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Abstract: Traditional fall risk assessment tests are based on timing certain physical tasks, such as the timed up and go 
test, counting the number of repetitions in a certain time-frame, as the 30-second sit-to-stand or observation 
such as the 4-stage balance test. A systematic comparison of multifactorial assessment tools and their 
instrumentation for fall risk classification based on machine learning approaches were studied for a 
population of 296 community-dwelling older persons aged above 50 years old. Using features from inertial 
sensors and a pressure platform by opposition to using solely the tests scores and personal metrics increased 
the F-Score of Naïve Bayes classifier from 72.85% to 92.61%. Functional abilities revealed higher 
association with fall level than personal conditions such as gender, age and health conditions. 

1 INTRODUCTION 

Fall risk assessment methods have been studied 
aiming to estimate the risk of falling in order to 
identify those at higher risk and timely apply the 
appropriate actions to prevent falls. This kind of 
assessment can take the form of questionnaires, 
simple screenings or more comprehensive 
multidimensional fall risk assessments.  

Falls are described as a complex phenomenon 
caused by the interaction of multiple risk factors. To 
assess the risk of falling, it is necessary to identify 
the factors that increase an older person’s risk of 
falling. Intensive research has been conducted in 
order to identify specific risk factors (Ambrose, 
Paul, and Hausdorff 2013; Rubenstein 2006; Oliver 
et al. 2004), which can increase the likelihood of a 
fall occurrence. The idea behind these studies is to 
develop preventive strategies based on the identified 
risk factors. 

According to Rubenstein et al. (Rubenstein and 
Josephson 2002) the most common underlying 
causes and risk factors for falls include muscle 
weakness, gait and balance problems, visual 
impairment, cognitive impairment, depression, 
functional decline, and particular medications, 

especially in the presence of environmental hazards. 
Similarly to Physiological Profile Assessment 

(PPA) (Lord, Menz, and Tiedemann 2003), we 
intend to evaluate the functional ability of subjects 
and potential impairments that may be related with 
an increased risk of falling, irrespective of the 
existence of an underlying disease causing them. 

Traditional functional assessment tests are based 
on timing certain physical tasks, such as the timed 
up and go (TUG) test (Beauchet et al. 2011), 
counting the number of repetitions in a certain time-
frame, as the 30-second sit-to-stand (STS) (Jones, 
Rikli, and Beam 1999) or observation, such as 
balance tests (Agrawa et al. 2011), in particular the 
4-stage balance test (4-Stage) (Rossiter-Fornoff et al. 
1995; Thomas et al. 2014), or the Tinetti 
Performance Oriented Mobility Assessment 
(POMA) (Tinetti 1986). A systematic review of 
multifactorial and functional mobility assessment 
tools for fall risk (Scott et al. 2007) compares 
several studies for community settings. 

In this paper, the three fall risk assessment 
functional tests, TUG, STS and 4-Stage, that have 
been also used in the follow-up of the participants of 
the Otago Falls Prevention Program, were 
instrumented with wearable inertial sensors and a 
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pressure platform for the extraction of several 
metrics to perform a comparison with the functional 
tests’ scores for the differentiation of fall risk 
groups. Machine learning approaches were studied 
using a fall level as the classification output. 

2 METHODS 

2.1 Subjects 

A total of 296 subjects voluntarily participated in the 
study. Informed consents were obtained from all 
participants who responded to personal information, 
health, previous falls inquiries and completed the 
three instrumented assessment tests: TUG, STS and 
4-stage. The data collection took place in different 
environments, mostly at community (76.0%), at day-
care centres (15.9%), and at nursing homes (8.1%).  

Demographic and anthropometric information 
was annotated for all the subjects along with health 
related information from two questionnaires: health 
conditions and medication intake. Fall related 
information was inquired using a history of falls 
questionnaire. 

The mean age of the sample was 70.2 years (93 
persons with age below 65 years), the majority of 
the subjects were women (68.2%), 25.0% lived 
alone, 51.0% only have primary education and 
11.5% use an assistive device. Diabetes was the 
most prevalent health condition (15.5%), followed 
by osteoarthritis (14.2%) and osteoporosis (10.8%). 

Urinary incontinence was reported by 22.3% 
(answering the question: do you leak urine when you 
cough, laugh, sneeze or lift an object?); fear of 
falling was reported by 47.0% (answering the 
question: are you afraid of falling?); 57.4% of the 
persons referred to intake 4 or more different 
medicines per day (mean was 4.52 medicines). 

During the previous year 30.7% of the persons 
have fallen (18.9% outdoors) and 8.1% underwent to 
the emergency service (hospital). The wrist/hand 
fracture was the most common injury (2.4%) among 
these persons. 

2.2 Screening Protocol 

This section describes the fall risk assessment tests 
applied in this study: 

Timed Up and Go Test (TUG) fast pace: the 
person is asked to start seated on a chair and when 
test starts, the person should stand up, walk straight 
for 3 meters, as fast as the person can, turn around, 
walk back to the chair and sit down (Beauchet et al. 

2011). Test score corresponds to the time needed to 
perform TUG test (TUG duration). A threshold of 
10s has been found to be associated with falls 
occurrence in a 12 months follow up period for 
community-dwelling older adults (Rose, Debra J, 
Jones, Jessie C, and Lucchese, Nicole 2002). 

30 Seconds Sit-to-stand Test (STS): the person is 
instructed to sit on a chair and repeatedly stand up 
and sit down as many times as possible over 30 
seconds (Jones, Rikli, and Beam 1999). The person 
must be seated in the middle of the chair, feet should 
approximately width apart and placed on the floor, 
and arms crossed by the wrists placed against the 
chest. Final score of this test is the number of times 
the person completes a cycle of sit-to-stand and 
stand-to-sit (number of STS cycles). While normative 
levels are dependent on age and sex (Rikli and Jones 
2010), a score of less than 15 transitions in the 30 
seconds test duration has been used to identify 
“fallers” in a group of elderlies (Cho et al. 2012).    

4 Stage Balance Test “modified”: the person is 
instructed to progressively maintain four foot 
positions for 10 seconds each, without moving 
his/her feet or needing support. The positions are: 
side by side stance, semi-tandem stance, tandem 
stance and unipedal stance (Rossiter-Fornoff et al. 
1995; Thomas et al. 2014). For each position the 
subjects were instructed to stand quietly without 
shoes on the pressure platform, with their arms along 
the body. In this study, except for the one leg stand 
position, all positions must be performed with eyes 
open and then closed. The final score of this test is 
the number of positions a person can hold for 10 
seconds without losing balance (number of 4-stage 
exercises). The inability to complete the tandem 
stance position has been associated with higher risk 
of falling (Murphy et al. 2003). 

The tests were applied by trained health 
professionals. Prior to the execution of tests, the test 
procedure was explained to each person and it was 
demonstrated how the test should be performed. 
Auditory cues were also used to instruct the person 
during the execution of the tests. Only persons who 
performed the three functional tests (TUG, STS and 
4-stage) were included in this study. 

2.3 Instrumentation 

The participants were instrumented with one 
wearable inertial sensor during the execution of 
TUG and 30-seconds sit-to-stand tests. The 4-stage 
balance test was performed on a pressure platform, 
as can be seen in Figure 1.  

The wearable sensor was developed and 
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assembled at Fraunhofer AICOS and was placed at 
the lower back. Inertial data was collected using the 
built-in 3-axial accelerometer and 3-axis gyroscope, 
both sampled at 50 Hz. Raw data from the inertial 
sensors were acquired for all the tests in m/s2.  

The pressure distribution data was measured with 
PhysioSensing platform (Sensing Future 
Technologies, Lda) running at frequency of 50Hz. It 
contains 1600 pressure sensors of size 10mm by 
10mm with maximum value of 100N/sensor. 
Voltage data is converted with an 8-bit A/D 
converter and is transmitted via USB (Universal 
Serial Bus). In this way it is possible to receive raw 
data of each pressure sensor as well as the raw 
center of pressure coordinates (CoP), in cm. In order 
to obtain more precision in CoP displacements, an 
algorithm was employed to obtain CoP positions in 
mm, using the matrix of pressure sensors (Hsi 2016). 

 

 

Figure 1: Example of a test set-up, with the pressure 
platform in the floor and an illustration of the inertial 
sensor placement of at the lower back, since it is covered 
by the clothes. 

2.4 Inertial Sensors Data Analysis 

The accelerometer and gyroscope signals were 
synchronized and used to segment the TUG test into 
its several components (stand up, walk forward, turn 
around, walk back to the chair and sit down) as 
previously described in (Silva and Sousa 2016) and 
to identify the stand and sit phases of the STS test. 
Identification of the STS transition points was made 
analysing the y-axis of the gyroscope signal. After 
filtering the signal with a moving average filter of 20 
samples window size, zero crossings were identified 
(Guimaraes, Ribeiro, and Rosado 2013). In order to 
remove outliers, a minimum of 20 samples were 
used as difference between consecutive transition 
points. Since the score is given by the total number 
of complete cycles, it was considered one cycle 
between two transitions points, one sit-to-stand and 

one stand-to-sit. The number of cycles is therefore 
half the number of transitions points identified, as 
illustrated in Figure 2. 

For each one of the TUG segments and for the 
whole STS test, statistical and frequency domain 
features were extracted from the magnitude of the 
accelerometer signal. The list of features has been 
reported in (Silva and Sousa 2016) and corresponds 
to: mean, median, maximum, minimum, signal 
height, standard deviation, median deviation, root 
mean square, inter quartile range, number of times 
the magnitude signal crosses the mean value, 
energy, entropy, skewness, kurtosis, average of 
minima, average of maxima, average signal height,  
fundamental harmonic of Fast Fourier Transform 
(FFT) spectrum and fundamental amplitude. 

Additional metrics for each test were calculated 
from the inertial data: for the TUG test, the duration 
of the stand segment (duration of the first segment) 
and the number of steps (calculated with a step 
counter algorithm reported by (Aguiar et al. 2014)) 
taken during the test; for the STS test, the number of 
STS cycles and the STS power (Zhang et al. 2014).  

 

 

Figure 2: Axis x (red), y (green), z (blue) and magnitude 
signals (black) of the accelerometer and gyroscope signals 
for STS test with identification of transition points with 
blue vertical lines. The interval between two consecutive 
lines is considered as one STS cycle. Figures are from a 
low risk person. 

2.5 Pressure Platform Data Analysis 

For each posture of the 4-stage balance test 
executed, the pressure values on each sensor of the 
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pressure platform were recorded. The centre of 
pressure (CoP) coordinates were then obtained and  
several parameters, which are typically used in 
postural sway and fall risk assessment (Bigelow and 
Berme 2011; Guimaraes, Ribeiro, and Rosado 2013; 
Raymakers, Samson, and Verhaar 2005) were 
calculated.  

For all the medio-lateral (ML) and antero-
posterior (AP) CoP position coordinates obtained 
during each posture execution, the mean (mean AP 
CoP positions, ML mean CoP positions), standard 
deviation (std AP CoP positions, std ML CoP 
positions), root mean square (rms AP CoP positions, 
rms ML CoP positions), maximum (max AP CoP 
positions, max ML CoP positions) and minimum 
(min AP CoP positions, min ML CoP positions) 
were calculated. 

The displacement of CoP in each direction per 
time unit gave rise to the mean velocity of CoP 
displacement (vm CoP position AP, vm CoP position 
ML) metrics. 

Another metric extracted was the area of a 
confidence ellipse containing 95% of the CoP 
coordinates projected in a 2D plan (Ellipse area). 
Figure 3 shows a comparison of CoP displacements 
in ML and AP directions for two persons with 
different fall risk levels during the semi-tandem 
stance  with eyes closed. For  a  low  fall risk  person 

 

 

Figure 3: CoP displacements in ML and AP directions and 
95% confidence ellipse area (red line) during semi-tandem 
stance with eyes closed of 4-stage test. Top figure is from 
a low risk person and botton figure is from a high risk 
person, showing more outliers in ML and AP directions. 

(top figure) the displacement is concentrated around 
the centre, however for a high fall risk  person, more 
outliers in ML and specially in AP direction are 
identified, reflecting unbalance situations.  

Sway can be defined, in this scope, as the 
amplitude or absolute distance of CoP oscillations. 
The sum of all the distances accumulated during the 
execution of each posture is computed resulting in 
the CoP path length (total Sway distance). The 
standard deviation of sway distances (std Sway) and 
the maximum and minimum amplitude of CoP 
oscillations (maxSway and minSway) were also 
included as pressure platform metrics. 

2.6 Machine Learning Methods 

Classification and regression methods were tested to 
differentiate between high and low fall risk groups 
using metrics extracted from inertial sensors and 
pressure platform. Rapid Miner Toolkit was used for 
the train and test processes. Ten-fold cross 
validation with random split was used for all the 
processes. In order to define a metric to divide the 
groups, a fall level was determined based on the 
history of falls questionnaire and usage of walking 
aid, as presented in Figure 4, since these two factors 
have evidence to be more related with risk of falling. 
The fall level is merely an indication if the person 
shows more or less probability of falling, since the 
falls occurrence in a 12 months follow up period was 
not possible to measure. The dimension of the 
population is 296 subjects. The low risk group 
represents 83% of the dataset and is composed by 
245 subjects (35% within 50-65y.o. and 65% above 
65y.o.). The high risk group represents 17% of the 
dataset and contains the remaining 51 subjects (16% 
within 50-65y.o. and 84% above 65y.o.). This 
distribution is in agreement with the falls incidence 
in the elderly population, which is less than 30% 
(Bergen, Stevens, and Burns 2016). 

Two approaches were compared: first only 
personal metrics and tests scores were used to 
construct the feature vector, and then this vector was 
replaced with features extracted from inertial sensors 
and pressure platform. The objective was to study 
the added value of the sensors features to 
differentiate between fall risk groups.  
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Figure 4: Fall level definition based on history of falls and 
usage of walking aid. 

The performance of several classification and 
regression methods was compared based on 
accuracy, precision, recall and F-Score. It was 
considered low risk as the positive class and high 
risk as the negative class. TP states for true positive, 
FP for false positive, TN for true negative and FN 
for false negative. The performance metrics are 
calculated as follows: 

Precision (P) = TP / (TP+FP) (1)

Recall (R) = TP / (TP+FN) (2)

Accuracy = (TP+TN) / (TP+TN+FP+FN) (3)

F-Score = (2P x R) / (P+R) (4)

3 RESULTS & DISCUSSION 

3.1 Statistical Analysis 

A statistical analysis has been conducted for the 
variables: gender, age, body mass index (BMI), 
number of medicines, number of health conditions, 

fear of falling, TUG score, STS score and 4-stage 
score. Cut-off values that have been used in previous 
studies referred in the introduction section of this 
paper to distinguish high and low fall risk levels 
were applied to each of these variables. The Fisher’s 
exact test was applied with the null hypothesis that 
there are no non-random associations between the 
two categorical variables: fall level and each of the 
variables considered. The Fisher’s exact test p-value 
and odds ratio (OR) are reported in Table 1 and were 
calculated with Matlab function fishertest. 

Table 1: Odds Ratio and Fisher's exact test p-value for 
personal metrics and tests scores with the fall level. 

Variable Odds Ratio p-value 

Feminine Gender  1.04 1.00 

Age > 65 2.86 0.01 

BMI < 13.7 or BMI > 29.7 1.58 0.18 

More than 4 Medicines 1.96 0.05 

More than 2 Health 

Conditions 
1.56 0.38 

Has Fear of Fall 3.35 0.00 

TUG Duration > 10 s 6.51 0.00 

STS Cycles < 15 11.25 0.00 

Not completed 10s Tandem 

Stance (eyes open) 
3.59 0.00 

Presence of fear of falling, TUG duration above 
10 seconds, number of STS cycles below 15 and not 
completed the tandem stance with eyes open were 
the metrics with higher odds ratio with the fall level 
and p-value below 0.05. Thus, the hypothesis of 
random association between fall level and the 
variables in shaded lines of Table 1 can be rejected. 
Age above 65 years old and take more than 4 
medicines per day also showed a p-value below 0.05 
but the OR was lower than for the previously 
mentioned variables. For the remaining variables, 
the conclusion is that female individuals, or 
individuals that have BMI lower than 13.7 or higher 
than 29.7 or that have more than two health 
conditions do not have greater odds of having a high 
fall level than individuals that are male, have a 
normal BMI and have less than two health 
conditions. In general, tests scores showed higher 
association with fall level than personal metrics, 
reflecting that functional abilities have higher impact 
on fall level than personal conditions of a person. 

3.2 Machine Learning Approaches 

Classification and regression methods were studied 
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for the differentiation between low and high fall risk 
groups using the fall level as label. All algorithms 
applied were retrieved from the Rapid Miner 
predictive models.  

3.2.1 Functional Tests Scores 

As a first analysis, personal metrics (age, gender, 
BMI, fear of fall, number of health conditions and 
number of medicines) and test scores (TUG 
duration, number of STS cycles and number of 4-
stage exercises) were used to define the feature 
vector and fall level as label. The results are 
summarized in Table 2. 

Table 2: Classification and regression results with 
personal metrics and functional tests scores. Accuracy, 
precision, recall and F-Score are in percentage (%). 

Algorithm Accuracy Precision Recall 
F-

Score 

k-NN, k=4 81.41 69.33 63.00 66.01 

Naïve 
Bayes 

84.82 74.58 71.19 72.85 

Random 
Forest 

83.13 59.37 53.05 56.03 

Decision 
Tree 

81.44 68.28 60.33 64.06 

Neural Net 82.45 69.22 64.84 66.96 

SVM 82.45 49.08 51.21 50.12 

Linear 
Regression 

83.11 69.01 56.05 61.86 

Logistic 
Regression 

82.13 67.48 64.88 66.15 

Naïve Bayes classifier obtained the higher accuracy, 
84.82%. Precision was 74.58% and recall was 
71.19%. Random Forest and Linear Regression also 
obtained acceptable results. In general, all 
algorithms showed higher precision than recall. 

3.2.2 Sensors Features 

In order to compare the previous results based on 
tests scores with the features extracted from inertial 
sensors and pressure platform, a feature vector 
containing 224 sensors features was used. For each 
TUG segment (stand, walk, turn and walk back) 19 
statistical and frequency domain features were 
extracted, yielding 76 features plus 2 metrics, time 
to stand and the number of steps. For STS test, the 
same 19 features were extracted plus 2 metrics, the 
number of STS cycles and the STS power. For the 4-
stage test, 17 CoP metrics were extracted for each 
one of the 7 exercises (when available), yielding 119 

features. Additionally, 6 personal metrics were 
added: age, gender, BMI, fear of fall, number of 
health conditions and number of medicines. Fall 
level was used as label. Since the number of features 
was considerable high, forward feature selection was 
applied prior to cross validation. Results are 
presented in Table 3. 

Table 3: Classification and regression results for personal 
metrics and features extracted from sensors. Number of 
features selected by forward feature selection follows the 
name of the algorithm. Accuracy, precision, recall and F-
Score are in percentage (%). 

Algor. Accuracy Precision Recall F-Score 

k-NN, k=4 
[5 F.] 

85.78 87.79 95.88 91.66 

Naïve 
Bayes  
[4 F.] 

87.16 88.18 97.50 92.61 

Neural Net 
[5 F.] 

87.20 88.05 97.94 92.73 

SVM  
[3 F.] 

84.82 84.95 99.23 91.54 

Random 
Forest  
[3 F.] 

87.48 87.92 98.43 92.88 

Decision 
Tree [5 F.] 

88.17 89.47 97.10 93.13 

Linear 
Reg. [3 F.] 

85.89 85.66 99.55 92.08 

Logistic 
Reg. [4 F.] 

86.54 86.74 98.78 92.37 

Decision tree classifier obtained the higher 
accuracy, 88.17%. Precision was 89.47% and recall 
was 97.10%. Comparing the results of Naïve Bayes 
with the previous analysis, the features obtained 
from sensors yield higher accuracy than only tests 
scores. Moreover, features from TUG and 4-stage 
tests were frequently selected with forward feature 
selection method. For all algorithms tested, features 
from sensors provide higher precision and recall 
values. F-Score obtained with features from sensors 
were the same across all algorithms tested and 
considerable higher than F-Score obtained only with 
tests scores and personal metrics (91-93% against 
50-72%). 

4 DISCUSSION 

Previous studies from (Scott et al. 2007) have 
compared the accuracy of several functional tests 
and fall risk tools to differentiate groups with 
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different levels of fall risk. Despite the differences in 
protocol and population analysed (only for 
community settings and validated in a prospective 
study), similar accuracy and sensitivity were 
reported. Murphy et al. (Murphy et al. 2003) 
concluded that ‘floor transfer’ and ‘50 ft walk’ tests 
combined can discriminate fallers from non-fallers 
with an overall accuracy of 96% (82% sensitivity 
and 100% specificity). 

A similar study from Liu et al. (Liu et al. 2011) 
has used metrics from instrumented TUG, alternate 
step test and 5 times STS to classify between fallers 
and non fallers and the best models have achieved 
70% accuracy (68% sensitivity and 73% specificity). 

5 CONCLUSIONS 

The objective of this study was to compare the 
performance of functional tests scores and features 
obtained from inertial sensors and pressure 
platforms to discriminate between low and high risk 
of fall. A fall level was defined based on history of 
falls and usage of walking aid and was used as label 
in classification and regression algorithms. Only 
subjects who performed the three functional tests 
(TUG, STS and 4-stage) were included in this study. 

The association between functional tests scores 
and fear of falling with fall level are not random 
(Fisher’s exact test p-value < 0.05), concluding that 
individuals with functional disabilities and fear of 
falling have greater odds of having a higher fall level 
than individuals without physical disabilities and 
without fear of falling. Moreover, when comparing 
personal metrics with fall level, it was concluded for 
some personal metrics that random association with 
fall level cannot be excluded. 

The differentiation power of personal metrics 
and tests scores was considerable different when 
tested with classification and regression methods. 
Accuracies above 80% were obtained for all 
algorithms. Naïve Bayes outperforms with an 
accuracy of 84.82% (74.58% of precision and 
71.19% of recall).  

However, features from inertial sensors and 
pressure platform obtained better results for the 
same algorithms than only tests scores. Naïve Bayes 
classifier obtained an accuracy of 87.16% (88.18% 
of precision and 97.50% of recall). 

These results support the conclusion that 
instrumentation of fall risk assessment tests with 
inertial sensors and pressure platform could better 
discriminate the individuals at a higher risk of 
falling. 
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