Clinical Risk Groups Analysis for Chronic Hypertensive Patients in Terms of ICD9-CM Diagnosis Codes

Javier Fernández-Sánchez, Cristina Soguero-Ruiz, Pablo de Miguel-Bohoyo, Francisco Javier Rivas-Flores, Ángel Gómez-Delgado, Francisco Javier Gutiérrez-Expósito, and Inmaculada Mora-Jiménez

1Dept. of Signal Theory and Communications, Telematics and Computing, Universidad Rey Juan Carlos, Madrid, Spain
2University Hospital of Fuenlabrada, Fuenlabrada, Madrid, Spain
3University Hospital of Sureste, Arganda del Rey, Madrid, Spain

Keywords: Hypertension, Chronic Condition, Health Status, Clinical Risk Groups, ICD9-CM Diagnosis Codes.

Abstract: Hypertension is a chronic condition that has a considerable prevalence in the elderly. Furthermore, hypertensive patients double the cost of normotensive individuals. The budget reduction and the increasing concern about the sustainability of the healthcare system have caused that improving the efficiency and use of resources are a priority in developed countries. Identification of chronic hypertensive patients, i.e., patients with high blood pressure, can be performed by means of population classification systems such as Clinical Risk Groups (CRGs). CRGs classify individuals in health status categories taking both demographic and clinical information of the encounters that individuals have with the healthcare system during a defined period of time.

In this work, we determine the characteristic profile and the evolution of diagnosis codes according to the International Classification of Diseases 9th revision, Clinical Modification (ICD9-CM), focusing on healthy and chronic hypertensive patients at different chronic statuses (CRG). Our data correspond to the population associated to the University Hospital of Fuenlabrada (Madrid, Spain) during the year 2012, providing about 46000/16000 healthy/hypertensive individuals. We found that profiles associated to different health statuses have different patterns in terms of ICD-9 diagnosis codes. Furthermore, a prediction method is proposed to determine the health status of a new patient according to demographic (age and gender) and clinical (diagnosis codes) data. We conclude that gender is the less informative characteristic, though the combination of age and diagnosis codes have a great potential when they are non linearly combined.

1 INTRODUCTION

The recent financial crisis has caused an important concern among the population, both from an economical and clinical point of view. The budget reduction in many social areas and the increasing concern about the sustainability of the healthcare system have been the reasons for improving the efficiency and use of resources. In this sense, the health status evolution of chronic patients is vital for the appropriate allocation of available resources, and therefore for the sustainability of the health system.

According to (MHSSE, 2011), in Spain life expectancy increased from about 73 years in 1979 to 81 years in 2008. Since aging leads people to suffer from chronic conditions (Anderson and Horvath, 2004), it takes up an important role about public health spending. In fact, more than 80% of the expenditure of the healthcare system is related to chronic diseases, and it is estimated that 75% of the population will suffer from a chronic condition anytime in their lives. One of the chronic conditions with more prevalence is arterial hypertension (i.e., blood pressure greater than 140/90 mmHg), representing 18% of population who suffer from chronic diseases according to the Spanish National Statistical Office. More precisely, nearly 62% of the population aged 65 and older have at least one chronic condition, and there is a 25% of general population with prevalence of high blood pressure (HBP) (Soni and Mitchell, 2016). From a clinical viewpoint, the importance of controlling arterial hypertension is high, since HBP can be associated to the onset of other chronic clinical conditions such as chronic kidney disease. It is also known...
that HBP is also related to diabetes, and their combination is known to have dreadful outcomes (Mancia et al., 2007). From an economical point of view, the average annual expense per hypertensive patient is about $776, with high costs in dispensation of medical drugs (Soni and Mitchell, 2016).

Nowadays, developed countries use Patient Classification Systems (PCSs) as a basic tool for cost management (Davis and LaCour, 2016), (Marazzi et al., 2007). PCSs that take into account all patient encounters with the health system during a period of time are named Population Classification Systems, and they are very useful to provide information about the population morbidity. Population groupers identify patients or groups of patients at high resource consumption, and can be used as a mean to allocate the necessary resources in health centers. There are several population groupers, among them: Adjusted Clinical Groups, mainly used for reimbursement in primary care, Diagnosis Cost Groups, and Clinical Risk Groups (CRGs).

After analyzing different groupers, the University Hospital of Fuenlabrada (Madrid, Spain) chose CRGs as the most suitable system for patient classification (Hughes et al., 2004), (Berlinguet et al., 2005). Since CRGs are also the most extensively used grouper, we will consider it for research purposes. CRGs classify individuals in mutually excluding categories (risk groups) taking demographic characteristics and clinical data during a defined period of time (usually, one year). Clinical data can be provided by services of primary care, specialized care, mental health and pharmacy dispensation. Since different codification systems of diagnosis can be available according to the service, a previous stage of code standardization has to be performed by a clinical coding expert. The International Classification of Diseases - 9th revision-Clinical Modification (ICD9-CM) - has been considered in this work for diagnosis coding in primary and specialized care.

The aim of this work is twofold. On the one hand, to provide an explanatory analysis of both demographic data and ICD9-CM diagnosis codes related to healthy and chronic hypertensive patients. On the other hand, to apply statistical learning tools to predict the health status of a patient. In the long term, the goal is to analyze clinical registers for a long enough period to find patterns identifying potential patients related to chronic conditions highly prevalent in the population. The creation of predictive models could help to improve the health status and quality of life, as well as to reduce the socioeconomic impact of chronic conditions. In this sense, the work presented here can be considered as one of the first stages, since just one year has been considered.

The rest of the paper is organized as follows. Section 2 describes the HBP condition and its importance from a clinical point of view. The PCSs are presented in Section 3, and the database in Section 4. Section 5 presents a descriptive population analysis of ICD9-MC Diagnosis Codes and their evolution for different health status. A predictive analysis considering ICD9-MC codes and demographic data is provided in Section 6. Finally, conclusions are presented in Section 7.

2 WHY CONSIDERING HBP?

Blood pressure is a measurement which forces your blood against the blood vessel walls. If this force is higher than certain value (high blood pressure), it can produce serious damages in blood vessels over the time. It also can increase the risk of having heart attacks, strokes and others (Mancia et al., 2007).

HBP means high blood pressure. A person is considered to be at risk for high blood pressure when the systolic blood pressure is 140 mm Hg or greater most of the time, and when diastolic blood pressure is 90 or greater mm Hg most of the time, i.e., 140/90 mm Hg. This condition is considered as persistent in its effects with time, i.e., chronic. Despite this fact, HBP can be controlled under blood pressure rates below 140/90 mm Hg (NLM, 2016). HBP can also lead to get other disorders and therefore to other comorbidities. Because of this fact, it is interesting to analyze the differences between healthy people and those who suffer from HBP.

According to (NHLBI, 2016a), patients can be hypertensive without knowing that they actually suffer HPB, so they are at risk of developing complications because of this condition. This is the reason why HBP is called the “silent killer”. Patients do not notice any symptoms caused by HBP, rarely they have headache. However, this condition leads to some health problems: stretching of the blood vessels would cause tears and scars that makes places for cholesterol or blood to build up. It also would lead to hemorrhagic strokes or aneurysms since stretching vessels can have spots which are very fragile and would tend to break (AHA, 2016).

Though anyone could suffer from HBP, there are some factors which can increase the probability of having such condition (NHLBI, 2016b): gender, age, ethnicity, overweight, and lifestyle habits, among others. Regarding gender (Banegas, 2005), women who are older than 55 are more likely to develop HBP than men, though men younger than 55 have more risk to
develop HBP. On the other hand, blood pressure increases with age; specifically, nearly 60% of Spanish people older than 60 have HBP. Also important is to remark that HBP can be associated to the onset of other medical conditions such as chronic kidney disease, and it is also related to diabetes.

3 PATIENT CLASSIFICATION SYSTEMS

Developed countries use PCSs for clinical purposes and also as a basic tool for cost management. PCSs are built from a set of clinical rules that assign each patient to one of a limited collection of homogeneous groups in terms of resources use and/or health status. The family based on DRGs (Diagnosis Related Groups) is the most used to analyze the hospital case mix, as well as for reimbursement and financing healthcare processes. DRGs were created in Yale University at the end of 60’s (Averill et al., 1999) as a system to classify each healthcare episode at a hospital, creating groups with clinical coherence and similar use of hospital resources (Averill et al., 1999).

Note that every episode of the same patient can be assigned to a different DRG according to the type of inpatient medical assistance. Each DRG is a group with an associated weight reflecting the consumption of resources respect to an average DRG considered as a comparison unit. Some countries use this weight, along with other metrics (hospital stay, and others), to compare hospital activity and funding them.

One limitation of DRGs is that they only consider the hospital environment, but in the healthcare system there is much more activity (primary care, specialized care, mental health, pharmacy). PCSs that consider different fields and take into account all the patient encounters with the health system are named Population Classification Systems or population groupers. As previously indicated in Section 1, population groupers usually consider age, gender, diagnoses and procedures practiced during a certain period of time (Davis and LaCour, 2016). Over the last years, pharmacy dispensation has also been incorporated to the clinical rules of some population groupers to have a more complete knowledge about the health status.

Note that, since DRGs are based on individual healthcare episodes, they do not take into account the information of the same patient during a period of time. Since chronic conditions tend to be reflected in certain diagnosis and pharmacy dispensation, DRGs are not the most appropriate system to identify patients with chronic conditions. A classification system considers all encounters with the health system is necessary to identify patients with chronic conditions. Population groupers named CRGs (developed by 3M™) take into account data about the same patient for a period of time (usually one year (Newhouse et al., 1997)) and assign the patient to a single mutually exclusive risk group which relates the clinical and demographic characteristics of every individual. This way, CRGs are suitable for identifying patients with different chronic conditions and severity levels. This will allow to relate an individual to the amount and type of healthcare resources that the patient will need in the future (Averill et al., 1999).

By way of a summary, the main differences between DRGs and CRGs are the following: (1) CRGs categorize individuals whereas DRGs classify inpatient medical assistance; (2) DRGs classify the patient into an inpatient service episode considering data registered during the stay, whilst CRGs may consider hospital environment in addition to primary care, outpatient care, mental health, and pharmacy (Averill et al., 1999).

Regarding CRGs, there are 9 core health status groups, which are subdivided into 272 chronic condition categories (ccc). The core groups are hierarchically organized as follows: CRG-9 (catastrophic, 11 ccc). CRG-8 (metastatic malignancy, 22 ccc), CRG-7 (chronic triplet, 21 ccc), CRG-6 (multiple significant chronic pair, 61 ccc), CRG-5 (single dominant/moderate chronic, 107 ccc), CRG-4 (multiple minor chronic pair, 1 ccc), CRG-3 (single minor chronic, 41 ccc), CRG-2 (significant acute, 6 ccc), and CRG-1 (healthy user and non-user, so 2 ccc). Additionally, every chronic condition category is subdivided into severity levels (up to 6, depending on the type of condition), providing a total of 1080 groups. A number of 5 digits is considered to code every of the 1080 groups. First digit is associated to the core group, next three digits refer to the ccc, and last digit is associated to the severity level. Thus, CRG-51913 corresponds to the group of single dominant/moderate chronic diseases (first digit), and specifically refers to coronary atherosclerosis (next three digits), with the third level of severity (last digit).

Patients with chronic condition of HBP can be classified into 34 different groups (of a total of 1080): lower CRG number refers to lower chronic condition. Owing to the limited number of patients associated to some severity levels, we chose to merge groups of different severity levels when they are related to the same chronic condition. From a statistical point of view, it is important the availability of groups of reasonable size. This way, our analysis will be focused on the kind of chronic condition, and groups with the same first four digits are merged to create what we
have called base-CRGs. Thus, base-CRG 5192 encompasses patients with HBP and four severity levels (CRG 51921, CRG 51922, CRG 51923, and CRG 51924).

4 DATABASE DESCRIPTION

The implementation of the Electronic Health Record (EHR) in the current society has become a powerful tool in organizational terms (annotation legibility, content security, paper files removal, etc) (Häyrinen et al., 2008). In this work, data from the EHR of University Hospital of Fuenlabrada along the year 2012 have been analyzed. This hospital assists to several small towns in the south area of Madrid, encompassing about 225,000 inhabitants. Specifically, we consider clinical encounters and demographic data (age and gender) from individuals categorized by the CRG system as healthy and hypertensive ones by using gender, age, clinical diagnoses, procedures and pharmacy dispensation.

Hypertensive patients are associated to one out of six different base-CRG, coded by four numbers: base-CRG 5192 (hypertension), base-CRG 6124 (chronic obstructive pulmonary disease and hypertension), base-CRG 6144 (diabetes and hypertension), base-CRG 6242 (asthma and hypertension), base-CRG 7070 (diabetes, cerebrovascular disease and hypertension), and base-CRG 7071 (diabetes, hypertension and other dominant chronic disease). Just one base-CRG related to HBP has been considered per core group in this work. The chosen base-CRG has been the one with more individuals: base-CRG 5192, base-CRG 6144, and base-CRG 7071. Patients classified in CRG-1 (healthy) have been also considered in our study, providing a total of 63008 individuals, as detailed in Table 1.

Table 1: Number of individuals in year 2012 per base-CRG. Healthy status is associated to CRG-1.

<table>
<thead>
<tr>
<th>base-CRG</th>
<th>Individuals in 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>46835</td>
</tr>
<tr>
<td>5192</td>
<td>12447</td>
</tr>
<tr>
<td>6144</td>
<td>3179</td>
</tr>
<tr>
<td>7071</td>
<td>547</td>
</tr>
<tr>
<td>TOTAL</td>
<td>63008</td>
</tr>
</tbody>
</table>

Figure 1 shows the age distribution for hypertensive and healthy patients. Note that healthy patients are younger than hypertensive patients, what is quite reasonable. Regarding patients with HBP, age of individuals in the lower base-CRG (no comorbidity) tend to be younger than individuals with comorbidities (base-CRG 6144 and base-CRG 7071).

Table 2 shows the gender distribution per base-CRG, both for healthy and hypertensive patients. Generally speaking, there is a balance between both genders except for base-CRG 7071, with the highest proportion for women. This fact can be explained by an increase of chronic conditions as aging, with a higher life expectancy for women.

Table 2: Gender distribution (in %) for healthy and hypertensive patients according to the corresponding base-CRG.

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy CRG-1</td>
<td>47.3</td>
<td>52.7</td>
</tr>
<tr>
<td>base-CRG 5192</td>
<td>46.9</td>
<td>53.1</td>
</tr>
<tr>
<td>base-CRG 6144</td>
<td>54.0</td>
<td>46.0</td>
</tr>
<tr>
<td>base-CRG 7071</td>
<td>42.6</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Next, Figure 2 and Figure 3 show the distribution of patients with an specific number of diagnosis codes per year and health status. Horizontal axis in both figures refer to the number of diagnosis codes per patient: total number of codes (Figure 2) and number of different codes (Figure 3). Note that healthy individuals have a lower number of diagnosis codes than hypertensive patients, what seems quite reasonable. Additionally, the mode in the number of different diagnosis codes per patient increases with the chronic condition, going from 1 in the healthy group to 6 in the base-CRG 7071. Note also that the distribution tends to be heavy-tailed in the right hand side as the chronic condition worsens. These results are consistent with the comorbidity associated to every base-CRG.
5 POPULATION ANALYSIS OF ICD9-MC DIAGNOSIS CODES

A population analysis to get the average profile of ICD9-MC codes and the most frequent codes per base-CRG is first presented in Section 5.1. Then, the evolution of codes associated to health statuses is analyzed in Section 5.2.

5.1 Average ICD9-CM Diagnosis Code Profiles

The syntax of ICD9-CM codes is based on categories, subcategories and sub-classifications of diseases. As such, the three first digits of the code refer to the category. This is followed by a dot and then the subcategory is represented by the next digit. The second digit after the dot refers to the sub-classification. For instance, diagnoses codes (000-999) can be written as “XXX.XX”, V codes (V01-V89) as “VXX.XX”, E codes (E800-E999) as “EXXX.X”, M codes (M8000-M9970), and procedures (00-99) as “XX.XX”, where X is a digit number between 0 and 9. For simplicity, from now on we will just consider codes referring to categories (three digits/values for diagnosis codes).

We define the average profile as a bi-dimensional graph representing the presence rate of every code for patients associated to a specific group (base-CRG). Thus, the average profile is obtained taking into account the presence/absence of diagnosis codes per patient in a group. Then, the presence rate per code is computed, resulting in a number in the interval [0,1]. This number represents the rate of patients having a specific diagnosis code. We focus on individuals from CRG-1 (healthy users), base-CRG 5192 (HBP), base-CRG 6144 (HBP and diabetes) and base-CRG 7071 (HBP, diabetes and other dominant chronic condition). For each group, we aim to show if there is a pattern associated to ICD9-MC diagnosis codes.

Average Diagnosis Code Profile for the Healthy Status Group. Figure 4 (a) shows the average diagnosis profile of ICD9-MC diagnosis codes for individuals classified as healthy. The horizontal axis represents the ICD9-MC codes: diseases codes (from 1 to 1000), V codes (from 1001 to 1091), E codes (1092 to 1319) and M codes (1320 to 1517). The vertical axis represents the rate of patients having a specific diagnosis code. For more detail, see Figure 5 (a), where the 15 diagnosis codes with highest rate are displayed. According to this figure, there is no prevailing code, with the highest rate lower than 15% for healthy patients. The highest rate correspond to jaws issues (526) at the first place, along with common cold (460) and general symptoms (780). Other diagnoses with prevalence are acute tonsillitis (463) and other issues related with gastroenteritis (558).

These results seem reasonable, since the most common diagnoses are acute diseases and they can be considered as normal issues in healthy individuals. Clinicians validated that these codes are related to common diseases.

Average Diagnosis Code Profile for base-CRG 5192. Figure 4 (b) presents the presence rate of diagnosis codes when considering patients assigned to the base-CRG 5192. As expected, the most common diagnosis is HBP (401), which dominates considerably above all; followed by excess of low-density lipoprotein (LDL) Cholesterol (272) in to a lesser extent. In fact, HBP and high LDL cholesterol (also known as “bad” cholesterol) are two of the most common, serious and treatable medical conditions that lead to cardiovascular disease (Parks et al., 2006). The average profile also shows that Back issues (724), joint issues such as hermarthrosis or synovitis (719) or general
Figure 4: Average profile of ICD9-MC diagnosis codes of individuals classified into: (a) CRG-1 (healthy); (b) base-CRG 5192; (c) base-CRG 6144, and (d) base-CRG 7071.

Figure 5: Presence rate for the 15 diagnosis codes with highest rate in: (a) CRG-1 (healthy); (b) base-CRG 5192; (c) base-CRG 6144, and (d) base-CRG 7071.

Symptoms (780) are also relevant. For more information, see Fig. 5 (b), where codes associated to 15 highest rates are displayed.

Prevalence of the 401 ICD9-MC code (essential hypertension) for patients assigned to the base-CRG 5192 is a key characteristic on this group. As a difference from the average profile of CRG-1, the highest rate is about 80% for hypertensive patients. Note that the PCS also consider medical drugs to assign a patient to a CRG, so it is possible that the remaining 20% of patients are assigned to base-CRG 5192 because they take hypertensive drugs.

Average Diagnosis Code Profile for base-CRG 6144. As we expected, Diabetes mellitus (DM) (250) and HBP (401) take relevance above other codes in this CRG (see Figure 4 (c) and Figure 5 (c) for details), with rates about 80%, which is consistent with the CRG analyzed. In a lesser extent, the following rates are related to excess of LDL cholesterol (272), joint issues (719) and back issues (724). Diagnosis codes related to common cold (460) and general symptoms (780) appear in a similar rate to that of healthy group.

Average Diagnosis Code Profile for base-CRG 7071. As in base-CRG 6144, diagnosis codes related to DM (250) and HBP (401) are those with a highest rate (see Figure 4 (d)). Note that nearly 80% of patients in this base-CRG were assigned at least one of these codes, a similar proportion as in base-CRG 6144. An important difference respect to the profile of base-CRG 6144 is that codes related to excess of LDL cholesterol (272), and chronic obstruction of the airways to the lungs (496) are also predominate (see Figure 5 (d)). This shows that in this CRG more comorbidities are present, being the patient in a worst chronic condition.

The average profile allows us to validate clinical knowledge, since DM, HBP, and another chronic dominant condition are the diagnosis codes with most presence in each patient.

As a summary, Table 3 lists the 5 most probable diagnosis codes per CRG. Comparing the healthy status group with other CRGs, we can claim that healthy patients do not get a high percentage of common diseases among them, which means that diseases within the healthy status group have more variability. Because of that, the most probable disease has a prevalence lower than 15% of the healthy individuals, which is jaws issues (14.8%). For the other analyzed CRGs, we can confirm that there is a high probability to have chronic diseases, being HBP (74.9%) in base-CRG 5192, 71.73% in base-CRG 6144 and
Table 3: More frequent ICD9-MC diagnosis codes expressed in % in individuals classified into the healthy status group, CRG 5192, CRG 6144 and CRG 7071.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>526</td>
<td>Jaws issues</td>
<td>14.8</td>
</tr>
<tr>
<td>460</td>
<td>Common cold</td>
<td>12.3</td>
</tr>
<tr>
<td>780</td>
<td>General symptoms</td>
<td>6.1</td>
</tr>
<tr>
<td>463</td>
<td>Acute tonsillitis</td>
<td>8.8</td>
</tr>
<tr>
<td>558</td>
<td>Other issues related with gastroenteritis</td>
<td>8.6</td>
</tr>
<tr>
<td>401</td>
<td>Essential HBP</td>
<td>74.9</td>
</tr>
<tr>
<td>272</td>
<td>Excess of LDL (cholesterol)</td>
<td>20.3</td>
</tr>
<tr>
<td>724</td>
<td>Back issues</td>
<td>14.0</td>
</tr>
<tr>
<td>719</td>
<td>Joint issues</td>
<td>12.9</td>
</tr>
<tr>
<td>780</td>
<td>General symptoms</td>
<td>10.5</td>
</tr>
<tr>
<td>250</td>
<td>DM</td>
<td>87.4</td>
</tr>
<tr>
<td>401</td>
<td>Essential HBP</td>
<td>71.3</td>
</tr>
<tr>
<td>272</td>
<td>Excess of LDL (cholesterol)</td>
<td>27.3</td>
</tr>
<tr>
<td>724</td>
<td>Back issues</td>
<td>13.8</td>
</tr>
<tr>
<td>719</td>
<td>Joint issues</td>
<td>17.1</td>
</tr>
<tr>
<td>780</td>
<td>General symptoms</td>
<td>31.1</td>
</tr>
<tr>
<td>272</td>
<td>Excess of LDL (cholesterol)</td>
<td>28.7</td>
</tr>
<tr>
<td>496</td>
<td>Chronic obstruction of the airways to the lungs</td>
<td>20.1</td>
</tr>
</tbody>
</table>

69.2% in base-CRG 7071) and DM (87.4% in CRG 6144 and 86.8% in CRG 7071) the most probable diseases found within those groups.

5.2 Evolution of ICD9-CM Codes in Terms of Health Status

Figure 6 shows the evolution of the diagnosis codes with higher presence rate according to the health status (CRG) in 2012. Note that nearly 75% of the hypertensive patients have the diagnosis code 401 (HBP), while DM is present in more than 85% of patients assigned to base-CRG 6144 and base-CRG 7071. It is clear from Figure 6 how excess of LDL (cholesterol, diagnosis code 272) increases its prevalence with the number of the health core status (from groups 5192 to 7071). It is in base-CRG 7071, associated to the worst chronic condition among those considered here, where excess of LDL takes the highest presence rate (about 30%). Code with the highest presence rate in the group of healthy patients (jaws issues, 526) have a similar rate in all base-CRGs (presence rate lower than 15%). General symptoms (780) is also present in every group, having the highest rate in base-CRG 7071 (about 30%), nearly tripling its presence regarding healthy patients. This fact can be justified by the fact that patients in the seventh core group have a high number of comorbidities and so the general symptoms code is quite frequent when attending to the doctor. We conclude stating that the evolution of codes over different CRGs was as expected prior the analyses: HBP presents a high margin over acute diseases in base-CRGs 5192, 6144 and 7071, getting a similar behaviour for DM in the last two CRGs. Besides, we verify the relationship between healthy patients and acute diseases, these being present in a low rate.

6 HEALTH STATUS PREDICTION

The population analysis of ICD9-MC diagnosis codes supports that patients classified according to different health status (CRG) are characterized by a different diagnosis code profile, as presented in Fig. 5. This suggests that a predictive model can be built to predict the base-CRG of a new patient. Towards that end, we evaluate linear and nonlinear models constructed by using a Support Vector Machine (SVM). The selection of this method is motivated by its theoretical properties, which make it an attractive approach for a great number of medical data problems (Soguero-Ruiz and et al., 2016a), (Soguero-Ruiz and et al., 2016b).

Both linear and nonlinear SVM classifiers require free parameters tuning (Steinwart and Christmann, 2008). The linear v-SVM algorithm requires the tuning of a single free parameter v ∈ (0, 1), while the spread parameter (σ) has to be also adjusted for the...
nonlinear SVM when a Gaussian kernel is considered. We adopted a cross-validation strategy for tuning the free parameters.

In this work, demographic (gender and age) and clinical data (ICD9-CM diagnosis codes) have been considered as input features to classify a patient into one of the following status groups: CRG-1, base-CRG 5192, base-CRG 6144 or base-CRG 7071.

Since classes are highly unbalanced (see Table 1), the data set was constructed using an undersampling strategy in order to get balanced classes. Towards that end, a random subset of 547 samples were selected for each group, achieving a total of 2188 samples when considering the four groups. Note that the number of samples per group is limited by the minority group, i.e. base-CRG 7071. On the balanced data set, 80% of the samples were randomly chosen for training, being the remaining 20% for testing. We repeated this process 50 times and evaluated results in terms of accuracy (mean ± standard deviation).

We have checked that when all features (demographic and diagnosis codes) were considered as input features in the SVM, the model accuracy was low. Therefore, results are not presented in this paper. This low accuracy can be motivated because there are many diagnosis codes with a very low presence rate in all groups (see Fig. 4). To tackle this shortcoming, we averaged the profiles presented in Section 5.1 to get an average presence rate, regardless the number of patients per group. Figure 7 shows the average rate of the 200 diagnosis codes with the highest average presence rate.

To enhance the prediction results, and according to Figure 7, the 50 diagnosis codes with higher average presence rate were evaluated (see Figure 8 for details). Using these diagnosis codes, a binary classification was fitted for: (1) CRG-1 vs. base-CRG 5192; (2) CRG-1 vs. base-CRG 6144; (3) CRG-1 vs. base-CRG 7071; (4) base-CRG 5192 vs. base-CRG 6144; (5) base-CRG 5192 vs. base-CRG 7071; and (6) base-CRG 6144 vs. base-CRG 7071. In general, the best performance (mean accuracy of 97%) was achieved when classifying patients from CRG-1 vs. base-CRG 7071. This is an expected result since healthy patients are characterized by having different diagnosis codes with respect to chronic triplet ones (see profiles in Figure 4). Accuracy decreases significantly when just comparing patients with chronic conditions. For example, a mean accuracy value of 76% is obtained when classifying patients with chronic triplet (base-CRG 7071) from patients with a chronic pair (base-CRG 6144).

On the way to predict the health status evolution, a multiclass SVM was trained, evaluating four classes (one for each group in Table 1). Table 4 shows the accuracy (mean and standard deviation) when using demographic and clinical data as input features, both individually and jointly for linear and non linear SVM. Results suggest that a non linear approach provides better performance than a linear one. On the other hand, clinical features provide more knowledge than demographic data (first and second rows in Table 4). Note that accuracy is improved when age and clinical features are jointly analyzed, with gender being the less informative feature.

7 CONCLUSIONS

Nowadays, HBP plays an important role in a clinical and economic context, with a high incidence and prevalence among mid-aged and older people (Soni and Mitchell, 2016). Besides, treatment and control of this particular disease can be expensive (Soni and Mitchell, 2016).

This work aims to provide knowledge which can support clinicians decisions as well as improve the resources allocation devoted to the specific chronic condition of HBP. For that purpose, we analyzed the evolution of ICD9-CM diagnosis codes, focusing on healthy and hypertensive patients at different chronic status. Furthermore, we predict the base-CRG for a new patient. To that end, we analyzed data from EHRs of UHF. These data refer to ICD9-MC diagnosis codes, along with demographic variables associated to 63,008 individuals in the year 2012.

Firstly, an exploratory analysis of these individuals was performed. There is a fair similar number of individuals of each gender in every CRG. We verify that women’s life expectancy is higher than that of men by taking gender distribution of different hyper-
We also analyzed the number of diagnosis codes per patient and health status by means of a population analysis, claiming that individuals belonging to CRG-1 have much less diagnosis codes per patient than hypertensive ones. According to the average ICD9-CM diagnosis code profile for CRG-1, the most probable code has a prevalence rate lower than 15%, whereas the most probable code in the hypertensive-related CRGs is around 70-80%. The most relevant codes in the studied chronic groups are HBP and DM, as expected prior to perform this work.

Furthermore, a health status prediction method is proposed to predict the base-CRG of a new patient. Specifically, linear and non linear SVM classifiers are trained to evaluate demographic and clinical data both individually and jointly. The highest accuracy is obtained when a nonlinear SVM is run in a subset of ICD9-CM codes with age and gender. These results are promising, since the considered gold standard (health status group) has been achieved by also feeding the PCS with medical drug data, not studied in this paper. As a future work, we will include also information about medical drugs, which will enhance classifier performance and report more knowledge about chronic condition in modern societies.

In conclusion, our analysis has allowed us to describe and verify the relationship that demographic and standardized clinical data, collected from patient encounters with primary and specialized care, have with the patient health status.

ACKNOWLEDGEMENTS

This work is partially supported by Spanish Research Project TEC2016-75361-R. Cristina Soguero-Ruiz is supported by FPU grant AP2012-4225 from Spanish Government. The authors would like to thank the staff of Healthcare Iberia 3M for their support and assistance with this project.

REFERENCES

Soguero-Ruiz, C. and et al. (2016b). Support vector feature selection for early detection of anastomosis leak-