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Abstract: Wearable devices and smartwatches have become prevalent in recent years, yet consuming web contents on 
those devices are not common mainly due to their restricted IO capabilities. In this paper, we revisit the web 
browser model and propose the notion of fast access browsing that incorporates the lightweight, always-on 
web snippets, namely widget view, into web applications. This allows smartwatch users to rapidly access 
web contents (i.e., within 200ms) similarly as they interact with notification. To do so, we analyse about 90 
smartwatch applications, identify the quick preview pattern, and then define the constrained web 
specifications for smartwatches. Our implementation, the wearable device toolkit for fast access browsing, 
is now being tested and deployed on commercialized products and the developer tool for building widget 
view enabled web applications will be soon available as the smartwatch SDK extensions. 

1 INTRODUCTION 

Notification and application are two main smart 
experiences that wearable devices provide nowadays. 
The benefit of notification on wearable devices is 
considered well justified since the rapid access to 
contextually relevant information e.g., messages, 
appointments, and news, is usually important, yet 
running applications presumably need significant 
improvement. It is naturally anticipated that the 
smartphone users’ experiences of playing with 
various applications and browsing web contents can 
be readily migrated to smartwatches and equally 
accepted, but unfortunately, our internal statistics on 
the app store activities indicates that smartwatch 
applications do not reach the wide popularity level 
of mobile app ecosystems.1 Furthermore, in general, 
the existing platforms rarely prioritize the 
application of web browsing as an important feature 
on wearable devices. 2  It is mainly due to their 
inherent physical limitations such as tiny display and 
battery power that can degrade the browsing 
experience. For instance, Samsung Gear S2 
(released on October 2015) smartwatch has 

                                                           
1 Same insight can be found from www.argusinsights.com/wearable-apps-

2016 
2  watchOS, Tizen wearable, and Android wear haven’t included web 

browsers as preload applications on their commercial devices, and there is 

no smartwatch version of web browsers from major browser providers. 

1.2inches 360x360 pixels display, 512MB RAM, 
and 300mAh battery while Samsung Galaxy S7 
smartphone (released on March 2016) has several 
times capabilities including 5.1inches 1440x2560 
pixels display, 4GB RAM, and 2550mAh battery. 

Web browsing is a main part of daily life and 
gets more valuable as more time people are online 
through various devices and networks. It should be 
noted that web browsing is usually performed not 
only through conventional web browsers but also 
with web-enabled applications that are common in 
mobiles e.g., WebView applications of Android. In 
the aforementioned circumstance, however, web 
browsing would not be soon prevalent on wearable 
devices unless the way to dealing with web contents 
is essentially reformulated. 

In this paper, we propose a new model for 
browsing web contents on wearable devices, 
specifically commonly available smartwatches, 
addressing the limitation of smartwatch applications 
and making the best use of the beneficial 
characteristics of notification, that is, the rapid 
access to the information. In doing so, (1) we first 
extend the web application structure by introducing 
a snippet of web contents, namely widget view that 
contains the most important contents provided by a 
web application and runs on the always-on mode for 
the fast access in a way  analogous to how 
notification interacts with users. (2) We then analyse 
a set of existing smartwatch applications so as to 
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identify the information patterns for the fast access 
and define the web-based specifications for those 
patterns. Note that the specifications are not new but 
generally constrained from existing 
HTML/CSS/JavaScript. (3) We finally implement 
the concept of fast access browsing on smartwatches 
in which web applications can be provisioned and 
accessed through widget view.  

As a result, loading the constrained web contents 
by widget views takes less than 200ms and has only 
26 percent of memory footprint compared to when 
using a conventional web browser. In principle, such 
rapid loading and timely response satisfy the 
requirement of wearable specific swipe-based 
navigations similarly as notification does, while the 
constrained specifications do not much compromise 
whole web experiences. Our work has been tested on 
Tizen-based smartwatches. The runtime 
implementation for the constrained specifications is 
now being deployed commercially, and the 
developer tool for building widget view-enabled web 
applications will be soon available as the smartwatch 
SDK extensions. 

2 BACKGROUND 

Compared with smartphones’ sophisticated 
applications, modern smartwatch applications have 
several limitations such as restricted touch 
interaction and runtime environment due to the fact 
that smartwatches have lower hardware capabilities 
and smaller displays (Apple, 2015, ‘Apple watch 
human interface guidelines’; Samsung, 2014, 
‘Samsung gear application programming guide’; 
Connolly et al., 2014, ‘Designing for wearables’). 
There have been several smartwatch OS platforms 
including watchOS, Android Wear and Tizen 
wearable profile, and they provide the common 
application types for similarly establishing the fast 
information access under such limitations: Glance of 
watchOS 2, Always-on app of Android Wear, and 
Widget app of Tizen. In the following, we analyse 
the application model of such three OS platforms, 
particularly concentrating on their common 
characteristics relevant to the fast information access 
so as to identify the concept and requirement of the 
fast access browsing. 

2.1 Apple WatchOS 

watchOS is the operating system of Apple Watch 
that provides the watch application project type 
consisting   of   two   separately   composed  bundles, 

  

Figure 1: Apple Watch Application Structure. 

 

Figure 2: Apple Watch Glance Examples. 

a Watch app and a WatchKit extension. A Watch 
app bundle contains the storyboards and resource 
files associated with the user interfaces of a watch 
application. A WatchKit extension bundle contains 
the extension delegate and the controls for managing 
those interfaces and responding to user interactions. 
Those bundles are packaged and deployed inside the 
iOS application on the mobile phone, and they are 
then installed on the user’s watch and run locally as 
illustrated in Figure 1 (Apple, 2016, ‘Apple watch 
app architecture’). 

For supporting the fast access to important 
information, a Glance can be added in a WatchOS 2 
project. Having a simple swipe at the bottom of the 
watch face, a user can quickly launch a Glance with 
a summarized view. Note that a Glance is part of a 
watch application and thus tapping a Glance usually 
makes its companion application displayed with the 
main interface in a full-fledged manner. The right 
diagram of Figure 1 describes the architectural view 
of Glance. Glances form a swipe-able collection of 
instant applications in that on each Glance, a user 
can quickly navigate to other Glances by swiping to 
left or right. Figure 2 depicts Glance examples that 
facilitate quick information view. (Bos, 2015) 
 
Limitations 
As implied by the name, Glances are meant to be 
quickly accessed and briefly looked, so there are 
several restrictions on how they can deal with 
contents. First, Glance contents and interfaces are 
intended for statically fitting on a single screen of a 
watch face. They are given non-scrolling in their UI 
structure and their text and graphical data items are 
set as read-only. 

Moreover, Glances do not contain dynamic and 
interactive UI controllers and thus their functional 
capability is inherently limited. Glances do not 
intend for providing rich interactivity in that tapping 
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Figure 3: Android Wear Application Structure. 

 

Figure 4: Android Wear always-on Application Example. 

a Glance launches its companion application by 
default. Therefore only static contents are considered 
for Glance contents, indicating that buttons, switches, 
sliders, and menus are not supported. Furthermore, 
Glances are not able to directly access web contents. 
As the watchOS does not support the UIWebview 
controller that is commonly used for embedding web 
contents into iOS mobile applications. It is possible 
to have some workarounds to retrieve web contents, 
e.g., using a transcoding proxy that interacts with a 
web server and converts web contents to data 
streams that can be embedded in labels and image 
views. However, such a workaround requires 
additional implementation according to the specific 
rendering capability of watch applications and the 
result ends up with being not compatible with 
standard web architecture.  

2.2 Android Wear 

Android Wear is the Google’s Android operating 
system specially tailored for smartwatches. An 
Android Wear application is packaged within a 
companion mobile application, and so a wearable 
application is automatically pushed and installed 
onto the Android Wear device while a user 
downloads and installs a mobile application from the 
Android store as illustrated in Figure 3 (Jeff, 2016). 

Android Wear supports the low-power ambient 
mode by which the contents displayed on the watch 
face can be adaptively controlled for saving the 
battery power. In principle, an application can be 
configured as running in either such ambient mode 
for low-power operations or interactive mode 
(normal mode) with full functionalities. Note that 
the applications supporting both modes are 
categorized as always-on, and they are intended for 
keeping always visible; that is, even while a user 
drops her arm, an always-on application stays visible 

  

Figure 5: Tizen Wearable Application Structure. 

on the watch face. The right diagram of Figure 3 
depicts the always-on application structure and the 
navigation flow between applications. Figure 4 
depicts an example always-on application, the 
shopping list in which the remaining shopping items 
are always shown even at the ambient mode. 
 
Limitations 
Similar to Glances, applications running on the 
ambient mode restrict their functionalities. First, the 
background color scheme is strictly limited to black, 
white, and gray. Second, the screen cannot be 
updated more frequently than every minute, so 
animations are not supported. For those applications 
that require more frequent updates, such as fitness, 
time-keeping, and travel information, developers 
may use AlarmManager object to wake up the 
processor and update the screen frequently but this is 
not recommended due to the overhead on the battery 
consumption. Moreover, navigation of an always-on 
application is restricted in that switching to other 
applications cannot be made by a single swipe on the 
ambient mode. An application needs to run on the 
normal mode before switching to another application 
as in Figure 3. 

Current Android Wear does not support 
WebView component that is used for embedding web 
contents into Android mobile applications. This 
limitation is same as that of watchOS. There are 
downloadable web browsers for Android 
smartwatches (Google, 2016, ‘Web browser for 
Android Wear’) available from the Google Play but 
these independent browsers cannot be used for 
embedding web contents into other wearable 
applications. 

2.3 Tizen Wearable 

Tizen is the operating system based on the Linux 
kernel, being configured for supporting various 
device profiles including wearable devices. Samsung 
Gear devices based on Tizen wearable OS may be 
paired with Android mobile phones as in Figure 5.  
Tizen wearable applications can be written on both 
native and web APIs, and they can be packaged 
with .tpk (Tizen native package) and .wgt (Standard 
web application package) formats respectively. 
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Figure 6: Tizen Wearable Application Structure. 

 

Figure 7: Tizen Widget Application Example. 

A Tizen wearable application for Samsung Gear 
smartwatches can be configured to run on either the 
standalone mode or the companion mode (Samsung, 
2015, ‘Gear developer overview’) as in Figure 6. 
Note that the standalone mode is not supported in 
either Android Wear or Apple watchOS. A 
standalone application runs independently while a 
companion application runs with two parts, a Gear 
application and a mobile host application (e.g., 
Android mobile application).  

Similar to Glances of watchOS previously 
explained, Tizen supports a lightweight application 
model, namely Tizen widget that is used for the 
home screen customization and the quick approach 
to application functions. Widgets are displayed on 
the widget board as in the right diagram of Figure 5 
therefore a user may navigate the widgets quickly 
from the widget board. 

For a Gear device with the round design, widgets 
are located on the right side of the home screen and 
accessed by rotating the bezel. They offer important 
information and access to quick actins without 
requiring a user to open an application as shown in 
Figure 7. 
 
Limitations 
In Tizen, widgets are available for wearable devices.  
However, they are constrained in terms of the visible 
size, the types of interactions, and the maximum 
number of running instances. Generally a wearable 
widget takes the whole screen. Thus interaction 
events are restricted in that they are only available to 
distinguish widget events and platform events. 
Specifically rich interactions like vertical scrolling 
are not supported and tapping usually leads to open 
an application. Tizen allows up to 15 widgets on the 
widget board and each of them can be rapidly 
accessed from the right hand side of the home screen. 

 

Figure 8: Memory Usages on Tizen Gear Device. 

Different from the hybrid application model of 
Tizen by which both native and web APIs are used, 
widgets can be only written in Tizen native APIs as 
illustrated in Figure 5. It is the design decision of 
Tizen which considers the fact that multiple widgets 
should run as always-on and executing web APIs 
through a web engine (e.g., WebKit- or Chromium-
based) for those widgets require much more memory 
than commercial products may provide. Our internal 
tests show that running 15 web-based widgets using 
the conventional WebKit-based web engine on a 
Tizen-based smartwatch product may consume 
350~400MB runtime memory. In practice, this is 
hardly within the range of the available memory 
after the system boot-up when considering the 
512MB RAM equipment. In fact, after the booting-
up (running the system kernel, platform libraries and 
several preloaded native applications), there is only 
up to about 130MB available memory on those 
devices as in Figure 8. 

2.4 Problem Definition 

As explained previously, the modern OS platforms 
for smartwatches support the lightweight version of 
applications, watchOS 2 Glance, Android Wear 
Always-on, and Tizen widget, which commonly 
enable the fast access to important information and 
frequently used application features. These are 
effective, yet are limited of significance particularly 
in delivering web contents. 
Our usability tests on the smartwatches significantly 
indicate that the rapid response for user input 
requests is critical in that e.g., switching the 
information among notifications and widgets should 
be done instantaneously with the swipe events on the 
watch screen. To enable such a rapid responsiveness, 
Tizen wearable generally maintains a set of 
notifications and widgets on the runtime memory, 
implying that runtime memory can easily be much 
consumed without a well-defined management 
policy. Suppose that a Tizen smartwatch has a 
runtime system where each widget consumes 5MB 
and it has 15 running widgets. In this case, out of 
130MB available memory after the system booting-
up, 75MB for the widgets are consumed. 
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It is our system safety configuration that 30MB 
is reserved for out-of-memory status. Considering 
these all memory consumption, the system ends up 
with 25MB available memory for running other 
applications. This calculation drives the requirement 
of memory usages when dealing with web contents 
on widgets.  

In the following, under this consideration, we 
propose the fast access browsing system particularly 
dealing with web contents on smartwatches. 

3 DESIGN OF FAST ACCESS 
BROWSING SYSTEM 

Our proposed system for supporting the fast access 
browsing consists of three components: mobile 
browser that runs on the smartphones (which is not 
our focus in this paper), widget view runtime that 
manages the lifecycles of widget views, and 
wearable browser that supports the full-fledged 
browsing on non-constrained mode, e.g. with snap-
scrolling (Rakow et al., 2016), of circular designs. 
The web browsing session of our proposed system is 
illustrated in Figure 9 where the interactions of three 
components are described  below. 
1. Suppose the mobile browser accesses a website 

example.com that has the widget view section in its 
web app manifest (Caceres et al., 2016). 

2. The manifest is first sent to the wearable’s widget 
view runtime and then gets installed. 

3. The user chooses the installed widget view, adding it 
on the widget view screen. Note that the maximum 
number of widgets on the widget view screen can be 
configured depending on the device capability. The 
contents of the selected widget view 
(example.com/widget_view.html) are rendered and 
periodically refreshed according to the predefined 
configuration (e.g., once in 30min). 

4. Upon a user event (e.g., touch interaction on the 
widget view), the widget view runtime launches the 
wearable browser with the pre-configured URL 
example.com for showing the richer contents. 

5. The wearable browser loads the website from the URL 
and allows the wearable specific browsing experience. 

6. Furthermore, the wearable browser can launch the 
mobile browser, if needed. 
The mobile browser is capable of parsing the 

web app manifest associated with the website, and 
prompting a user for the widget view installation 
when it detects the wearable device being connected 
to the mobile device. Upon the user’s consent, the 
manifest is sent over to the wearable device through 
an available connectivity such as Bluetooth. The 
widget view runtime manages the lifecycle of a 

widget view which has four states: installed, 
running, 

 

Figure 9: Overview of Fast Access Browsing System. 

suspended, and uninstalled. After installation, the 
widget view appears in the widget view list. The 
user can select and put it in a position on the widget 
view screen. 

As the widget view screen is configured to locate 
a set of widget views where the maximum number 
depends on the device capability such as the 
available memory for running always-on style 
applications. Thus, the user may need to remove one 
or more widget views from the widget view screen. 
The widget view runtime can be configured to 
periodically refresh the loaded widget view in order 
to fetch the latest information through the network. 
To save the battery power, the widget view is not be 
refreshed at the suspended state. 
A widget view can be configured to trigger and 
launch the wearable browser application. Upon the 
trigger, the URL associated with the widget view is 
sent to the wearable browser over IPC, and the 
wearable browser loads the website for full-fledged 
browsing. Typically a well-designed website 
combines the CSS media query with its content 
styling so that the contents and layouts of the 
website can be optimized for small screen devices. 
One of the useful CSS styling techniques for small 
screen devices is the snap scrolling which allows the 
scrolling to stop at a predefined “snap point” 
position so that the user does not have to manually 
adjust the scroll stop position. When the wearable 
screen is too small for browsing, the wearable 
browser can send the URL back to the mobile 
browser. In this case, the is being sent over together 
with the URL so that the browsing experience on the 
mobile device can be seamlessly continued.  

The overall system design enables the different 
modes of web content consumption: full site 
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browsing experience with mobile browsing, quick 
glance experience with widget view, and quick and 
richer experience with wearable browsing. 

Table 1: Application Domains. 

Applications 
Health Pedometer, Heartbeat, Drinking Water, Tracker 

Planning Scheduler, Alarm, Task Manger 
Information Weather, News, Stocks, Airline Ticketing, Traffic

Control Music Play, App launch, System, Bluetooth 

Table 2: Requirements for Widget View. 

Layout 
Requirements 

No-scrolling support 
Restricted interaction only with tap event 
Simple layout having text, font, or image  
Small screen with scrolling text 

Feature 
Requirements 

Sharing data between widget and application 
Timely data update via network connection 
Accessing and controlling system information 
Launching application 

 

It is desirable that a user can choose her 
preferred way of web content consumption 
depending on the type of contents and contextual 
situations. Notice that the fast access browsing in 
this paper is introduced for web content 
consumption particularly on smartwatches but can 
be applied to other devices such as e.g., glasses with 
specification adaptations. 

4 SPECIFICATION OF FAST-
ACCESS BROWSING 

4.1 Requirement Analysis 

We analyse a set of representative smartwatch 
applications including 45 Tizen widgets, 35 
watchOS Glances and 10 Android Wear Always-on 
applications whose domains are categorized as 
health, planning, information and control. The 
domains are denoted in Table 1. The applications in 
the health domain display the health-related data 
acquired from smartwatch sensors and update the 
data through a simple user interaction. The 
applications in the planning and the information 
domains generally display the application specific 
instant data, keeping them continuously updated 
through the network connection. Note that about the 
half of our analysed applications are in the 
information domain, e.g., weather, news, stocks, 
airline ticketing, traffic, etc. It is because 
smartwatches are considered particularly suitable for 
exposing the quick information to users and such 
benefits have been widely accepted in the market so 

far. Many applications in the information domain 
also provide the location-based information. There 
are also several control applications that play the 
music, control the system information, or launch the 
applications. 

Table 3: Comparison of Wearable Features and Web APIs. 

Feature API Health Planning Info. 

DOM, 
Forms, 
Styles 

HTMLF5 Forms X X X 
Selectors API O O O 
Media Queries X X X 
CSS Transforms X X X 
CSS Animations X X X 
CSS Transitions O X O 
CSS Color O O O 
CSS Background/Border O O O 
CSS Fexible Box Layout X X X 
CSS Multi-col Layout X X X 
CSS Text & Fonts O O O 

Device 
Touch Event X X X 
Device Orientation Event X X X 

Graphics Canvas, SVG X X X 

Media 
Video & Auido X X X 
Web Speech API X X X 

Comm. 

Web Socket API X X X 
XMLHTTPRequest X O O 
Web Messaging X X X 
Geolocation X X O 

Storage 
Web Storage O O O 
Application Caches X X X 
Indexed Database X X X 

Security 
Cross-Origin Res Sharing X X X 
iFrame X X X 
Content Security Policy X X X 

UI 
Clipboard API X X X 
Drag and Drop X X X 

Perfor- 
mance 

Web Workers X X X 
Page Visibility O O O 
requestAnimationFrame O O O 

Overall, these applications have the common 
feature that present information quickly to 
smartwatch users, and those are not web-based, but 
native on watchOS, Android Wear, or Tizen 
wearable. Based on this analysis, we take out the 
requirements regarding the widget layouts and the 
functional features so as to define the constrained 
web specifications for implementing widget views 
that render web contents. The requirements are 
summarized in Table 2. In the following sections, 
we explain the functional and the non-functional 
specifications that meet the requirements. 

4.2 Functional Specification 

Having the comparison of the application features 
and the W3C standard web APIs as shown in Table 
3, we identify a subset of the web APIs that are 
necessary for achieving the fast access browsing 
through widget view. In addition, we include a 
subset of the device APIs that enable widget view to 
utilize the device native capabilities including 
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Application, File System, Sensor, System 
Information, and Message Port. 

Application API provides a functionality to 
launch applications. File System API and Message 
Port API are used for the communication between 
widget views and application to share data. Sensor 
API   provides   the    interfaces    and   methods   for 

 

Figure 10: CPU Usage of Audio and Video. 

 

Figure 11: Loading Time Ratio for External Web Site. 

accessing internal device sensors. Sensor API is 
particularly used in the health domain. System 
Information API provides information about the 
device’s display, network, storage and other 
capabilities that are useful in the control domain. 

Note that there are a couple of smartwatch 
applications that control the music playlist. However, 
we decide not to support the Audio and Video web 
APIs since they consume much CPU and battery 
resources. Maximizing the battery life is one of the 
most critical issues in the smartwatch usability (Min 
et al., 2015; Dredge, 2014; Proges, 2015; 
Rawassizadeh et al., 2014). Our experiments with 
different application types show that using the audio 
and video incur the overheads of more than 100 
times compared to non-multimedia applications, as 
depicted in Figure 10. Therefore, we rather prefer 
exploiting mobile device resources to play the audio 
and video through the wearable interface. 

4.3 Non-Functional Specification 

In order to support the rapid loading of the web 
contents with small runtime memory and power 
consumption, we specify several non-functional 
restrictions and best practices including: 
• Do not allow to load heavy resources such as 
CSS, JavaScript and images from external networks. 
In principle, loading those resources via networks 
not only takes much time with network roundtrips 
but it can frequently block from rendering web 

contents. Figure 11 illustrates the rendering pipeline 
time when browsing an example site (e.g., 
m.naver.com) and indicates that loading resources 
takes 49% of the complete processing time. This 
pattern would heavily change depending on the 
network connectivity but it is relevant since 
wearable devices may not be always in a stable 
network condition. AMP(Accelerated Mobile Page) 

 

Figure 12: Loading Time by Different Resources. 

 

Figure 13: Memory Usage by Different Resources. 

 

Figure 14: Memory Usage by Increasing Image Resolution. 

recommends blocking all third-party JavaScripts so 
as to render web pages instantly (Google, 2016, 
‘How AMP Speeds Up Performance’). It is because 
third-party JavaScripts typically contains heavy 
processing codes. In the same sense, we restrict 
external resources when rendering widget views 
except for what is required to display the widget 
view contents. We consequently limit the 
specification that only XHR (XMLHTTPRequest) is 
allowed for directly interacting with external web 
resources, i.e., XHR is allowed to retrieve specific 
contents from backend web servers and update 
dynamically with the latest data. 

Restrict the size of HTML, CSS, JavaScript files 
no more than 50KB. It is because our experiments 
illustrate that large resources, especially JavaScript, 
incur much loading delays as shown in Figure 12 
and much memory consumptions as shown in Figure 
13. We test several cases with different web 
frameworks including the jQuery library and find the 
same pattern in delays and memory usages. In the 
figure, the average application sizes are 23KB and 
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118KB respectively for base applications and 
applications with JQuery. The restriction is set as 
50KB heuristically as it is generally sufficient to 
compose the UI layout and behavior logics of 
wearable widget views. 
• Restrict the image resolution less than 1.5 times of 

the base image resolution. It is because higher 
resolution images consume much more memory as 

 

Figure 15: Widget View Validator. 

 

Figure 16: Widget View Validation Example. 

depicted in Figure 14. Also restrict the formats to 
the popular image formats such as JPEG, PNG and 
GIF. BMP is not allowed because the file size may 
be often too large. 

4.4 Specification Validation 

As explained previously, the specifications of widget 
views are based on web standards but constrained in 
several ways. Therefore, if a code of widget views 
contains unsupported HTML, CSS or JS API, the 
widget view engine cannot interpret the code 
correctly. For helping developers in this situation, 
the widget view validator is additionally 
implemented as a pluggable function in the IDE. 

Our implementation is based on Tizen IDE for 
wearable applications including widget views. The 
validator checks the code with the widget view 
specifications and then passes the results to the IDE 
as in Figure 15. Subsequently the IDE notifies the 
warning messages to a developer, if any. Note that 
the validator includes both the functional and the 
non-functional specification rules for checking. 

Figure 16 illustrates a validation result of a 
sample widget view code with constrained HTML 
and CSS. The messages of the validator contain the 
file name, lines, columns, the warning messages, and 
the guide instructions so that developers can locate 
errors and use alternative APIs from the constrained 
specifications. In this example, CSS selector usages 
are guided to use ‘Type/CSS selector’ instead of 
restricted ‘Child Selector’. 

 

Figure 17: Widget View Runtime Architecture. 

1 { 
2     "name": "My Daily News", 
3      ..., 
4      "start_url": "/index.html", 
5      "widget_view": { 
6           "widget_view_url": "/widget-view.html", 
7           "icon": { 
8               "src": "icon/news-widget-view.jpg", 
9               "size": "128x128", 
10             "type": "image/jpg" 
11         }, 
12         "update_period": "60" 
13     } 
14 } 

Figure 18: Sample Widget View Manifest. 

5 SYSTEM IMPLEMENTATION 

In this section, we explain the system 
implementation of widget view runtime and 
wearable browser extension which are the major 
components of the fast access browsing system. Our 
implementation is based on Tizen wearable and 
deployed on Tizen-based smartwatches. 

5.1 Widget View Runtime 

The widget view runtime is the runtime environment 
by which widget views are installed, managed, and 
executed. Figure 17 depicts its internal architecture 
having three sub-modules: widget view installer, 
widget view manager, and widget view client, of 
which details are explained in the following. 
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Widget View Installer receives a manifest of a web 
application from the mobile browser and performs 
the subsequent installation steps. It is important that 
the associated URL of the manifest is delivered over 
a secure HTTP connection (i.e., HTTPS); this 
ensures for the fast access browsing system to 
retrieve the widget view from a trusted authority. 
The installation steps consist of parsing the manifest, 
extracting the relevant information such as widget 
view name, start-page URL, refresh period, etc., and 
registering the information into the entries database 
of widget views. It is worthwhile to note that the 
widget view installer is executed as a standalone 
process, as the process requires additional system 
privileges to perform a sequence of installation steps 
including validating the manifest, writing files to the 
system directory, registering to the package manager, 
and so on. 

Figure 18 shows an example code of the widget 
view manifest that is slightly extended from the web 
app manifest (Caceres et al., 2016) to include the 
following data: 
• “widget_view_url”: refers to the content URL 

from which the widget view page is updated. 
• “icon”: specifies the icon of the widget view that is 

displayed on the widget view list menu. 
• “update_period”: specifies how often the widget 

view  gets updated. 
 
Widget View Manager is a daemon process that 
coordinates widget views and manages their 
lifecycle. The process is initialized at the system 
startup, establishing a communication channel with 
the widget view screen via the system IPC (inter-
process communication). When a user selects a 
widget view from the installed widget view list, the 
widget view screen requests the widget view 
manager to load the selected widget view. The 
widget view manager in turn requests the widget 
view client to load and render the widget view on 
the GPU buffer which is shared between the widget 
view screen and the widget view client. As similarly 
to the widget view installer previously explained, the 
widget view manager has additional system 
privileges to access a set of sensitive system 
information including the installed widget list, the 
running widget list and their GPU buffer pointers, 
etc., and for this reason it runs on a separate process 
being isolated from widget view clients. 

Each widget view follows the four states as in 
Figure 19. The widget view manager keeps track of 
the running and suspended states of the loaded 
widget views, and changes the states to be 
synchronized with the widget view screen (e.g., 

displayed on the widget view screen). The widget 
view manager also handles the update period of each 
loaded widget view. Indeed, due to the system-wide 
policy such that background processes are strictly 
limited in their CPU usage, updating a widget view 
in background (i.e., “suspended” state) is restricted. 

If the update period expires and the widget view 
is in background (i.e., “suspended” state), this 
expiration is recorded by the widget view manager.  

 

Figure 19: Widget View Runtime States and Transitions. 

 

Figure 20: Widget View Client Process Sandboxing. 

Later when the widget view transits from the 
suspended state to the running state, the widget view 
receives update event. 
 
Widget View Client is a runtime process created by 
the widget view manager when loading a widget 
view is requested. To securely isolate the widget 
view execution and its possible crash among 
multiple executions of widget views and to reduce 
the system vulnerability, each widget view runs in a 
separate widget view client process. The process is 
sandboxed at system level so that it has strictly 
limited capabilities to access system calls, file 
system, and platform APIs. Our implementation 
exploits the security system policy of Tizen, 
SMACK (Simplified Mandatory Access Control 
Kernel) (Smack, 2011) for providing the fine-
grained system level sandboxing. Figure 20 briefly 
shows the system architecture of the widget view 
client process. 
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SMACK implements the mandatory access 
control security as a Linux kernel security module. 
Executables and resource files installed on the 
system are assigned with corresponding security 
labels (also known as attributes). Whenever a 
process attempts to access a system resource, an 
authorization rule enforced by SMACK examines 
the security labels and decides whether the access 
can take place. For widgets, upon installation, the 
widget view client executable file (implemented as a 
soft link to the executable binary) and widget 
resource files are uniquely labeled by SMACK, and 
then a set of SMACK rules are generated and 
provisioned so that the widget resource files can be 
protected from illegal access from other widget 
contents running on separate client processes. 

The lightweight rendering and JavaScript engine 
are implemented to render widget views in the 
constrained specifications explained in Section 4 and 
deployed as a shared library. 

5.2 Wearable Browser Extension 

The wearable browser works similarly as the mobile 
browser except for some wearable specific 
extensions which include CSS snap scrolling 
(Rakow et al., 2016) and CSS media queries. CSS 
snap scrolling allows web contents to be scrolled 
and stopped at specifically designed positions, called 
snap points. It aims at providing the better 
readability in a small display. CSS media queries are 
also extended for the circular shapes of wearable 
devices. Our proposed extension of CSS media 
queries is shown in Table 5. It is recommended that 
web contents are designed to be responsive to device 
capabilities. A typical smartwatch has less than 
360pixel of viewport width which is different from 
that of mobile devices, and web contents can be 
adjusted to such a width through CSS media queries.  

Furthermore, the wearable browser has the 
context menu (e.g., named as “Open in Mobile 
Browser”) for launching the mobile browser. This 
menu is enabled only when a mobile device is 
connected. Clicking the menu sends the URL and 
the browsing session data such as the scrolling 
position to the mobile browser and lets a user 
continue browsing web contents across devices. 

6 SYSTEM EVALUATION 

We evaluated 32 widget view scenarios collected 
from both existing applications and developer 
requirements by implementing and running all the 

scenarios on Tizen-based smartwatches. The initial 
feedbacks from developers and test users are 
positive in that the specification meets the functional 
requirements. Regarding the non-functional 
requirements, we evaluate the memory usage and the 
loading time. We evaluate our implementation 
together with two different architectural 
configurations of a conventional rendering engine, 
WebKit. Figure 21 shows single and multi-process  

Table 4: Media Query Extension. 

@media (-geometric-shape: value) 
Value rectangle or circle 
Applied to visual media types 
Accept min/max prefixes no 

 

Figure 21: Single and Multi-Process Architecture 
Configurations with WebKit Rendering Engine. 

 

Figure 22: Accumulated Memory Usage of widget views. 

architecture configurations of the widget view client 
with the WebKit rendering engine. 

Figure 22 demonstrates the accumulated memory 
usage of loading five sample widget views on the 
widget view client, comparing with the single-
process WebKit and the multi-process WebKit. In 
this experiment, each widget view is launched in 
sequence, from the basic to the pedometer, while 
previously executed ones are running. Widget views 
can run memory efficiently on the widget view 
client in that they require no more than 5MB on 
average for each execution whereas the single-
process WebKit and the multi-process WebKit 
require about 6MB and 12MB respectively on 
average. Having this small memory consumption, 
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the widget view runtime can keep running up to 20 
widget views on a smartwatch within 512 MB. 

It should be noted that while the single-process 
WebKit runs with less memory than the multi-
process WebKit and slightly more than the web view 
client, it has been used only for comparison. Indeed, 
it is not preferred for commercial products. It is 
mainly because the single-process model does not 
provide the system level sandboxing, thereby not 
isolating the execution of a widget view from system  

 

Figure 23: Widget View Loading Time. 

 

Figure 24: Accumulated Memory Usage of Mobile 
Websites. 

 

Figure 25: Loading Time Breakdown of Mobile Websites 
(Multi-Process WebKit). 

crash and security vulnerabilities of other widget 
views. Chrome browser’s multi-process architecture 
can effectively address the reliability and security 
problems that are common in real-world web 
contents (Barth et al., 2008; Reis and Gribble, 2009). 
Later WebKit community also adopted the similar 
multi-process architecture (WebKit, 2009). We 
include the single-process configuration in our 
comparison for evaluation purpose intentionally. 

The loading time of widget views is shown in 
Figure 23. For loading sample web contents with 
constrained spec., the widget view client takes less 
than 200ms on average, while the single- and the 
multi-process WebKit take 1200~1500ms. 

We test loading mobile websites with the single- 
and the multi-process WebKit configurations, and 
Figure 24 and 25 show the memory consumption 
and the loading time respectively. With the multi-
process architecture, the system incurs the out of 
memory condition from the 4th website onwards, and 
in that case, loading takes up to 5~10sec to complete.  
From these results, we conclude that full-fledged 
mobile websites are often too heavy for wearable 
devices. The complicated web contents end up with 
the huge resource loading time and the relatively 
large memory usage in case of relying on a 
traditional web pipeline. The evaluation result 
implies that it is inappropriate to use a conventional 
rendering engine and support mobile websites by 
widget views.  

7 RELATED WORK 

Recently Google announced AMP project (Google, 
2016, ‘AMP Project’) that allows developers to 
build web pages that are rendered instantly on 
mobile devices. AMP implements a set of custom 
HTML elements and a JS library that together bring 
the instant page loading performance. Some of 
optimization techniques adopted in AMP include 
disallowing of synchronous scripts, static resource 
sizing, CSS inline, style recalculation minimization, 
GPU-accelerated animations, etc. The custom AMP 
specification introduces a certain degree of learning 
curve to developers, and because of this barrier, 
AMP project provides a validation tool that allows 
developers to conveniently check syntax and 
performance errors. Despite the performance gain in 
loading time on mobile devices, both loading time 
and memory usage are not acceptable when it comes 
to wearable devices – the results shown in Figure 22 
and 23 are not promising as the tested widget view 
pages are even lighter than typical AMP pages.  

The Chromium project has a few on-going 
efforts to reduce Chromium Browser’s memory 
usage (Chromium, 2015, ‘Chromium Memory 
Team’). Some of these efforts include “compression 
of large string objects”, “discarding layout trees”, 
unifying internal allocators with a new allocator 
called “Oilpan”, etc. It is not clear what will be the 
reduction rate of this effort when it comes to simple 
web pages like widget views, but we think it might 
not be that significant as for simple pages the heap 
memory allocated by the content will be much 
smaller than real-world websites and as a result the 
effect of memory reduction effort mentioned above 
might not be that significant. 
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Cobalt (2016) is a new lightweight rendering 
engine effort from Google that is compatible with a 
subset of the W3C HTML5 applications. It is built 
up from scratch an implementation of a simplified 
subset of HTML, CSS Box Model, and Web APIs 
that were really needed to build a full-screen, single-
page web applications such as YouTube.com on 
constrained devices such as Smart TVs, Set-Top 
Boxes, Game Consoles, Blue-ray Disc Players, etc.  

8 CONCLUSIONS 

Smartwatches and wearable devices have gained 
much attention, yet there is no substantial 
improvement on delivering and rendering web 
contents on those devices mainly due to their 
restricted I/O capabilities. In this paper, we propose 
a new web browsing model with the constrained 
web specifications and the lightweight runtime 
based on the specifications which conjunctively 
provides the rapid access to web contents on 
wearable devices. The constrained web 
specifications are HTML, CSS, JavaScript with 
some restrictions that are based on our analysis on 
current smartwatch applications and focus on the 
fast information access. 

The evaluation tests demonstrate that our work 
on recently commercialized smartwatches provides 
users with the well balanced experiences regarding 
functionality, expressiveness, and performance of 
web applications. Our future work includes 
developing a JavaScript framework and a server-
based pub/sub broker system for providing a reliable 
performance of widget views with continuously 
updated contents. This work will be incorporating 
the concept of single page applications into the 
smartwatch runtime environments. 
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