
A Revisit to Web Browsing on Wearable Devices

Jinwoo Song, Hyunjune Kim, Ming Jin and Honguk Woo
Software R&D Center, Samsung Electronics, Seoul, Korea, Republic of

Keywords: Wearable Devices, Fast Access Browsing, Widget View, Constrained Web Specification.

Abstract: Wearable devices and smartwatches have become prevalent in recent years, yet consuming web contents on
those devices are not common mainly due to their restricted IO capabilities. In this paper, we revisit the web
browser model and propose the notion of fast access browsing that incorporates the lightweight, always-on
web snippets, namely widget view, into web applications. This allows smartwatch users to rapidly access
web contents (i.e., within 200ms) similarly as they interact with notification. To do so, we analyse about 90
smartwatch applications, identify the quick preview pattern, and then define the constrained web
specifications for smartwatches. Our implementation, the wearable device toolkit for fast access browsing,
is now being tested and deployed on commercialized products and the developer tool for building widget
view enabled web applications will be soon available as the smartwatch SDK extensions.

1 INTRODUCTION

Notification and application are two main smart
experiences that wearable devices provide nowadays.
The benefit of notification on wearable devices is
considered well justified since the rapid access to
contextually relevant information e.g., messages,
appointments, and news, is usually important, yet
running applications presumably need significant
improvement. It is naturally anticipated that the
smartphone users’ experiences of playing with
various applications and browsing web contents can
be readily migrated to smartwatches and equally
accepted, but unfortunately, our internal statistics on
the app store activities indicates that smartwatch
applications do not reach the wide popularity level
of mobile app ecosystems.1 Furthermore, in general,
the existing platforms rarely prioritize the
application of web browsing as an important feature
on wearable devices. 2 It is mainly due to their
inherent physical limitations such as tiny display and
battery power that can degrade the browsing
experience. For instance, Samsung Gear S2
(released on October 2015) smartwatch has

1 Same insight can be found from www.argusinsights.com/wearable-apps-

2016
2 watchOS, Tizen wearable, and Android wear haven’t included web

browsers as preload applications on their commercial devices, and there is

no smartwatch version of web browsers from major browser providers.

1.2inches 360x360 pixels display, 512MB RAM,
and 300mAh battery while Samsung Galaxy S7
smartphone (released on March 2016) has several
times capabilities including 5.1inches 1440x2560
pixels display, 4GB RAM, and 2550mAh battery.

Web browsing is a main part of daily life and
gets more valuable as more time people are online
through various devices and networks. It should be
noted that web browsing is usually performed not
only through conventional web browsers but also
with web-enabled applications that are common in
mobiles e.g., WebView applications of Android. In
the aforementioned circumstance, however, web
browsing would not be soon prevalent on wearable
devices unless the way to dealing with web contents
is essentially reformulated.

In this paper, we propose a new model for
browsing web contents on wearable devices,
specifically commonly available smartwatches,
addressing the limitation of smartwatch applications
and making the best use of the beneficial
characteristics of notification, that is, the rapid
access to the information. In doing so, (1) we first
extend the web application structure by introducing
a snippet of web contents, namely widget view that
contains the most important contents provided by a
web application and runs on the always-on mode for
the fast access in a way analogous to how
notification interacts with users. (2) We then analyse
a set of existing smartwatch applications so as to

212
Song, J., Kim, H., Jin, M. and Woo, H.
A Revisit to Web Browsing on Wearable Devices.
DOI: 10.5220/0006232102120224
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 212-224
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

identify the information patterns for the fast access
and define the web-based specifications for those
patterns. Note that the specifications are not new but
generally constrained from existing
HTML/CSS/JavaScript. (3) We finally implement
the concept of fast access browsing on smartwatches
in which web applications can be provisioned and
accessed through widget view.

As a result, loading the constrained web contents
by widget views takes less than 200ms and has only
26 percent of memory footprint compared to when
using a conventional web browser. In principle, such
rapid loading and timely response satisfy the
requirement of wearable specific swipe-based
navigations similarly as notification does, while the
constrained specifications do not much compromise
whole web experiences. Our work has been tested on
Tizen-based smartwatches. The runtime
implementation for the constrained specifications is
now being deployed commercially, and the
developer tool for building widget view-enabled web
applications will be soon available as the smartwatch
SDK extensions.

2 BACKGROUND

Compared with smartphones’ sophisticated
applications, modern smartwatch applications have
several limitations such as restricted touch
interaction and runtime environment due to the fact
that smartwatches have lower hardware capabilities
and smaller displays (Apple, 2015, ‘Apple watch
human interface guidelines’; Samsung, 2014,
‘Samsung gear application programming guide’;
Connolly et al., 2014, ‘Designing for wearables’).
There have been several smartwatch OS platforms
including watchOS, Android Wear and Tizen
wearable profile, and they provide the common
application types for similarly establishing the fast
information access under such limitations: Glance of
watchOS 2, Always-on app of Android Wear, and
Widget app of Tizen. In the following, we analyse
the application model of such three OS platforms,
particularly concentrating on their common
characteristics relevant to the fast information access
so as to identify the concept and requirement of the
fast access browsing.

2.1 Apple WatchOS

watchOS is the operating system of Apple Watch
that provides the watch application project type
consisting of two separately composed bundles,

Figure 1: Apple Watch Application Structure.

Figure 2: Apple Watch Glance Examples.

a Watch app and a WatchKit extension. A Watch
app bundle contains the storyboards and resource
files associated with the user interfaces of a watch
application. A WatchKit extension bundle contains
the extension delegate and the controls for managing
those interfaces and responding to user interactions.
Those bundles are packaged and deployed inside the
iOS application on the mobile phone, and they are
then installed on the user’s watch and run locally as
illustrated in Figure 1 (Apple, 2016, ‘Apple watch
app architecture’).

For supporting the fast access to important
information, a Glance can be added in a WatchOS 2
project. Having a simple swipe at the bottom of the
watch face, a user can quickly launch a Glance with
a summarized view. Note that a Glance is part of a
watch application and thus tapping a Glance usually
makes its companion application displayed with the
main interface in a full-fledged manner. The right
diagram of Figure 1 describes the architectural view
of Glance. Glances form a swipe-able collection of
instant applications in that on each Glance, a user
can quickly navigate to other Glances by swiping to
left or right. Figure 2 depicts Glance examples that
facilitate quick information view. (Bos, 2015)

Limitations
As implied by the name, Glances are meant to be
quickly accessed and briefly looked, so there are
several restrictions on how they can deal with
contents. First, Glance contents and interfaces are
intended for statically fitting on a single screen of a
watch face. They are given non-scrolling in their UI
structure and their text and graphical data items are
set as read-only.

Moreover, Glances do not contain dynamic and
interactive UI controllers and thus their functional
capability is inherently limited. Glances do not
intend for providing rich interactivity in that tapping

A Revisit to Web Browsing on Wearable Devices

213

Figure 3: Android Wear Application Structure.

Figure 4: Android Wear always-on Application Example.

a Glance launches its companion application by
default. Therefore only static contents are considered
for Glance contents, indicating that buttons, switches,
sliders, and menus are not supported. Furthermore,
Glances are not able to directly access web contents.
As the watchOS does not support the UIWebview
controller that is commonly used for embedding web
contents into iOS mobile applications. It is possible
to have some workarounds to retrieve web contents,
e.g., using a transcoding proxy that interacts with a
web server and converts web contents to data
streams that can be embedded in labels and image
views. However, such a workaround requires
additional implementation according to the specific
rendering capability of watch applications and the
result ends up with being not compatible with
standard web architecture.

2.2 Android Wear

Android Wear is the Google’s Android operating
system specially tailored for smartwatches. An
Android Wear application is packaged within a
companion mobile application, and so a wearable
application is automatically pushed and installed
onto the Android Wear device while a user
downloads and installs a mobile application from the
Android store as illustrated in Figure 3 (Jeff, 2016).

Android Wear supports the low-power ambient
mode by which the contents displayed on the watch
face can be adaptively controlled for saving the
battery power. In principle, an application can be
configured as running in either such ambient mode
for low-power operations or interactive mode
(normal mode) with full functionalities. Note that
the applications supporting both modes are
categorized as always-on, and they are intended for
keeping always visible; that is, even while a user
drops her arm, an always-on application stays visible

Figure 5: Tizen Wearable Application Structure.

on the watch face. The right diagram of Figure 3
depicts the always-on application structure and the
navigation flow between applications. Figure 4
depicts an example always-on application, the
shopping list in which the remaining shopping items
are always shown even at the ambient mode.

Limitations
Similar to Glances, applications running on the
ambient mode restrict their functionalities. First, the
background color scheme is strictly limited to black,
white, and gray. Second, the screen cannot be
updated more frequently than every minute, so
animations are not supported. For those applications
that require more frequent updates, such as fitness,
time-keeping, and travel information, developers
may use AlarmManager object to wake up the
processor and update the screen frequently but this is
not recommended due to the overhead on the battery
consumption. Moreover, navigation of an always-on
application is restricted in that switching to other
applications cannot be made by a single swipe on the
ambient mode. An application needs to run on the
normal mode before switching to another application
as in Figure 3.

Current Android Wear does not support
WebView component that is used for embedding web
contents into Android mobile applications. This
limitation is same as that of watchOS. There are
downloadable web browsers for Android
smartwatches (Google, 2016, ‘Web browser for
Android Wear’) available from the Google Play but
these independent browsers cannot be used for
embedding web contents into other wearable
applications.

2.3 Tizen Wearable

Tizen is the operating system based on the Linux
kernel, being configured for supporting various
device profiles including wearable devices. Samsung
Gear devices based on Tizen wearable OS may be
paired with Android mobile phones as in Figure 5.
Tizen wearable applications can be written on both
native and web APIs, and they can be packaged
with .tpk (Tizen native package) and .wgt (Standard
web application package) formats respectively.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

214

Figure 6: Tizen Wearable Application Structure.

Figure 7: Tizen Widget Application Example.

A Tizen wearable application for Samsung Gear
smartwatches can be configured to run on either the
standalone mode or the companion mode (Samsung,
2015, ‘Gear developer overview’) as in Figure 6.
Note that the standalone mode is not supported in
either Android Wear or Apple watchOS. A
standalone application runs independently while a
companion application runs with two parts, a Gear
application and a mobile host application (e.g.,
Android mobile application).

Similar to Glances of watchOS previously
explained, Tizen supports a lightweight application
model, namely Tizen widget that is used for the
home screen customization and the quick approach
to application functions. Widgets are displayed on
the widget board as in the right diagram of Figure 5
therefore a user may navigate the widgets quickly
from the widget board.

For a Gear device with the round design, widgets
are located on the right side of the home screen and
accessed by rotating the bezel. They offer important
information and access to quick actins without
requiring a user to open an application as shown in
Figure 7.

Limitations
In Tizen, widgets are available for wearable devices.
However, they are constrained in terms of the visible
size, the types of interactions, and the maximum
number of running instances. Generally a wearable
widget takes the whole screen. Thus interaction
events are restricted in that they are only available to
distinguish widget events and platform events.
Specifically rich interactions like vertical scrolling
are not supported and tapping usually leads to open
an application. Tizen allows up to 15 widgets on the
widget board and each of them can be rapidly
accessed from the right hand side of the home screen.

Figure 8: Memory Usages on Tizen Gear Device.

Different from the hybrid application model of
Tizen by which both native and web APIs are used,
widgets can be only written in Tizen native APIs as
illustrated in Figure 5. It is the design decision of
Tizen which considers the fact that multiple widgets
should run as always-on and executing web APIs
through a web engine (e.g., WebKit- or Chromium-
based) for those widgets require much more memory
than commercial products may provide. Our internal
tests show that running 15 web-based widgets using
the conventional WebKit-based web engine on a
Tizen-based smartwatch product may consume
350~400MB runtime memory. In practice, this is
hardly within the range of the available memory
after the system boot-up when considering the
512MB RAM equipment. In fact, after the booting-
up (running the system kernel, platform libraries and
several preloaded native applications), there is only
up to about 130MB available memory on those
devices as in Figure 8.

2.4 Problem Definition

As explained previously, the modern OS platforms
for smartwatches support the lightweight version of
applications, watchOS 2 Glance, Android Wear
Always-on, and Tizen widget, which commonly
enable the fast access to important information and
frequently used application features. These are
effective, yet are limited of significance particularly
in delivering web contents.
Our usability tests on the smartwatches significantly
indicate that the rapid response for user input
requests is critical in that e.g., switching the
information among notifications and widgets should
be done instantaneously with the swipe events on the
watch screen. To enable such a rapid responsiveness,
Tizen wearable generally maintains a set of
notifications and widgets on the runtime memory,
implying that runtime memory can easily be much
consumed without a well-defined management
policy. Suppose that a Tizen smartwatch has a
runtime system where each widget consumes 5MB
and it has 15 running widgets. In this case, out of
130MB available memory after the system booting-
up, 75MB for the widgets are consumed.

A Revisit to Web Browsing on Wearable Devices

215

It is our system safety configuration that 30MB
is reserved for out-of-memory status. Considering
these all memory consumption, the system ends up
with 25MB available memory for running other
applications. This calculation drives the requirement
of memory usages when dealing with web contents
on widgets.

In the following, under this consideration, we
propose the fast access browsing system particularly
dealing with web contents on smartwatches.

3 DESIGN OF FAST ACCESS
BROWSING SYSTEM

Our proposed system for supporting the fast access
browsing consists of three components: mobile
browser that runs on the smartphones (which is not
our focus in this paper), widget view runtime that
manages the lifecycles of widget views, and
wearable browser that supports the full-fledged
browsing on non-constrained mode, e.g. with snap-
scrolling (Rakow et al., 2016), of circular designs.
The web browsing session of our proposed system is
illustrated in Figure 9 where the interactions of three
components are described below.
1. Suppose the mobile browser accesses a website

example.com that has the widget view section in its
web app manifest (Caceres et al., 2016).

2. The manifest is first sent to the wearable’s widget
view runtime and then gets installed.

3. The user chooses the installed widget view, adding it
on the widget view screen. Note that the maximum
number of widgets on the widget view screen can be
configured depending on the device capability. The
contents of the selected widget view
(example.com/widget_view.html) are rendered and
periodically refreshed according to the predefined
configuration (e.g., once in 30min).

4. Upon a user event (e.g., touch interaction on the
widget view), the widget view runtime launches the
wearable browser with the pre-configured URL
example.com for showing the richer contents.

5. The wearable browser loads the website from the URL
and allows the wearable specific browsing experience.

6. Furthermore, the wearable browser can launch the
mobile browser, if needed.
The mobile browser is capable of parsing the

web app manifest associated with the website, and
prompting a user for the widget view installation
when it detects the wearable device being connected
to the mobile device. Upon the user’s consent, the
manifest is sent over to the wearable device through
an available connectivity such as Bluetooth. The
widget view runtime manages the lifecycle of a

widget view which has four states: installed,
running,

Figure 9: Overview of Fast Access Browsing System.

suspended, and uninstalled. After installation, the
widget view appears in the widget view list. The
user can select and put it in a position on the widget
view screen.

As the widget view screen is configured to locate
a set of widget views where the maximum number
depends on the device capability such as the
available memory for running always-on style
applications. Thus, the user may need to remove one
or more widget views from the widget view screen.
The widget view runtime can be configured to
periodically refresh the loaded widget view in order
to fetch the latest information through the network.
To save the battery power, the widget view is not be
refreshed at the suspended state.
A widget view can be configured to trigger and
launch the wearable browser application. Upon the
trigger, the URL associated with the widget view is
sent to the wearable browser over IPC, and the
wearable browser loads the website for full-fledged
browsing. Typically a well-designed website
combines the CSS media query with its content
styling so that the contents and layouts of the
website can be optimized for small screen devices.
One of the useful CSS styling techniques for small
screen devices is the snap scrolling which allows the
scrolling to stop at a predefined “snap point”
position so that the user does not have to manually
adjust the scroll stop position. When the wearable
screen is too small for browsing, the wearable
browser can send the URL back to the mobile
browser. In this case, the is being sent over together
with the URL so that the browsing experience on the
mobile device can be seamlessly continued.

The overall system design enables the different
modes of web content consumption: full site

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

216

browsing experience with mobile browsing, quick
glance experience with widget view, and quick and
richer experience with wearable browsing.

Table 1: Application Domains.

Applications
Health Pedometer, Heartbeat, Drinking Water, Tracker

Planning Scheduler, Alarm, Task Manger
Information Weather, News, Stocks, Airline Ticketing, Traffic

Control Music Play, App launch, System, Bluetooth

Table 2: Requirements for Widget View.

Layout
Requirements

No-scrolling support
Restricted interaction only with tap event
Simple layout having text, font, or image
Small screen with scrolling text

Feature
Requirements

Sharing data between widget and application
Timely data update via network connection
Accessing and controlling system information
Launching application

It is desirable that a user can choose her
preferred way of web content consumption
depending on the type of contents and contextual
situations. Notice that the fast access browsing in
this paper is introduced for web content
consumption particularly on smartwatches but can
be applied to other devices such as e.g., glasses with
specification adaptations.

4 SPECIFICATION OF FAST-
ACCESS BROWSING

4.1 Requirement Analysis

We analyse a set of representative smartwatch
applications including 45 Tizen widgets, 35
watchOS Glances and 10 Android Wear Always-on
applications whose domains are categorized as
health, planning, information and control. The
domains are denoted in Table 1. The applications in
the health domain display the health-related data
acquired from smartwatch sensors and update the
data through a simple user interaction. The
applications in the planning and the information
domains generally display the application specific
instant data, keeping them continuously updated
through the network connection. Note that about the
half of our analysed applications are in the
information domain, e.g., weather, news, stocks,
airline ticketing, traffic, etc. It is because
smartwatches are considered particularly suitable for
exposing the quick information to users and such
benefits have been widely accepted in the market so

far. Many applications in the information domain
also provide the location-based information. There
are also several control applications that play the
music, control the system information, or launch the
applications.

Table 3: Comparison of Wearable Features and Web APIs.

Feature API Health Planning Info.

DOM,
Forms,
Styles

HTMLF5 Forms X X X
Selectors API O O O
Media Queries X X X
CSS Transforms X X X
CSS Animations X X X
CSS Transitions O X O
CSS Color O O O
CSS Background/Border O O O
CSS Fexible Box Layout X X X
CSS Multi-col Layout X X X
CSS Text & Fonts O O O

Device
Touch Event X X X
Device Orientation Event X X X

Graphics Canvas, SVG X X X

Media
Video & Auido X X X
Web Speech API X X X

Comm.

Web Socket API X X X
XMLHTTPRequest X O O
Web Messaging X X X
Geolocation X X O

Storage
Web Storage O O O
Application Caches X X X
Indexed Database X X X

Security
Cross-Origin Res Sharing X X X
iFrame X X X
Content Security Policy X X X

UI
Clipboard API X X X
Drag and Drop X X X

Perfor-
mance

Web Workers X X X
Page Visibility O O O
requestAnimationFrame O O O

Overall, these applications have the common
feature that present information quickly to
smartwatch users, and those are not web-based, but
native on watchOS, Android Wear, or Tizen
wearable. Based on this analysis, we take out the
requirements regarding the widget layouts and the
functional features so as to define the constrained
web specifications for implementing widget views
that render web contents. The requirements are
summarized in Table 2. In the following sections,
we explain the functional and the non-functional
specifications that meet the requirements.

4.2 Functional Specification

Having the comparison of the application features
and the W3C standard web APIs as shown in Table
3, we identify a subset of the web APIs that are
necessary for achieving the fast access browsing
through widget view. In addition, we include a
subset of the device APIs that enable widget view to
utilize the device native capabilities including

A Revisit to Web Browsing on Wearable Devices

217

Application, File System, Sensor, System
Information, and Message Port.

Application API provides a functionality to
launch applications. File System API and Message
Port API are used for the communication between
widget views and application to share data. Sensor
API provides the interfaces and methods for

Figure 10: CPU Usage of Audio and Video.

Figure 11: Loading Time Ratio for External Web Site.

accessing internal device sensors. Sensor API is
particularly used in the health domain. System
Information API provides information about the
device’s display, network, storage and other
capabilities that are useful in the control domain.

Note that there are a couple of smartwatch
applications that control the music playlist. However,
we decide not to support the Audio and Video web
APIs since they consume much CPU and battery
resources. Maximizing the battery life is one of the
most critical issues in the smartwatch usability (Min
et al., 2015; Dredge, 2014; Proges, 2015;
Rawassizadeh et al., 2014). Our experiments with
different application types show that using the audio
and video incur the overheads of more than 100
times compared to non-multimedia applications, as
depicted in Figure 10. Therefore, we rather prefer
exploiting mobile device resources to play the audio
and video through the wearable interface.

4.3 Non-Functional Specification

In order to support the rapid loading of the web
contents with small runtime memory and power
consumption, we specify several non-functional
restrictions and best practices including:
• Do not allow to load heavy resources such as
CSS, JavaScript and images from external networks.
In principle, loading those resources via networks
not only takes much time with network roundtrips
but it can frequently block from rendering web

contents. Figure 11 illustrates the rendering pipeline
time when browsing an example site (e.g.,
m.naver.com) and indicates that loading resources
takes 49% of the complete processing time. This
pattern would heavily change depending on the
network connectivity but it is relevant since
wearable devices may not be always in a stable
network condition. AMP(Accelerated Mobile Page)

Figure 12: Loading Time by Different Resources.

Figure 13: Memory Usage by Different Resources.

Figure 14: Memory Usage by Increasing Image Resolution.

recommends blocking all third-party JavaScripts so
as to render web pages instantly (Google, 2016,
‘How AMP Speeds Up Performance’). It is because
third-party JavaScripts typically contains heavy
processing codes. In the same sense, we restrict
external resources when rendering widget views
except for what is required to display the widget
view contents. We consequently limit the
specification that only XHR (XMLHTTPRequest) is
allowed for directly interacting with external web
resources, i.e., XHR is allowed to retrieve specific
contents from backend web servers and update
dynamically with the latest data.

Restrict the size of HTML, CSS, JavaScript files
no more than 50KB. It is because our experiments
illustrate that large resources, especially JavaScript,
incur much loading delays as shown in Figure 12
and much memory consumptions as shown in Figure
13. We test several cases with different web
frameworks including the jQuery library and find the
same pattern in delays and memory usages. In the
figure, the average application sizes are 23KB and

0

20

40

Plain App Audio App Video App
CPU Usage (%)

49%

13%

30%

8%

http://m.naver.com

Loading
Scripting
Rendering
Painting

1.15

1.25

1.35

1.45

App App with JQuery

Loading Time (sec)

15

20

25

App App with JQuery

Memory Usage (MB)

15

25

35

45

360x360 512x1024 1024x1024 1024x2048

Memory Usage (MB)

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

218

118KB respectively for base applications and
applications with JQuery. The restriction is set as
50KB heuristically as it is generally sufficient to
compose the UI layout and behavior logics of
wearable widget views.
• Restrict the image resolution less than 1.5 times of

the base image resolution. It is because higher
resolution images consume much more memory as

Figure 15: Widget View Validator.

Figure 16: Widget View Validation Example.

depicted in Figure 14. Also restrict the formats to
the popular image formats such as JPEG, PNG and
GIF. BMP is not allowed because the file size may
be often too large.

4.4 Specification Validation

As explained previously, the specifications of widget
views are based on web standards but constrained in
several ways. Therefore, if a code of widget views
contains unsupported HTML, CSS or JS API, the
widget view engine cannot interpret the code
correctly. For helping developers in this situation,
the widget view validator is additionally
implemented as a pluggable function in the IDE.

Our implementation is based on Tizen IDE for
wearable applications including widget views. The
validator checks the code with the widget view
specifications and then passes the results to the IDE
as in Figure 15. Subsequently the IDE notifies the
warning messages to a developer, if any. Note that
the validator includes both the functional and the
non-functional specification rules for checking.

Figure 16 illustrates a validation result of a
sample widget view code with constrained HTML
and CSS. The messages of the validator contain the
file name, lines, columns, the warning messages, and
the guide instructions so that developers can locate
errors and use alternative APIs from the constrained
specifications. In this example, CSS selector usages
are guided to use ‘Type/CSS selector’ instead of
restricted ‘Child Selector’.

Figure 17: Widget View Runtime Architecture.

1 {
2 "name": "My Daily News",
3 ...,
4 "start_url": "/index.html",
5 "widget_view": {
6 "widget_view_url": "/widget-view.html",
7 "icon": {
8 "src": "icon/news-widget-view.jpg",
9 "size": "128x128",
10 "type": "image/jpg"
11 },
12 "update_period": "60"
13 }
14 }

Figure 18: Sample Widget View Manifest.

5 SYSTEM IMPLEMENTATION

In this section, we explain the system
implementation of widget view runtime and
wearable browser extension which are the major
components of the fast access browsing system. Our
implementation is based on Tizen wearable and
deployed on Tizen-based smartwatches.

5.1 Widget View Runtime

The widget view runtime is the runtime environment
by which widget views are installed, managed, and
executed. Figure 17 depicts its internal architecture
having three sub-modules: widget view installer,
widget view manager, and widget view client, of
which details are explained in the following.

A Revisit to Web Browsing on Wearable Devices

219

Widget View Installer receives a manifest of a web
application from the mobile browser and performs
the subsequent installation steps. It is important that
the associated URL of the manifest is delivered over
a secure HTTP connection (i.e., HTTPS); this
ensures for the fast access browsing system to
retrieve the widget view from a trusted authority.
The installation steps consist of parsing the manifest,
extracting the relevant information such as widget
view name, start-page URL, refresh period, etc., and
registering the information into the entries database
of widget views. It is worthwhile to note that the
widget view installer is executed as a standalone
process, as the process requires additional system
privileges to perform a sequence of installation steps
including validating the manifest, writing files to the
system directory, registering to the package manager,
and so on.

Figure 18 shows an example code of the widget
view manifest that is slightly extended from the web
app manifest (Caceres et al., 2016) to include the
following data:
• “widget_view_url”: refers to the content URL

from which the widget view page is updated.
• “icon”: specifies the icon of the widget view that is

displayed on the widget view list menu.
• “update_period”: specifies how often the widget

view gets updated.

Widget View Manager is a daemon process that
coordinates widget views and manages their
lifecycle. The process is initialized at the system
startup, establishing a communication channel with
the widget view screen via the system IPC (inter-
process communication). When a user selects a
widget view from the installed widget view list, the
widget view screen requests the widget view
manager to load the selected widget view. The
widget view manager in turn requests the widget
view client to load and render the widget view on
the GPU buffer which is shared between the widget
view screen and the widget view client. As similarly
to the widget view installer previously explained, the
widget view manager has additional system
privileges to access a set of sensitive system
information including the installed widget list, the
running widget list and their GPU buffer pointers,
etc., and for this reason it runs on a separate process
being isolated from widget view clients.

Each widget view follows the four states as in
Figure 19. The widget view manager keeps track of
the running and suspended states of the loaded
widget views, and changes the states to be
synchronized with the widget view screen (e.g.,

displayed on the widget view screen). The widget
view manager also handles the update period of each
loaded widget view. Indeed, due to the system-wide
policy such that background processes are strictly
limited in their CPU usage, updating a widget view
in background (i.e., “suspended” state) is restricted.

If the update period expires and the widget view
is in background (i.e., “suspended” state), this
expiration is recorded by the widget view manager.

Figure 19: Widget View Runtime States and Transitions.

Figure 20: Widget View Client Process Sandboxing.

Later when the widget view transits from the
suspended state to the running state, the widget view
receives update event.

Widget View Client is a runtime process created by
the widget view manager when loading a widget
view is requested. To securely isolate the widget
view execution and its possible crash among
multiple executions of widget views and to reduce
the system vulnerability, each widget view runs in a
separate widget view client process. The process is
sandboxed at system level so that it has strictly
limited capabilities to access system calls, file
system, and platform APIs. Our implementation
exploits the security system policy of Tizen,
SMACK (Simplified Mandatory Access Control
Kernel) (Smack, 2011) for providing the fine-
grained system level sandboxing. Figure 20 briefly
shows the system architecture of the widget view
client process.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

220

SMACK implements the mandatory access
control security as a Linux kernel security module.
Executables and resource files installed on the
system are assigned with corresponding security
labels (also known as attributes). Whenever a
process attempts to access a system resource, an
authorization rule enforced by SMACK examines
the security labels and decides whether the access
can take place. For widgets, upon installation, the
widget view client executable file (implemented as a
soft link to the executable binary) and widget
resource files are uniquely labeled by SMACK, and
then a set of SMACK rules are generated and
provisioned so that the widget resource files can be
protected from illegal access from other widget
contents running on separate client processes.

The lightweight rendering and JavaScript engine
are implemented to render widget views in the
constrained specifications explained in Section 4 and
deployed as a shared library.

5.2 Wearable Browser Extension

The wearable browser works similarly as the mobile
browser except for some wearable specific
extensions which include CSS snap scrolling
(Rakow et al., 2016) and CSS media queries. CSS
snap scrolling allows web contents to be scrolled
and stopped at specifically designed positions, called
snap points. It aims at providing the better
readability in a small display. CSS media queries are
also extended for the circular shapes of wearable
devices. Our proposed extension of CSS media
queries is shown in Table 5. It is recommended that
web contents are designed to be responsive to device
capabilities. A typical smartwatch has less than
360pixel of viewport width which is different from
that of mobile devices, and web contents can be
adjusted to such a width through CSS media queries.

Furthermore, the wearable browser has the
context menu (e.g., named as “Open in Mobile
Browser”) for launching the mobile browser. This
menu is enabled only when a mobile device is
connected. Clicking the menu sends the URL and
the browsing session data such as the scrolling
position to the mobile browser and lets a user
continue browsing web contents across devices.

6 SYSTEM EVALUATION

We evaluated 32 widget view scenarios collected
from both existing applications and developer
requirements by implementing and running all the

scenarios on Tizen-based smartwatches. The initial
feedbacks from developers and test users are
positive in that the specification meets the functional
requirements. Regarding the non-functional
requirements, we evaluate the memory usage and the
loading time. We evaluate our implementation
together with two different architectural
configurations of a conventional rendering engine,
WebKit. Figure 21 shows single and multi-process

Table 4: Media Query Extension.

@media (-geometric-shape: value)
Value rectangle or circle
Applied to visual media types
Accept min/max prefixes no

Figure 21: Single and Multi-Process Architecture
Configurations with WebKit Rendering Engine.

Figure 22: Accumulated Memory Usage of widget views.

architecture configurations of the widget view client
with the WebKit rendering engine.

Figure 22 demonstrates the accumulated memory
usage of loading five sample widget views on the
widget view client, comparing with the single-
process WebKit and the multi-process WebKit. In
this experiment, each widget view is launched in
sequence, from the basic to the pedometer, while
previously executed ones are running. Widget views
can run memory efficiently on the widget view
client in that they require no more than 5MB on
average for each execution whereas the single-
process WebKit and the multi-process WebKit
require about 6MB and 12MB respectively on
average. Having this small memory consumption,

A Revisit to Web Browsing on Wearable Devices

221

the widget view runtime can keep running up to 20
widget views on a smartwatch within 512 MB.

It should be noted that while the single-process
WebKit runs with less memory than the multi-
process WebKit and slightly more than the web view
client, it has been used only for comparison. Indeed,
it is not preferred for commercial products. It is
mainly because the single-process model does not
provide the system level sandboxing, thereby not
isolating the execution of a widget view from system

Figure 23: Widget View Loading Time.

Figure 24: Accumulated Memory Usage of Mobile
Websites.

Figure 25: Loading Time Breakdown of Mobile Websites
(Multi-Process WebKit).

crash and security vulnerabilities of other widget
views. Chrome browser’s multi-process architecture
can effectively address the reliability and security
problems that are common in real-world web
contents (Barth et al., 2008; Reis and Gribble, 2009).
Later WebKit community also adopted the similar
multi-process architecture (WebKit, 2009). We
include the single-process configuration in our
comparison for evaluation purpose intentionally.

The loading time of widget views is shown in
Figure 23. For loading sample web contents with
constrained spec., the widget view client takes less
than 200ms on average, while the single- and the
multi-process WebKit take 1200~1500ms.

We test loading mobile websites with the single-
and the multi-process WebKit configurations, and
Figure 24 and 25 show the memory consumption
and the loading time respectively. With the multi-
process architecture, the system incurs the out of
memory condition from the 4th website onwards, and
in that case, loading takes up to 5~10sec to complete.
From these results, we conclude that full-fledged
mobile websites are often too heavy for wearable
devices. The complicated web contents end up with
the huge resource loading time and the relatively
large memory usage in case of relying on a
traditional web pipeline. The evaluation result
implies that it is inappropriate to use a conventional
rendering engine and support mobile websites by
widget views.

7 RELATED WORK

Recently Google announced AMP project (Google,
2016, ‘AMP Project’) that allows developers to
build web pages that are rendered instantly on
mobile devices. AMP implements a set of custom
HTML elements and a JS library that together bring
the instant page loading performance. Some of
optimization techniques adopted in AMP include
disallowing of synchronous scripts, static resource
sizing, CSS inline, style recalculation minimization,
GPU-accelerated animations, etc. The custom AMP
specification introduces a certain degree of learning
curve to developers, and because of this barrier,
AMP project provides a validation tool that allows
developers to conveniently check syntax and
performance errors. Despite the performance gain in
loading time on mobile devices, both loading time
and memory usage are not acceptable when it comes
to wearable devices – the results shown in Figure 22
and 23 are not promising as the tested widget view
pages are even lighter than typical AMP pages.

The Chromium project has a few on-going
efforts to reduce Chromium Browser’s memory
usage (Chromium, 2015, ‘Chromium Memory
Team’). Some of these efforts include “compression
of large string objects”, “discarding layout trees”,
unifying internal allocators with a new allocator
called “Oilpan”, etc. It is not clear what will be the
reduction rate of this effort when it comes to simple
web pages like widget views, but we think it might
not be that significant as for simple pages the heap
memory allocated by the content will be much
smaller than real-world websites and as a result the
effect of memory reduction effort mentioned above
might not be that significant.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

222

Cobalt (2016) is a new lightweight rendering
engine effort from Google that is compatible with a
subset of the W3C HTML5 applications. It is built
up from scratch an implementation of a simplified
subset of HTML, CSS Box Model, and Web APIs
that were really needed to build a full-screen, single-
page web applications such as YouTube.com on
constrained devices such as Smart TVs, Set-Top
Boxes, Game Consoles, Blue-ray Disc Players, etc.

8 CONCLUSIONS

Smartwatches and wearable devices have gained
much attention, yet there is no substantial
improvement on delivering and rendering web
contents on those devices mainly due to their
restricted I/O capabilities. In this paper, we propose
a new web browsing model with the constrained
web specifications and the lightweight runtime
based on the specifications which conjunctively
provides the rapid access to web contents on
wearable devices. The constrained web
specifications are HTML, CSS, JavaScript with
some restrictions that are based on our analysis on
current smartwatch applications and focus on the
fast information access.

The evaluation tests demonstrate that our work
on recently commercialized smartwatches provides
users with the well balanced experiences regarding
functionality, expressiveness, and performance of
web applications. Our future work includes
developing a JavaScript framework and a server-
based pub/sub broker system for providing a reliable
performance of widget views with continuously
updated contents. This work will be incorporating
the concept of single page applications into the
smartwatch runtime environments.

REFERENCES

Apple, 2015. Apple watch human interface guidelines.
[Online] Available from: https://developer.apple.com/
library/prerelease/ios/documentation/UserExperience/
Conceptual/WatchHumanInterfaceGuidelines.

Samsung, 2014. Samsung gear application programming
guide. [Online] Available from: http://img-
developer.samsung.com/contents/cmm/Samsung_Gear
_Application_Programming_Guide_1.0.pdf.

Connolly, E., Faaborg, A., Raffle, H., and Ryskamp, B.,
2014. Designing for wearables. Google I/O.

Apple, 2016. Apple watch app architecture. [Online]
Available from: https://developer.apple.com/

library/ios/documentation/General/Conceptual/Watch
KitProgrammingGuide/DesigningaWatchKitApp.html.

Jeff, 2016. Architecture differences between wearable
platforms. [Online] Available from:
http://blog.tizenappdev.com/2016/03/04/architecutral_
differences_between_wearable_platforms/.

Google, 2016. Web browser for Android Wear. [Online]
Available from:
https://play.google.com/store/apps/details?id=com.app
four.wearbrowser.

Samsung, 2015. Gear developer overview. [Online]
Available from: http://developer.samsung.com/gear/
gear-develop-overview.

Caceres, M., Christiansen, K.R., Lamouri, M., and
Kostiainen, A. , 2016. W3C Web App Manifest Spec.
[Online] Available from:
https://www.w3.org/TR/appmanifest/.

Min, C., Kang, S., Yoo, C., Cha, J., Choi, S., Oh, Y., and
Song, J., 2015. Exploring current practices for battery
use and management of smartwatches. In Proceedings
of the 2015 ACM International Symposium on
Wearable Computers. New York: ACM, pp. 11-18.

Dredge, S., 2014. Apple Watch: battery life a challenge
for a round-the-clock health tracker. [Online]
Available from: https://www.theguardian.com/
technology/2014/sep/10/apple-watch-battery-life-
health-tracker.

Proges, S., 2015. These 4 Challenges Could Keep
Smartwatches From Succeeding. [Online] Available
from: http://www.forbes.com/sites/sethporges/2015/
02/25/these-are-the-4-challenges-keeping-
smartwatches-from-succeeding/.

Rawassizadeh, R., Price, B. A., and Petre, M., 2014.
Wearables: has the age of smartwatches finally arrived?
Communications of the ACM, 58(1), pp. 45-47.

Rakow, M., Rossi, J., Atkins-Bittner, Tab., and Etemad,
E.J., 2016. W3C CSS Snap Scroll Spec. [Online]
Available from: https://drafts.csswg.org/css-scroll-
snap/.

Barth, A., Jackson, C., Reis, C., and Google Chrome
Team., 2008. The Security Architecture of the
Chromium Browser. Technical report, Stanford
University.

Reis, C. and Gribble, S. D., 2009. Isolating Web
Programs in Modern Browser Architectures.
Proceedings of the 4th ACM European conference on
Computer systems, Nuremburg, New York: ACM, pp.
219-232.

WebKit, 2009. WebKit2 High Level Document. [Online]
Available from: https://trac.webkit.org/wiki/WebKit2.

Google, 2016. AMP Project. [Online] Available from:
https://www.ampproject.org/docs/get_started/about-
amp.html.

Chromium, 2015. Chromium Memory Team. [Online]
Available from: https://www.chromium.org/blink/
memory-team.

Bos, R., 2015. Designing for Apple Watch. [Online]
Available from: https://www.mangrove.com/en/
journal/2015-02-25-designing-for-apple-watch.

A Revisit to Web Browsing on Wearable Devices

223

Google, 2016. How AMP Speeds Up Performance.
[Online] Available from: https://www.ampproject.org/
docs/get_started/technical_overview.html.

Smack, 2011. The Smack Project. [Online] Available from:
http://www.webcitation.org/6AqzohCXq.

Cobalt, 2016. The Cobalt Project. [Online] Available from:
https://cobalt.googlesource.com/cobalt/.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

224

