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Abstract: Switched asynchronous sequential machines are composite systems consisting of a number of single asyn-
chronous machines, or submachines, and a rule that orchestrates switching operations between submachines.
In this paper, we investigate robust reachability of switched asynchronous machines. If each submachine has
equivalent state space with one another, it can be used in fault recovery against any unauthorized state tran-
sition caused by transient faults. The robust reachability of switched asynchronous machines is addressed in
terms of simple matrix expressions. The use of robust reachability in fault-tolerant corrective control is also
outlined.

1 INTRODUCTION

Asynchronous sequential machines are hard-
ware/software systems that operate sequentially with
no global synchronizing clock (Sparsø and Furber,
2001). Since first invented in mid 1950’s (Huffman,
1954), asynchronous sequential machines have been
used in various areas as an important building block
of the system, e.g., digital systems (Unger, 1995),
communication networks (Schwartz, 1996), parallel
computation, etc. It is also expected that the notion
and control of asynchronous sequential machines
can be applied to the field of systems biology
and bioinformatics (Hammer, 1995; Saadatpour,
Albert, and Albert, 2010), as biological systems
inherently have the feature of asynchrony, and the
state space of biological systems can be expressed in
discrete dynamics, which fits into the mechanism of
asynchronous machines.

In this paper, we address robust reachability of
switched asynchronous sequential machines. The
switched systems are a kind of hybrid systems that
consist of several submachines and a rule that co-
ordinates switching operations between them. Due
to their importance in both theoretical and practi-
cal applicability, the study of switched systems has
drawn a great attention, especially in the field of lin-
ear systems (Sun and Ge, 2006). In event-driven dy-
namics, however, few studies on switched systems
have been reported so far. Notable among them

are switched Boolean networks for gene regulatory
networks (Zhang and Feng, 2012) and control of
switched asynchronous sequential machines by the
authors (Yang, 2016).

In the prior work (Yang, 2016), the problem of
model matching for switched asynchronous sequen-
tial machines is investigated in the framework of cor-
rective control, which is a novel automatic control
theory developed exclusively for asynchronous ma-
chines (Murphy, Geng, and Hammer, 2003). The
control objective in Yang (2016) is to elucidate the
existence condition and design algorithm for a cor-
rective controller that matches the stable-state behav-
ior of the closed-loop system to that of a prescribed
reference model. In the present study, we are con-
cerned with fault-tolerant controllability of switched
asynchronous machines. We assume that the con-
sidered switched machine may suffer from transient
faults (Krishna and Shin, 1997). Transient faults
cause unauthorized state transitions to the machine,
making the next behavior unpredictable if not recov-
ered. Note that our study can be also applied to in-
termittent faults. While the adverse effect of transient
faults vanish immediately after the fault occurrence,
that of intermittent faults lasts for finite time. Hence
once an asynchronous machine undergoes an unau-
thorized transition by the intermittent fault, it cannot
return to the original state immediately and more rig-
orous procedure of fault tolerance is needed.

In this paper, we derive and quantify inherent

190
Kwak S. and Yang J.
On Robust Reachability of Input/State Switched Asynchronous Sequential Machines.
DOI: 10.5220/0006220401900195
In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), pages 190-195
ISBN: 978-989-758-214-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



reachability of switched asynchronous sequential ma-
chines necessary to overcome both transient and inter-
mittent faults. We show that compared with the case
of transient faults, the switched machine must have
more reachability to tolerate the effect of intermittent
faults. Though this reachability analysis is a requisite
for designing a fault-tolerant corrective controller, in
this study we omit the controller construction and in-
stead outline the correction procedure as a remark.

The rest of this work is organized as follows. Sec-
tion 2 provides a modeling formalism of switched
asynchronous machines with transient faults. In Sec-
tion 3, the reachability of switched asynchronous ma-
chines is described in terms of numerical matrices and
the condition for fault-tolerant controllability is ad-
dressed. A simple example is provided in Section 4 to
support the proposed methodology. Finally, Section 5
concludes the paper.

2 PRELIMINARIES

2.1 Switched Asynchronous Sequential
Machines

Let us consider a switched asynchronous sequential
machineΣ with m submachines. Assume that each
submachine is a single input/state asynchronous se-
quential machine, namely the present state of the ma-
chine is given as the output.Σ is represented as

Σ = {Σi |i ∈ M}
Σi = (A,X, fi)

whereM = {1, . . . ,m}, Σi is the ith submachine,A
is the input set,X is the state set withn states, and
fi : X ×A → X is the state transition function ofΣi
partially defined onX ×A. Since every submachine
is assumed to have an equal operational domain, the
input and state set ofΣi is the same for everyi ∈ M. A
is further divided intoA=An∪̇Ad whereAn andAd are
the set of normal and adversarial inputs, respectively.

Each submachineΣi is operated according to the
characteristics of a single asynchronous sequential
machine, that is, it is not governed by any synchroniz-
ing clock and the state transition is executed only in
response to changes of external inputs. A state–input
pair (x,v′) ∈ X×A is a stable pair ofΣi if fi(x,v′) = x
andx is a stable state. Iffi(x,v′) 6= x, on the other
hand,x is a transient state and(x,v′) is a transient
pair. Note thatx may be stable or transient depending
on the value of the present input. Denote by

Ui(x) = {v∈ An| fi(x,v) = x}

the set of normal inputs that make a stable pair withx
in Σi . Owing to the absence of a synchronizing clock,
Σi stays at a stable pair(x,v′) indefinitely. If the in-
put v′ changes to another valuev for which (x,v) is
a transient pair,Σi engages in a series of transient
transitionsfi(x,v) = x1, fi(x1,v) = x2, . . . wherev re-
mains fixed. Assuming no infinite cycles,Σi reaches
thenext stable state xk such thatxk = fi(xk,v) at the
end of the chain withk transient transitions. Since
the transition speed of asynchronous sequential ma-
chines is very fast, the meaningful behavior of asyn-
chronous sequential machines may be described only
in terms of stable states. To this end, we introduce the
stable recursion functions as follows (Murphy et al.,
2003): si : X ×A → X, andsi(x,v) = x′ wherex′ is
the next stable state of a valid state–input pair(x,v).
A chain of transient transitions from a stable state to
its next stable state, as represented bysi , is termed a
stable transition. The domain ofsi can be expanded to
X ×A+ in a natural way as follows, whereA+ is the
set of all nonempty strings of characters inA.

si(x,v1v2 · · ·vk) = si(si(x,v1),v2 · · ·vk),

v1v2 · · ·vk ∈ A+

2.2 Control Configuration
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Figure 1: Control configuration for the switched asyn-
chronous sequential machineΣ with transient faults.

A control configuration for the switched asyn-
chronous sequential machineΣ is shown in Figure
1. C is the corrective controller, also designed in the
form of an asynchronous sequential machine.C pro-
videsΣ with the control signalu ∈ An or the switch-
ing signalσ ∈ M, either of which is generated at a
time, but not simultaneously. The control input is de-
livered toD, the demultiplexer.D plays the role of
determining theactive submachinewhose dynamics
is manifested byΣ. The latter is realized by changing
the value ofσ. Wheneverσ is changed to a new value
in M, D gives the new active submachine the control
signalu, which can be interpreted as the switching op-
eration.P, the multiplexer, receivesm state feedback
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values from all submachinesΣ1, . . . ,Σm and selectsx,
the feedback value generated by the active subma-
chineΣσ. P forwardsx and i ∈ M, the index of the
active submachine, toC. Let Σc denote the closed-
loop system consisting ofC, D, P, andΣ.

In Figure 1, v ∈ An is the external input and
w1, . . . ,wm ∈ Ad are the adversarial input occurring to
Σ1, . . . ,Σm, respectively. Whenwi occurs,Σi experi-
ences an unauthorized state transition. For instance,
if the active submachine ofΣ is Σi staying at a stable
statex at whichwi is defined,Σi must be forced to
reachsi(x,wi) as the result of the fault. If an imme-
diate fault recovery to the original state is not con-
ducted, the next behavior ofΣ with respect to the
new external input would show incorrect state/input
behavior. Thus the objective of fault diagnosis and
tolerance is that the corrective controllerC must be
designed such that the closed-loop systemΣc can
achieve instantaneous fault recovery upon diagnosing
an occurrence of a fault.

One point to be reminded is that immediate fault
recovery is impossible in the case that the fault shows
intermittent characteristics. Whenwi represents the
intermittent fault,Σi cannot return tox upon diag-
nosing an occurrence ofwi . But sinceΣ hasm sub-
machines and each submachine has the same state
space made ofX, we can regard that fault tolerance
is achieved ifΣ returns to the statex of another sub-
machine. WhetherΣ has such robust reachability will
be discussed in detail in the next section.

To avoid unpredictable behaviors caused by the
absence of a synchronizing clock, we assume thatΣc
always preserves the principle of fundamental mode
operations (Kohavi and Jha, 2010) whereby a variable
must change its value when bothC andΣ are in sta-
ble states, and no two or more variables can be altered
simultaneously.

3 ROBUST REACHABILITY

3.1 Skeleton Matrix

Assuming|X| = n, we denote the state set byX =
{x1, . . . ,xn}. Reachability of switched asynchronous
sequential machines is classified into to two aspects:
(i) stable reachability of each submachine, and (ii)
switching capability between different submachines.
In corrective control of single asynchronous ma-
chines, reachability of a machine is described by a
Boolean matrix, termed the skeleton matrix (Murphy
et al., 2003; Peng and Hammer, 2012), as follows.

Definition 1 . K(Σi), the skeleton matrix ofΣi =

(A,X, fi), is an n×n matrix whose(p,q) entry is

Kp,q(Σi) =

{
1 ∃t ∈ A+

n s.t. xq = si(xp, t)
0 otherwise

If Kp,q(Σi) = 1, a corrective controller can be con-
structed that takesΣi from xp towardxq in the asyn-
chronous mechanism using an input stringt ∈ A+

n
such thatxq = si(xp, t). For a detailed procedure
of controller construction, the readers are referred to
Murphy et al. (2003); Peng and Hammer (2012).

Switching capability ofΣ implies the ability ofΣ
to change its mode from a submachine to another sub-
machine at a specific stable state. In the prior work
(Yang, 2016), a constraint is imposed on the switch-
ing operation that as the result of switching, the active
submachine always takes the same state possessed by
the previous submachine. In this study, we general-
ize the switching operation by relaxing the foregoing
constraint. In other words, the new active subma-
chine does not necessarily transfer to the same state
at which the old one has stayed before switching. To
address the switching relation between two subma-
chines, we define the following matrix.

Definition 2. W(i, j), the switching incidence ma-
trix of two submachinesΣi andΣ j , is an n×n matrix
whose(p,q) entry is

Wp,q(i, j) =





1 Σ switches the mode fromΣi at xp
to Σ j at xq

0 otherwise

W(i, j) represents switching capability ofΣ in the
most general way, that is, the state of the present
submachine may differ from the previous one after
switching. The motivation for introducingW(i, j)
stems from the fact that some switched machines have
multiple submachines that share the same system
module to realize the state space. As the switching op-
eration depends on this implementation restraint, the
next state may be different from the previous one.

Note that for switching fromΣi at xp to Σ j at xq,
there must exist an inputa ∈ An that makes a stable
pair with bothxp of Σi andxq of Σ j , i.e.,

Wp,q(i, j) = 1⇒Ui(xp)∩U j(xq) 6= /0 (1)

Under the principle of fundamental mode operations,
Σi should stay at the stable statexp at the moment that
the switching signalσ changes. Hence the present
control signal isu ∈ Ui(xp). Moreover,u must also
make a stable pair withxq in Σ j , namelyu∈ U j(xq);
otherwiseΣ j could not maintainxq upon completion
of the switching operation. However, the condition
u ∈ U j(xq) may not be always valid sinceu is deter-
mined only by the past state trajectory ofΣi . Still, as
long asUi(xp)∩U j(xq) 6= /0 is held true,C can achieve
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the switching operation by changing the control sig-
nal to u′ ∈ Ui(xp)∩U j(xq) right before transmitting
the switching signalσ = j. In this sense, (1) is a req-
uisite for guaranteeing consistent switching.

The following definitions depict stable reachabil-
ity and switching capability ofΣ in a single matrix,
respectively.

Definition 3. K(Σ), the skeleton matrix ofΣ for sub-
machines, is an nm×nm matrix defined as

K(Σ) =




K(Σ1) 0n×n · · · 0n×n
0n×n K(Σ2) · · · 0n×n

...
...

...
...

0n×n 0n×n · · · K(Σm)




W(Σ), the switching incidence matrix ofΣ, is an nm×
nm matrix defined as

W(Σ) =



0n×n W(1,2) · · · W(1,m)
W(2,1) 0n×n · · · W(2,m)

...
...

...
...

W(m,1) · · · W(m,m−1) 0n×n




Definition 4. The one-step switching skeleton matrix
S 1(Σ) is an nm×nm Boolean matrix defined as

S 1(Σ) =



K(Σ1) W(1,2) · · · W(1,m)
W(2,1) K(Σ2) · · · W(2,m)

...
...

...
...

W(m,1) · · · W(m,m−1) K(Σm)




The k-step switching skeleton matrixS k(Σ) (k ≥ 2)
is recursively defined as

S k(Σ) = S k−1(Σ)×B S 1(Σ)

where ‘×B’ denotes the Boolean product of two
Boolean matrices where logic AND and OR are used
instead of multiplication and plus operations in the
matrix product.

Definition 5. The combined switching skeleton ma-
trix Z(Σ) of the switched asynchronous sequential ma-
chineΣ is an nm×nm Boolean matrix defined as

Z(Σ) =
nm−1

∑
k=1

+BS k(Σ)

where ‘+B’ denotes the Boolean addition of two ma-
trices.

Note that in the above definitions, statexp (p ∈
{1, . . . ,n}) of the ith submachineΣi is assigned the
indexp′ ∈ {1, . . . ,nm} such that

p′ = (i −1)n+ p

K(Σ) just assembles stable reachability of all the
submachines. Referring to Definition 3,K(Σ) does
not contain any reachability information between dif-
ferent submachines. IfKp′,q′(Σ) = 1 for somep′,q′ ∈
{1, . . . ,nm}, p′ = (i −1)n+ p, andq′ = (i −1)n+q,
it follows thatKp,q(Σi) = 1, which meansxq is stably
reachable fromxp in submachineΣi .

W(Σ) epitomizes switching capability ofΣ. In
contrast toK(Σ), W(Σ) does not contain any stable
reachability measured within a single submachine.
HavingW(i, j) as sub-blocks,W(Σ) shows whether
Σ can transfer from a state of a submachine to another
state of another submachine through switching oper-
ations. IfWp′,q′(Σ) = 1 for somep′,q′ ∈ {1, . . . ,nm},
p′ = (i − 1)n+ p, and q′ = ( j − 1)n+ q, we have
Wp,q(i, j) = 1. ThusΣ can move fromxp of Σi to xq
of Σ j via the switching operation.

S 1(Σ) in Definition 4 contains both stable reacha-
bility and switching capability ofΣ. Here, “one-step”
implies thatΣ takes either one switching operation or
correction procedure. Indeed, a correction procedure
by the controller involves more than one stable transi-
tions if the length of the used input sequence is greater
than one (Murphy et al., 2003).

The combined switching skeleton matrixZ(Σ) is
a generalized description of stable reachability for the
switched asynchronous sequential machineΣ. Not
only doesZ(Σ) represent stable reachability within
each submachine, it also elucidates whether a state
of a submachine can be reached from another state
of a different submachine by a combination of stable
transitions and switching operations. SinceΣ hasnm
states in total, any state inΣ can be reached within
nm−1 steps of switching and correction procedures.
HenceS 1(Σ), . . . ,S nm−1(Σ) are sufficient to express
the entire reachability ofΣ.

3.2 Robust Reachability Analysis

In order to address the robust reachability ofΣ, we
must quantify the adverse effect of fault inputs. De-
fineF i(x)⊂ Ad for x∈ X andi ∈ M as

F i(x) = {w∈ Ad|si(x,w)! andsi(x,w) 6= x}
wheresi(x,w)! meanssi(x,w) is defined inΣi . F i(x)
is the set of adversarial inputs that cause unauthorized
transitions atx of Σi . In a similar way toK(Σi), we ex-
press the characteristics of all unauthorized state tran-
sitions by a simple matrix as follows.

Definition 6. Kd(Σi), the adversarial skeleton matrix
of submachineΣi , is an n×n matrix whose(p,q) en-
try is

Kd
p,q(Σi) =

{
1 ∃w∈ F i(xp) s.t. si(xp,w) = xq
0 otherwise
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In particular, assume that there exists an adversar-
ial input wi ∈ F i(xp) such thatsi(xp,wi) = xq. Ac-
cording to the above definition, we haveKd

p,q(Σi) = 1.
The fact that the unauthorized transition fromxp to
xq is manifested means thatΣi is serving as the active
submachine ofΣ. The condition for robust reacha-
bility varies depending on how many steps and sub-
machines will be used for realizing the fault-tolerant
control process.

First, assume an extreme case that we would like
to maintain the active submachine as the same despite
an occurrence of the fault. In the foregoing case, this
means that submachineΣi must have fault-tolerance
capability againstwi . Clearly, the condition for driv-
ing Σi back to the original statexp is thatΣi must have
stable reachability fromxq to xp. Thus, we have

Kd
p,q(Σi) = 1⇒ Kq,p(Σi)

Generalizing the above relation, we derive as follows
the robust reachability for fault tolerance using a sin-
gle submachine.

(Kd(Σi))
T ≤ K(Σi) (2)

where the inequality is taken entry by entry and
(Kd(Σi))

T denotes the transpose ofKd(Σi). Note that
an intermittent fault cannot be tolerated using this ro-
bust reachability, since the instantaneous recovery to
xp is infeasible.

Next, assume that we would like to involve one
more submachine in realizing fault-tolerant control.
This means that upon diagnosing a fault occurrence,
the controller will provide a switching signal, with
whichΣ will change its mode to another submachine,
say Σ j . Then fault tolerance is conducted inΣ j by
enforcingΣ j to reach the desired statexp. With the
skeleton matrices, the reachability condition for the
latter case is described as

Wq,r(i, j) = 1 andKr,p(Σ j) = 1

where we suppose thatΣ reachesxr of Σ j as the result
of the switching operation fromΣi atxq. Submachine
Σ j can be arbitrarily chosen so long as the above con-
dition is satisfied. We represent in formal terms this
robust reachability condition as follows.

∀i ∈ M,∃ j ∈ M such that

(Kd(Σi))
T ≤W(i, j)×B K(Σ j) (3)

Finally, assume that fault-tolerant procedures can
be implemented using either only submachineΣi or
Σi and another submachine, and that different subma-
chines can be used in the entire fault-tolerant control
procedure. To this end, we introduce another Boolean
matrix as follows.

Definition 7. For Σ, let

K (Σ) =W(Σ)+B W(Σ)×B K(Σ)

Z(Σi), the augmented skeleton matrix of submachine
Σi , is an n×n matrix whose(p,q) entry is

Zp,q(Σi) = max
j∈M, j 6=i

Kp′i,q
′
j
(Σ)

where p′i = (i −1)n+ p and q′j = ( j −1)n+q.

Using Z(Σi), we derive the following robust
reachability condition for fault-tolerant controllabil-
ity of Σ.

∀i ∈ M,(Kd(Σi))
T ≤ Z(Σi) (4)

Whereas (2) cannot solve fault tolerance against
intermittent faults, (3) and (4) ensure fault-tolerant
controllability against them, sinceΣ does not return to
the original state at which the fault occurs. Although
not used in this paper, the combined skeleton ma-
trix Z(Σ) in Definition 5 can be applied to represent
the overall fault-tolerant controllability ofΣ, namely
whetherΣ can overcome any unauthorized state tran-
sition using arbitrary number of submachines and cor-
rection procedures. Once the robust reachability con-
ditions (2)–(4) are guaranteed, a fault-tolerant correc-
tive controller can be easily designed based on the
previous algorithm for the model matching problem
(see, e.g, Murphy et al. (2003); Peng and Hammer
(2012); Yang (2016)).

4 EXAMPLE

x2 x3

c

c

b

b c,w2

2
Σ

x1

a

a

x2 x3

c

c

b

b a,w1

1Σ

x1

a

Figure 2: Switched asynchronous machineΣ = {Σ1,Σ2}.

Consider a simple switched asynchronous machine
Σ = {Σ1,Σ2} (M = {1,2}) shown in Figure 2, where
X = {x1,x2,x3}, An = {a,b,c}, andAd = {w1,w2}.
For simplicity, we setfi(x,v) = si(x,v) for all i = 1,2
and(x,v) ∈ X ×A. A slight examination of Figure 2
leads to

K(Σ1) =




1 1 1
1 1 1
1 1 1


 K(Σ2) =




1 1 1
1 1 1
0 0 1



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We assume thatΣ has switching capability expressed
by the following switching skeleton matrix.

W(1,2) =W(2,1) =




1 0 0
0 1 0
0 1 0




Following Definition 6 and referring to Figure 2, we
quantify the adverse effect ofAd by

Kd(Σ1) =




0 0 0
0 0 0
1 0 0


 Kd(Σ2) =




0 0 1
0 0 0
0 0 0




Consider the adversarial inputw1 in the first.
Clearly, we have(Kd(Σ1))

T ≤ K(Σ1). Hence the
unauthorized transitions1(x3,w1) = x1 caused byw1
can be invalidated (ifw1 has the transient feature) by
employing onlyΣ1, asΣ1 has sufficient robust reach-
ability (K1,3(Σ1) = 1 ands1(x1,bc) = x3). Next, con-
sider the case ofw2. We see thatKd

1,3(Σ2) = 1 but
K3,1(Σ2) = 0. This implies that fault tolerance cannot
be achieved withinΣ2. However, sinceW3,2(2,1) = 1
andK2,1(Σ1) = 1, fault-tolerant control may be real-
ized by activating a two-step procedure: switching to
Σ1 (σ = 1) upon diagnosing an occurrence ofw2, and
initiating the correction procedure fromx2 to x1 in Σ1.
This argument can be also asserted by applying con-
dition (4).

5 CONCLUSION

In this study, fault-tolerant controllability for a class
of switched asynchronous sequential machines has
been investigated. We have presented matrix ex-
pressions to describe robust reachability of switched
asynchronous sequential machines in a quantitative
manner. We have found that the condition for fault-
tolerant controllability is determined by the number
of submachines that are used in fault-tolerant control
procedures. The examination of the controller exis-
tence has been demonstrated in a simple example.
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