to each facial pose 

situation, then generate the 3DLBP (Huang et al., 

2006) feature maps from MARS map, and choose 
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the sift feature descriptor at the stage of feature 

extraction. In the recognition stage, we adopt an 

improved method from sparse representation 

classification (Liao et al., 2013) to get the matching 

result, and then use the Bayesian fusion method 

(Chen et al., 2014) between the matching results 

from SDM and STM.  

The paper is organized as follows: Section 2 

describes the pose estimation using deep learning 

and the generation of partial MARS map. Section 3 

presents the feature extraction based on 3DLBP 

feature maps and the process of recognition. The 

experimental results are provided in Section 4. 

Finally, some concluding remarks are given in 

Section 5. 

2 DEEP LEARNING AND MARS 

MAP 

In this paper, we use a deep learning method (Xu et 

al., 2015) with convolutional neural network (CNN) 

for facial pose estimation to classify the images from 

the different databases into 5 poses. The detailed 

network structure is designed as follows: There are 

three convolutional layers, two max-pooling layers, 

a fully connected layer and the soft-max output layer 

indicating five classes which stand for the five 

poses. The first two convolution layers are weight 

sharing and have 64 convolution kernels with size of 

5*5 respectively. The following two max-pooling 

layers also have 64 convolution kernels, and the size 

of each kernel is 2*2. The third convolutional layer 

is fully connected to the second max-pooling layer, 

and the last hidden layer is fully connected to the 

third convolutional layer. In the soft-max output 

layer with 5 classes, the class with the maximum 

probability is expected the estimated one.  

In the image preprocessing stage, we take two 

steps: Firstly, we extract the face region from 

original images; then we crop each processed face 

image into five patches, and resize patches into 

32*32 as the input of the network. The patches 

correspond to the four corners and central part with 

eighty percent of the whole image. In the training 

stage, we use total five patches as training data, and 

in the testing stage, we only use the central patch for 

estimation.  

2.1 Facial Pose Estimation using Deep 
Learning 

In this paper, we use a deep learning method (Xu et 

al., 2015) with convolutional neural network (CNN) 

for facial pose estimation to classify the images from 

the different databases into 5 poses. The detailed 

network structure is designed as follows: There are 

three convolutional layers, two max-pooling layers, 

a fully connected layer and the soft-max output layer 

indicating five classes which stand for the five 

poses. The first two convolution layers are weight 

sharing and have 64 convolution kernels with size of 

5*5 respectively. The following two max-pooling 

layers also have 64 convolution kernels, and the size 

of each kernel is 2*2. The third convolutional layer 

is fully connected to the second max-pooling layer, 

and the last hidden layer is fully connected to the 

third convolutional layer. In the soft-max output 

layer with 5 classes, the class with the maximum 

probability is expected the estimated one.  

In the image preprocessing stage, we take two 

steps: Firstly, we extract the face region from 

original images; then we crop each processed face 

image into five patches, and resize patches into 

32*32 as the input of the network. The patches 

correspond to the four corners and central part with 

eighty percent of the whole image. In the training 

stage, we use total five patches as training data, and 

in the testing stage, we only use the central patch for 

estimation.  

Our algorithm is tested in CMU PIE database 

and CAS PEAL face database. The CMU PIE 

database contains 68 subjects with 13 poses. We 

choose 19584 images with the 5 poses mentioned 

above. The CAS PEAL face database contains 1040 

subjects with 21 poses, and we choose 4160 images 

from this database including the images with 5 poses 

in the Pose database and all the images in the 

Normal database. Of the total data, the first 50 

persons from the CMU PIE database and the data 

from the Normal database in the CAS PEAL face 

database are selected to train the network, and the 

rest of data is used for testing. The network with a 

learning rate of 10-3 is obtained by the 300 epochs. 

In our experiment, we get the accuracy of 98.7% in 

the training stage, and 98.4% in the testing stage.  

2.2 Generation of Partial MARS Map 

We select the effective area of the entire MARS map 

according to each situation of the 5 views and 

generate 5 partial MARS maps. Firstly, 3D face 

images are collected from the 3D scanning optical 

system, and each subject contains three point clouds 

respectively from three views of the left, right and 

front side. After merging the three point clouds, we 

get a more complete 3D point cloud called the fusion 
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point cloud. The coordinate distribution is shown as 

Figure 1. 

 

Figure 1: The mosaic of three 3D face point cloud. 

We fit the 3D face shape on a sphere model 

according to the linear least square method to get the 

sphere center point C and the sphere radius Radii. 

Then determine a axis through point C with the 

normal vector (0,0,1), and rotate the 3D face point 

cloud to 90°, 45°, 0°, -45°, -90°. After rotation of the 

point cloud, we select the effective region as 

followed: Firstly, we divide the 3D point cloud into 

three parts along the z axis equally, which are upper, 

middle, bottom part. Then determine the boundary 

point of the middle part and acquire the value of the 

variable y as Yt. The boundary point is defined as 

the edge point of the ear in the opposite side to the 

rotation direction. We assume that the point with the 

maximum or the minimum value of variable x in the 

middle part is the boundary point. When the rotation 

direction is left, we get the point with the minimum 

of x, and if the rotation direction is right, we get the 

point with maximum of x. Finally, we select the 

region with the value of y smaller than Yt as the 

valid region. Then the Cartesian coordinates [x, y, z] 

of the new rotated point cloud can be transformed to 

spherical coordinates [r, θ, ρ]. The partial MARS 

Depth maps with five views are displayed as Figure 

2 for examples. And we can see that the partial 

MARS map does not mean the half of the entire 

original MARS map in the case of 90° pose 

variation.  

  
Original MARS map 45°Left 

   
90°Left 45°Right 90°Right 

Figure 2: The original MARS depth map and partial 

MARS depth maps. 

3 RECOGNITION PROCESS 

3.1 Local Feature Extraction on SDM 
and STM 

After generation of all partial MARS maps, we do 

the same processing with the candidate 3D point 

clouds to get SDM and STM. In the feature 

extraction stage, an improved algorithm called 

Weight Rank-SIFT (Wang et al., 2015) is used to 

select more stable feature points. However, it is 

difficult to extract enough feature points from SDM. 

The 3DLBP (Huang et al., 2006) maps generated 

from the SDM can extract the absolute depth value 

difference between the central pixel and its 

neighbors and presents a better representation 

regarding feature description. The combination of 

the local features on SDM and the first two layers of 

LBP maps can improve the recognition rate. Figure 

3 shows the representation of key points extracted 

from SDM and the first three layers of 3DLBP 

maps. With regards to STM, we extract features 

from the STM directly. 

  
SDM (32) 3DLBP-L1 (169) 

  

3DLBP-L2 (189) 3DLBP-L3 (246) 

Figure 3: Features extracted from SDM and the first three 

layers of 3DLBP maps. 

3.2 Decision Fusion based on Sparse 
Representation Classification 

The SDM and STM in the probe set are the 

representation of the candidate 3D point clouds, and 

the number of features on them is different from the 

number of features from partial MARS maps. In this 

paper, Multi Key points Descriptor Sparse 

representation Classification (MKD-SRC) is used to 

classification. In this method, any candidate SDM 

and STM in the probe set can be sparsely 

represented by a dictionary consisted of the 

descriptors in the gallery set. In this paper, we 

calculate the average residual of the candidate point 
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cloud descriptor in the dictionary. The smaller 

average residual is, the higher matching degree is. 

We use the MKD-SRC method on SDM and STM 

respectively, and then fuse the average residual 

scores of them by a Bayesian method (Chen et al., 

2014) to get the final matching score to determine 

which subject the candidate 3D face image belongs 

to.  

4 EXPERIMENTAL ANALYSIS 

To examine the performance on large pose 

variations, we build a small set containing 20 people 

with 90 3D face images of each person. The images 

include complex variations with one or two factors 

in pose, occlusion and expression. Considering the 

shortage of data, we selected the 3D face images of 

80 subjects from the CASIA 3D face database, and 

get the MARS maps through the ICP algorithms. 

Finally, our experiment database contains 20 

subjects collected from our own equipment and 80 

subjects from CASIA 3D face database, and the 

images of each person contain the normal state 

without any influence factors and  the states with 

factors of 5 pose variations, laughter, smile, angry, 

sad and close eyes which are similar with the 

uncontrolled conditions. We select one MARS depth 

map and one MARS texture map of each subject as 

the gallery set, and select the SDMs and STMs 

generated by the candidate images of these subjects 

as the test set. In this experiment, we compare our 

approach with some existing methods used on the 

MARS map based on the test set and the results are 

shown in Table 1 (the recognition rate of 90° is the 

average value of the +90° and -90°). In general, our 

method has a slight advantage with 90°, and has 

better performance with 45°. Towards the frontal 

view without any influence factors, the recognition 

rates of four methods are close to each other. From 

the Table 2, we can conclude that in the cases of 

angry and close eyes with the 45° view of pose vari-

ations, our method presents a satisfied recognition 

Table 1: Recognition rate in the cases of single pose 

variation issue. 

Approach 90°      45°     0° Overall 

Huang 93.5%   N/A    95.7% 94.6% 

SDM+STM 95.5%  90.0%  96.7% 94.1% 

3DLBP+SDM 93.8%  85.6%  95.3% 91.6% 

Our Approach 95.7%  91.3%  96.7% 94.6% 

Table 2: Recognition rate in the cases of expressions with 

45°rotation.  

Rotation angle laughter      angry     close eyes 

0° 75.5%        96.3%        87.0% 

45° 83.8%        91.4%        89.3% 

90° 95.2%        95.3%        94.3% 

rate. But in the laughter cases, eyes and mouth of the 

person always have the large deformations, and the 

performance still need to be improved. 

5 CONCLUSIONS  

Our approach has been proposed for the 

unconstrained scene, in which pose and expression 

variations are the difficult issues to be solved. This 

paper has presented an effective method to solve the 

large pose variations issue by facial pose estimation 

and feature matching on partial MARS map. 3DLBP 

representation is used to acquire the more feature 

points on SDM and partial MARS depth map. After 

feature extraction by Weight Rank-SIFT, we choose 

the MKD-SRC method during the matching process, 

and then perform the fusion operation at the decision 

level. The experimental results show that this 

method has well promising potential to be applied in 

the uncontrolled environments.  
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