
Training Agents with Neural Networks in Systems with Imperfect 
Information 

Yulia Korukhova and Sergey Kuryshev 
Computational Mathematics and Cybernetics Faculty, M.V. Lomonosov Moscow State University, 

Leninskie Gory, GSP-1, Moscow, 119991, Russian Federation 
 

Keywords: Multi-agent Systems, Neural Networks, Dominated Strategies. 

Abstract: The paper deals with multi-agent system that represents trading agents acting in the environment with 
imperfect information. Fictitious play algorithm, first proposed by Brown in 1951, is a popular theoretical 
model of training agents. However, it is not applicable to larger systems with imperfect information due to 
its computational complexity. In this paper we propose a modification of the algorithm. We use neural 
networks for fast approximate calculation of the best responses. An important feature of the algorithm is the 
absence of agent’s a priori knowledge about the system. Agents’ learning goes through trial and error with 
winning actions being reinforced and entered into the training set and losing actions being cut from the 
strategy. The proposed algorithm has been used in a small game with imperfect information. And the ability 
of the algorithm to remove iteratively dominated strategies of agents' behavior has been demonstrated.

1 INTRODUCTION 

In any complex multi-agent system the optimal 
behavior of each agent depends on the behavior of 
other agents. A key feature of agents is the ability to 
learn and adapt to the conditions of an unfamiliar 
environment. Therefore, games with imperfect 
information represent a good platform for testing the 
behavior of agents’ algorithms. Current state-of-art 
approaches to finding optimal strategies for games 
with imperfect information, such as CFR (Zinkevich 
et al., 2007, Gibson, 2014) or linear programming 
(Koller et al., 1994), are based on a priori knowledge 
about the game, and do not fully reflect the learning 
process of agents. In this paper we propose a 
learning algorithm for agents without built-in 
information about the environment. It is based on the 
algorithm of fictitious play (Brown, 1951), and 
allows to overcome some of its limitations. The 
classic version of Brown's algorithm requires the 
calculation of the exact best responses at each step 
which is computationally challenging. The proposed 
modification replaces the calculation of the exact 
best responses at each step with the calculation of 
the approximate best responses by neural networks. 
At the same time agents initially have no knowledge 
about the environment, and obtain it during 

interaction by encouraging actions that lead to 
success and cutting losing actions. 

We begin with the definition of extensional 
forms games which represent a good framework for 
the description of multi-agent systems, and describe 
some concepts of game theory. Then we will briefly 
describe fictitious play algorithm and its limitations. 
After that, we will present our algorithm and 
demonstrate its ability to avoid iteratively dominated 
strategies on the example of Kuhn poker - simple 
game with imperfect information (Kuhn, 1950). 

2 BACKGROUND 

2.1 Extensive-form Games 

Extensive-form game representation is widely used 
to describe sequential systems with imperfect 
information and stochastic events. It can be viewed 
as a directed tree, where each non-terminal node 
represents a decision point for an agent and each leaf 
of the tree corresponds to winnings for the selected 
sequence of actions. If game includes stochastic 
events, such as a dice roll or dealing of cards, it is 
simulated by adding a special chance agent with a 
fixed strategy according to probabilities of stochastic 

296
Korukhova Y. and Kuryshev S.
Training Agents with Neural Networks in Systems with Imperfect Information.
DOI: 10.5220/0006242102960301
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 296-301
ISBN: 978-989-758-219-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



events. In games with imperfect information tree 
nodes for each agent are combined into the so-called 
information sets so that the agent cannot distinguish 
between such nodes within one set based on the 
information available to him. 

 

Figure 1: The game of "rock, paper, scissors" in the 
extensive form. 

Figure 1 shows the extensive form of the "rock, 
paper, scissors" game. Since decisions are made 
simultaneously, agent 2 cannot distinguish between 
states, dashed circled, and he must have the same 
strategy in all of those nodes. These nodes form the 
information set for agent 2. 

Here is the formal definition of extensive form 
games with imperfect information: 
Definition 1 (Osborne and Rubinstein, 1994). The 
game of imperfect information in the extensive form 
is a tuple (ܰ,ܪ, ܲ, ௖݂, ,ݑ ࣣ), where 
• N - a finite set of players 
• H – a set of sequences satisfying the following 

conditions: 
o An empty sequence ∅ is contained in H. 
o If the sequence (ܽ௞)௞ୀଵ,…,௄	 ∈ ܮ		and	ܪ then any subsequence.(ܽ௞)௞ୀଵ,…,௅ ,ܭ> 	 ∈  ܪ
o If an infinite sequence (ܽ௞)௞ୀଵஶ  satisfies the 

condition ∀	ܮ	 ∈ 	Գ	(ܽ௞)௞ୀଵ,…,௅		 ∈ then (ܽ௞)௞ୀଵஶ ,ܪ 	∈  ܪ
(Each member of the sequence ܪ is called the 
history; each component of the history is an 
action for the player). The history (ܽ௞)௞ୀଵ,…,௄	 	is terminal, if it is infinite, or if there is no ܽ௄ାଵ such that (ܽ௞)௞ୀଵ,…,௄ାଵ ܪ∋ ∈ (݄)ܣ  .ܪ ൌ ሼܽ: (݄, ܽ) ∈  ሽ is the set of actionsܪ
available after the nonterminal history ݄. The set 
of terminal histories is denoted by ܼ. 

• ܲ - a function that assigns an element of the set ܰ	 ∪ ሼܿሽ to each nonterminal history. (ܲ(݄)  is 
called the player's function and shows whose 
turn to act after the history ݄. If ܲ(݄) ൌ ܿ, an 
action after the history ݄ is determined by 
chance.) 

• ௖݂ - a function that assigns to each nonterminal 
history ݄, for which ܲ(݄) ൌ ܿ, a probability 
measure ௖݂(∙ |݄) on ܣ(݄), where each such 
probability measure is independent of the 

others. ( ௖݂(ܽ|݄)	 is the probability that the 
action ܽ will be taken after a history ݄) 

• For each player ݅ ∈ :௜ݑ ܰ ܼ	 → 	Թ is an utility 
function that determines the winnings for player ݅ for each terminal history ݄ ∈ ܼ. 

• For each player is ݅	 ∈ ܰ ௜ࣣ 	is a partition ሼ݄	 ∈ :ܪ ܲ(݄) ൌ ݅ሽ, so that ܣ(݄) ൌ  ݄ if (ᇱ݄)ܣ
and ݄′ belongs to the same partition member. 
For ܫ௜ 	 ∈ 	 ௜ࣣ  ܣ(ܫ௜)	defines the set of ܣ(݄), ܲ(ܫ௜) 
defines a player P(h) for any history ݄	 ∈ 	   .௜ܫ
( ௜ࣣ - is a information partition for the player ݅; ܫ௜ 	 ∈ 	 ௜ࣣ – information set for player ݅) 

Definition 2. Pure strategy of player ݅	 ∈ ܰ in an 
extensive form game with imperfect information is a 
function that assigns an action from ܣ(ܫ௜) to each 
information set ܫ௜ 	 ∈ 	 ௜ࣣ. 
 There are two ways of modeling possibilities of 
the players randomly select actions in certain states 
in extensive form-games. 
Definition 3. Mixed strategy for player ݅ in the 
extensive form game is a probability distribution 
over the set of pure strategies of the player. 
Definition 4. Behavioral strategy for player ݅ is a set 
of independent probability measures (ߚ௜(ܫ௜))ூ೔	∈	ࣣ೔, 
where ߚ௜(ܫ௜)ܣ is a probability distribution over ܣ(ܫ௜). 

The difference in the two definitions 
reflects two possible random choices of the player's 
actions: he can randomly select a pure strategy 
before the start of the game, or he can randomly 
choose the action each time during his turn. The 
most common concept of solving games is Nash 
equilibrium.  
Definition 5. Nash equilibrium (Nash, 1951) is a 
strategy profile ߪ where none of the players can 
increase his winnings by changing his strategy 
unilaterally: ߪ ൌ ,ଵߪ) (ߪ)ଵݑ	:(ଶߪ ൒ 	 maxఙభ′ ∈Σభ ′ଵߪ)ଵݑ , 	ଶߪ	 (ߪ)ଶݑ ( ൒	maxఙమ′ ∈Σమ 	ଵߪ)ଶݑ ,  (	′ଶߪ	
In large games it is often not possible to calculate 
the exact Nash equilibrium. Instead one can 
calculate it’s approximation. 
Definition 6. ߳-nash equilibrium is strategy profile ߪ 
where none of the players can increase his winnings 
by more than ߳ changing his strategy unilaterally: ߪ ൌ ,ଵߪ) (ߪ)ଵݑ	:(ଶߪ + 	߳ ൒ 	 maxఙభ′ ∈Σభ ′ଵߪ)ଵݑ , 	ଶߪ	 (ߪ)ଶݑ ( + 	߳ ൒ 	 maxఙమ′ ∈Σమ 	ଵߪ)ଶݑ ,  (	′ଶߪ	
In competitive games equilibrium strategies are so 
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complex that most of the players deviate from them 
in any way. A good player should notice and exploit 
such deviations to increase his own gain. In this 
case, the applicable concept is the best response. 

Let ିߪ௜ be the profile of strategies of player’s ݅ 
opponents - all strategies from ߪ profile except ߪ௜. 
Then the best response for player ݅ to opponents’ 
profile  ିߪ௜ will be ߪ௜∗ 	∈ 	 ,௜ߪ)௜ݑఙ೔ݔܽ݉݃ݎܽ  .(௜ିߪ

In the case of Nash equilibrium strategies of the 
players are the best responses to each other.  
Definition 7. A player's ݅ strategy ߪ௜ is weakly 
dominated if there is a different strategy for this 
player ߪ௜′, such that 

,௜ߪ)௜ݑ (1 (௜ିߪ ≤ ,′௜ߪ௜൫ݑ ௜ିߪ	∀	௜൯ିߪ ∈ Σି௜, 
௜ିߪ	∃ (2 ∶ 	 ,௜ߪ)௜ݑ (௜ିߪ < ,′௜ߪ௜൫ݑ  	௜൯ିߪ

If the second condition is satisfied for all the profiles 
of opponents’ strategies ିߪ௜ ∈ Σି௜ߪ௜, a strategy is 
called strictly dominated. 
For each type of domination iteratively dominated 
strategy can be defined recursively as any strategy 
that is dominated at present, or becomes dominated 
after excluding iteratively dominated strategies from 
the game.  

2.2 Poker 

Poker is a class of card games with two or more 
players. There are more than 100 poker variants with 
different rules. General elements of all types of 
poker are completely or partially closed opponents’ 
cards, card combinations, and the presence of trade 
during the game. Poker has interesting properties 
that cannot be analyzed by conventional approaches 
used in games with the full information: 

• Incomplete information about the current 
state of the game. In most variants of poker 
players cannot see opponent's cards.  

• Incomplete information about opponents’ 
strategy. The hidden information is not always 
revealed to players at the end of the game, 
which is an obstacle to the definition of 
strategies of opponents. Therefore, opponents 
have to use simulation approaches based on the 
frequency of their actions. 

• Stochastic events. The random distribution of 
cards makes the players to take risks.  

• Various numbers of players (2 to 10). Games 
with more than one opponent are strategically 
different from the games of two players, as the 
Nash equilibrium is not giving a break-even 
guarantees. Opponents may accidentally or 

deliberately choose a strategy so that a player’s 
strategy from equilibrium profile will lose. 

• Repeated interaction. Poker is a series of short 
games or hands, where after each hand the 
player receives partial information about his 
opponent, which allows him to make 
adjustments in their strategy. 

• Importance of opponents’ errors 
exploitation.  

2.2.1 Kuhn Poker 

Even the smallest variant of competitively played 
poker has a large number of game states (Johanson, 
2013), and the game requires a lot of computing 
power to solve. So much smaller variations of poker, 
retaining its basic properties, are often applied for 
testing algorithms. 

Kuhn poker was proposed by Harold Kuhn in 
1950. It is a very simple version of poker, which is 
attended by two players. The deck consists of three 
cards: queen, king and ace, the game takes place 
only one round of bidding, and only 4 actions are 
available to players: bet, check, call and fold. The 
game is played as follows: 
• Both players initially make a bet of 1 chip into 

the pot, called the ante. 
• Each player is dealt one card 
• The first player can choose to bet or check.  
The amount of betting is fixed to 1 chip. 
• If the first player selects a bet, the second player 

can play call, or fold 
o In the case of call the showdown 

occurs. The player with the highest 
card wins the pot. 

o In the case of fold the pot goes to the 
first player. 

• If the first player chooses a check, the second 
player can play a bet or a check 

o If the second player selects the check 
the showdown occurs. The player with 
the highest card wins the pot. 

o If the second player selects the bet, the 
first player can play call, or fold 
 In the case of call the showdown 

occurs. The player with the 
highest card wins the pot. 

 In the case of folding pot goes to 
the second player. 

Kuhn poker can be generalized to multiple 
players version. In this case, a deck for ݊ players 
will consist of ݊ + 1 cards. Kuhn poker with three 
players is used as one of the games at the Annual 
Computer Poker Championship. 
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Figure 2: Nash equilibrium in Kuhn poker. 

Kuhn poker is fairly simple so Nash equilibrium 
(fugure 2) and dominated strategies can be 
calculated manually in the case of two players. 

Dominated strategies in Kuhn poker are 
strategies containing the following actions with 
more than 0 probability: 

• Fold with the ace by second player after first 
player’s bet. When the second player has the 
ace, the first player may only have a king or 
queen, and thus calling a bet will lead the first 
player to winning 2 chips, while folding to the 
loss of one chip. 

 

• Call with the queen be second player after 
first player’s bet. Similarly, calling a bet with 
the queen, when the enemy is always has better 
card leads to losing more compared to fold. 

 

• Check with the ace by second player after 
first player’s check. Checking with ace leads to 
a gain of 1 chip, while betting in the worst case 
(when the enemy always folds) leads to a gain 
of 1 chip. If the opponent at least sometimes 
makes a call, the gain becomes greater than 1 
chip. 

 

• Fold with the ace by first player after second 
player’s bet. The proof is similar to the first 
paragraph. 

 

• Call with the queen by first player after 
second player’s bet. The proof is similar to the 
second paragraph. 

All the above examples are parts of weakly-
dominated strategies, as the enemy might choose a 
strategy that does not generate required sequences of 
actions. And this will lead to unstrict inequality in 
 

definition 5. 
After the removal of the strategies described 

above, strategies containing the following parts 
becomes dominated: 

• Bet with the king by second player. The 
enemy always folds with queen and calls with 
ace. Thus, the average gain after bet is -0.5 
chips. Average gain after check is 0. 
 

• Bet with the king by first player. The proof is 
similar. 

It is easy to show that there are no any dominated 
strategies left in Kuhn poker. Kuhn poker has an 
infinite number of Nash equilibrium profiles, where 
the strategy of the first player is determined by the 
parameter ܽ, and the second player's strategy is 
constant. 

3 TRAINING AGENTS WITH 
NEURAL NETWORKS 

In this paper we consider multi-agent system that 
represents trading agents acting in the environment 
with imperfect information. The essence of the 
fictitious play (FP) algorithm is that the agents 
repeatedly play the game, selecting the best counter-
strategy to the average opponents’ strategies on each 
iteration. In this case average strategy profile 
converges to Nash equilibrium in certain classes of 
games, in particular in zero-sum game. However, 
this approach has not found widespread use in large 
games due to its dependence on the representation of 
the game in the normal form and poor scalability. 
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We propose a modification of FP algorithm using 
neural networks to build strategies for multi-agent 
systems. In our approach agent’s strategy is stored as 
a neural network. Network’s input is the current 
state of the game. Network’s output is a probability 
distribution over all possible actions in the current 
state. The advantage of this approach, as compared 
to conventional methods of constructing strategies in 
multi-agent systems is the lack of built-in 
information about the environment, and as a result 
its versatility. The pseudo-code of the algorithm is 
shown below. 

InitAgent (arbitrary); 
for (i = 1; i <numSteps; i ++) { 
 handHistory = Play(Agent, Agent,  
                     numHands); 
 foreach(actHistory) { 
  hhByAaction[actHistory] =  
   CutHH(handHistory,actHistory); 
    SortByEV(hhByAaction); 
    for (j = 1; j<length 
          (hhByAaction[actHistory]) 
           /learningRate;  
         j++) { 
      action = CutAction(  
         hhByAaction[actHistory][j]); 

   AddToTrainInput(actHistory); 
   AddToTrainOutput(action); 
  } 
} 

 Agent.neuralNet = train   
  (Agent.neuralNet, trainInput,  
   trainOutput); 
} 

Code 1: Agent’s learning algorithm. 

First the agent’s neural network is initialized so 
that it outputs equal probabilities of actions on each 
game state. An important difference between this 
initialization from the random one is that it allows 
the agent to try different actions on the first step of 
the algorithm. While the neural network, resulting 
from random initialization can have zero or very low 
probabilities of certain actions, and thus the agent 
will never know how good or bad it is. 

At each step of the algorithm agent plays himself 
numHands hands and saves the hand history. Then 
this history is divided into sub-histories according to 
states of the game. Each sub history is sorted by 
winnings for the relevant agent. A certain number of 
sub-history’s first elements are added to the training 
set, depending on the learning rate. Then agent trains 
his neural network. Thus, the strategy at each step is 
replaced by the approximate best response to the 
previous agent’s strategy. 

 

 

 

Figure 3: The results of the algorithm for QA, KQ and AK 
subtrees on the 1st, 2nd and 10th step. 

The algorithm was implemented in MATLAB and 
tested on Kuhn poker. Kuhn poker has a small 
number of game states, but retains all the key 
features of games with imperfect information. Nash 
equilibrium and dominated strategies in Kuhn poker 
can be calculated manually, which is convenient for 
the evaluation of the program. The following 
parameters were used in the testing algorithm 
training agents in Kuhn poker:  
numSteps = 10, numHands = 100, learningRate = 5. 
The results of the program by steps for QA, KQ and 
QK subtrees are shown on the figure 3.  

Since agents can’t distinguish game states where 
their opponents have different hole cards using these 
subtrees is enough to show full agent’s strategy 

It can be seen that a part of the dominated 
strategies has been removed. But on the second step 
of the algorithm agent’s 2 bet with every card after 
agent’s 1 check became approximate best response. 
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After the agent’s strategy was changed to this 
approximate best response, the agent stopped to 
select check in this state, and thereby lost the 
opportunity to learn that the check may be better 
than bet. To resolve this problem, an algorithm has 
been modified, and the strategy of the agent at each 
step was replaced not with approximate best 
response: 

Agent.neuralNet = 
train(Agent.neuralNet, trainInput,  
      trainOutput); 

but with the arithmetic mean of best response and 
previous strategy: 

Agent.neuralNet = (Agent.neuralNet +    
  train (Agent.neuralNet,trainInput,  
         trainOutput)) / 2; 

The results of the modified algorithm on the 10th 
step are shown on the figure 4. 

 

Figure 4: The results of modified algorithm on the 10th 
step. 

The modified algorithm removed all iteratively 
dominated strategies from the game. The best 
response accuracy and thus convergence to Nash 
equilibrium depends heavily on the method of 
generating training set for the neural network on 
each step. We will continue our work to reach and 
prove the convergence of the algorithm to Nash 
equilibrium. 

4 CONCLUSIONS 

In this paper an algorithm for training agents in 
imperfect information systems with neural networks 
was proposed. An important feature of the algorithm 
is the absence of a priori knowledge of the system. 
Agents’ learning goes through trial and error: 
winning actions are encouraged and stored into the 
training set, losing actions are cut from the strategy. 
The proposed algorithm has been tested on a small 

game with imperfect information and its ability to 
remove iteratively dominated strategies of agents' 
behavior has been demonstrated. However, further 
research is required to ensure the convergence of the 
strategy profile to Nash equilibrium. 
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