
Language Architecture: An Architecture Language for
Model-Driven Engineering

Niels Brouwers, Marc Hamilton, Ivan Kurtev and Yaping Luo
Altran Netherlands B.V., Eindhoven, The Netherlands

Keywords: Architecture, Model-Driven Engineering, Domain-Specific Languages.

Abstract: The increasing number of languages used to engineer complex systems causes challenges to the development
and maintenance processes of these languages. In this paper, we reflect on our experience in developing real
life complex cyber-physical systems by using MDE techniques and DSLs. Firstly, we discuss a number of
industrial challenges in the modeling software engineering domain. To address these challenges, we propose
the concept of language architecture as an organizational principle for designing, reusing and maintaining DSLs
and their infrastructure. Based on this, a metamodel for a DSL is designed and a tool support (LanArchi) is
developed. Finally the possible future directions are given.

1 INTRODUCTION

Today’s software systems are often implemented with
multiple languages. Familiar examples are web-based
systems that use XML and HTML for content, CSS for
layout, and data manipulation languages for storing
and querying data. While general-purpose languages
are still the main implementation choice, a recent state-
ment (Nierstrasz, 2016) clearly indicates that software
engineers need specialized languages for requirements
specification and problem domain modeling among
others. The advances in the Model-Driven Engineer-
ing (MDE) make the development of Domain-Specific
Languages (DSLs) easier. As the number of languages
used to engineer complex systems increases, it be-
comes challenging to develop and maintain a set of
inter-related languages and their dependence on exist-
ing hardware and software development infrastructure.

In this paper we reflect on our experience in de-
veloping real life complex cyber-physical systems by
using MDE techniques and DSLs. After the develop-
ment of dozens of DSLs and continuous requests for
new ones, it is clear that the process of DSL develop-
ment and maintenance needs a disciplined approach
supported by tools at a level beyond the usual language
ingredients. Languages are not ‘isolated islands’ any-
more, they answer business and technical needs at a
higher abstraction level, they are key players in the
automation of the engineering process.

In our practice, an engineer (usually an expert in
mechatronics or electronics but rarely in software de-

velopment) specifies a solution in a DSL that reflects
a certain problem domain. It is known that such a
DSL requires a significant amount of additional func-
tionality to allow the engineers to get confident in the
quality of their solutions and to produce an executable
solution. This functionality comes in the form of simu-
lators, test generators, translators to formal verification
tools, and finally code generators.

Some of the tasks to obtain these functions are cur-
rently well supported. Language workbenches focus
on defining language abstract and concrete syntax, gen-
eration of editors and possibly specification of genera-
tors. Languages for specifying transformation chains,
such as MTC Flow (Alvarez and Casallas, 2013), aim
at automating the generation process. However, we
clearly identify the need of considering language devel-
opment at a higher abstraction level and in a broader
scope. Software architects need to know how code
generated from domain models fits in the global soft-
ware architecture. System architects are interested in
how company problem domain is covered by a set of
related DSLs. Project managers make staff allocation
and training decisions based on the DSLs that will be
used as a development instrument. Finally, evolution
of languages may impact the existing software infras-
tructure. In order to address these needs an explicit
representation of languages and the relations to their
environment are needed.

We propose the concept of Language Architecture
as an organizational principle for designing, reusing
and maintaining DSLs and their infrastructure. Lan-

Brouwers N., Hamilton M., Kurtev I. and Luo Y.
Language Architecture: An Architecture Language for Model-Driven Engineering.
DOI: 10.5220/0006206001470156
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 147-156
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

147



guage architecture is a kind of megamodel (Bézivin
et al., 2005). Megamodels are models whose elements
denote other models. The initial idea of megamodeling
is to represent the relations among models, metamod-
els, and transformations between models. The pro-
posed concept of language architecture, as the name
suggests, is closely related to the idea of Linguistic
Architecture presented in (Favre et al., 2012). The goal
of the Linguistic Architecture is to make explicit the
linguistic structure of software systems: the involved
languages, software artefacts expressed in them and
their relations. The purpose of a language architecture
is to support the design of new languages and their
evolution at a more global level: to make explicit the
role of the languages in the engineering process and
the required tools. A language architecture is therefore
an additional view with language-centric focus that
is needed along with the well-known views used in
system architecture specification. We do not limit the
applicability of this concept only to the software en-
gineering process but we apply it for any engineering
process in which DSLs are relevant.

In order to support the practical application of lan-
guage architectures, we developed a DSL based on
a metamodel for expressing such architectures. This
approach allows tool supported creation and analysis
of language architectures.

This paper first describes the industrial challenges
we have experienced and that motivate our proposal
(Section 2). The main concepts in Language Archi-
tecture are explained and further structured in a meta-
model (Section 3 and Section 4). The metamodel
serves as a base for an initial tool support for the ap-
proach (Section 5). The paper concludes with position-
ing our work in the existing body of knowledge and
pointing to future research directions (Section 6 and
Section 7).

2 INDUSTRIAL CHALLENGES

Within a large industrial context multiple DSLs may
be developed, each capturing a particular subset of
the company’s domain of interest, a single concern of
the system being developed or a distinct activity in
the systems engineering process. Each of these lan-
guages provide a viewpoint, likely at different levels
of abstraction, to serve different stakeholders’ needs.

Consequently, with the increased application of
model-based engineering approaches and correspond-
ing automation of the engineering process, there is a
rapid growth of languages being developed in large
industrial software companies. This leads to a number
of challenges.

Lack of Language Centric View in the Engineering
Process. DSLs and the associated generators are the
key instruments for automating engineering processes.
In an automated process the focus on artifacts that
used to be manually created is shifted more towards
the tools that perform the automation and artifact gen-
eration. DSLs and their infrastructures enter the area
of interest of new stakeholders. Once a critical mass
of languages is established, the evolution and main-
tenance becomes challenging tasks. Unfortunately,
awareness of the role DSLs fulfill in the engineering
processes is often not present or neglected. Further-
more, there is little support for establishing a language-
centric view over architectures and processes. These
factors ultimately hinder the stakeholders to access the
vital information they need. We discuss refinements of
this challenge in the next paragraphs.

Capturing a Domain in Multiple Languages. As
indicated above, multiple DSLs play a significant role
in the engineering process or to capture the domain of
interest, each of them targeting a different set of stake-
holders. How to capture a large and complex domain
in smaller domains of interest by a set of stakeholders,
while ensuring the domain is completely captured?
How to ensure each of the stakeholders capture their
domain of interest consistently with related domains?
To address these questions, an overview on the level
across individual languages is helpful.

Impact Analysis Upon Language Evolution. Like
all software artifacts, languages evolve over time. The
evolution of languages is a complex subject in the
field of model-driven engineering and is known as the
model/meta-model co-evolution problem (Mengerink
et al., 2016). With the current state-of-the-art of model-
ing tools, the evolution of languages, especially when
taking into account the impact on dependent compo-
nents such as generators, editors and existing models,
is a costly and error-prone process. As a result, it must
be carefully planned, executed, and validated. This
requires explicit representation of dependencies to the
evolving language thus allowing proper impact analy-
sis. Unfortunately, in many cases the inter-language de-
pendencies are not explicitly described, which makes
the impact analysis very hard.

Identification of Modeling Software Platforms.
Automation of non-trivial steps in the engineering pro-
cess requires the development of advanced multi-step
transformations. A typical code generator to trans-
form a problem-oriented DSL into a working software
consists of several intermediate model levels in which
the last model level is transformed into executable

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

148



programs. When developing multiple transformations
within a given industrial context, reuse of interme-
diate model levels becomes feasible to achieve cost
reduction, higher quality and standardization. Such
intermediate model levels with corresponding code
generators become a standardized software modeling
platform that will play a significant role to automate
software construction. Identifying such opportunities
for reuse is difficult when transformation architectures
are considered internal and not publicly matched to
the engineering process.

Tool Integration in the Engineering Process. In
the past, software was engineered with only a very
limited set of languages and tools. All aspects of a
software system, ranging from data management to
control behavior, from concurrency aspects to user in-
terface design, were often implemented using a single
programming language. Software engineering increas-
ingly becomes a discipline where tools provided by
different vendors need to be integrated into the engi-
neering process, each addressing only a subset of the
required aspects. Selecting the wrong tool results in
sub-optimal designs and implementations. Increas-
ing the amount of tools an engineer needs to interact
with increases accidental complexity. Finally, once
integrated in the engineering process, tools can hardly
be replaced with a competitor tool without having to
make large development costs. These three drawbacks
of integrating different tools need to be addressed by
an architectural level view on the engineering process.
What are the requirements imposed on tools to be in-
tegrated and what are the goals they need to fulfill?
How to integrate them in a flexible manner to prevent
vendor lock-in? How to prevent accidental complex-
ity? These are some of the standing questions related
to this challenge.

3 MAIN CONCEPTS IN
LANGUAGE ARCHITECTURE

With the language architecture, we address the design
of automated engineering processes. We perceive an
engineering process as a collaboration of design pro-
cesses with the goal of constructing a system. Design
processes aim at specifying or changing (for example,
a refactoring of a software system) aspects of engi-
neering units. Engineering units are systems or parts
of systems. Generally, a design process uses a com-
bination of decomposition and refinement activities.
Refinement adds details to the specification of an engi-
neering unit while retaining the original intention of
this (more abstract) unit.

In this paper, the term ‘process contribution’ de-
notes the architectural concepts needed to describe
such engineering processes. More concretely, these
can be languages, artifacts, human or automated trans-
formations, (sub)systems being constructed, tool envi-
ronments, and engineers. In the light of the language-
centric view on the engineering process, we are inter-
ested in the language aspects of any involved engineer-
ing process contribution.

Languages and their relations are the primary con-
cepts in the language architecture. Any process contri-
bution has to expose its relevant language aspects as an
interface. For example, a model checking tool should
explicitly state the formal language it supports, that is,
its interface states that the tool ‘consumes’ specifica-
tions expressed in this language.

Figure 1 shows some of the main concepts in lan-
guage architectures depicted as a simple mind map. In
the following, we elaborate on these concepts.

Language: Definition and Application. In an engi-
neering process humans often use natural languages to
communicate with each other. Such languages are very
complex and intuitive and are acceptable communica-
tion means at an abstract level. However, to automate
parts of the engineering process, we need to restrict the
used languages to formally defined processable lan-
guages. In addition to that, the construction relations
between languages (such as composition (Clark et al.,
2015) and extension (Voelter, 2014)) and aspects of
realization technology also need to be expressed.

In order to deal with any language at an abstract
level, we pose no assumption on how languages are
defined. Furthermore, a Language can potentially be
a group of languages. For instance, UML can be per-
ceived as an integrated collection of languages. Engi-
neers can express an interest in a subset, such as use
case and class diagrams.

Our approach to representing languages largely
follows the one taken by (Clark et al., 2015), though
there are some significant differences due to our global
interest in specifying languages:

Concrete syntax is not considered to be a defining part
of the language. Concrete syntaxes can be attached
as an optional aspect.

Abstract syntax needs a flexible interpretation: for our
architecture we need a specification of the most
significant language concepts. Optionally, more de-
tailed language descriptions can be attached (OMG
standards, metamodels, etc.).

Static semantics will be delegated to the referenced
language descriptions.

Language Architecture: An Architecture Language for Model-Driven Engineering

149



Figure 1: Main concepts in language architecture.

Meaning is dynamic semantics of languages which
is enriched by a context. More details of this are
explained in the following paragraphs.

When working with languages, the context where
they are applied becomes relevant to the interpretation
of these languages. In fact, many languages have a
very limited priori semantics, which is enriched by
the context. A sentence like “the component is opti-
mized” could apply to software, but equally well to
economics, electronics and other domains. In a spe-
cific context, this sentence may even be sufficient to
derive optimized behaviors. Likewise, although a Up-
paal specification (Larsen et al., 1997) has a formal
semantics and can even be used to generate code, the
result becomes useful and gets a meaning only in a
given context. Even if some formal properties can be
proven, without a relation to context, we don’t know
whether the specification refers to a washing machine
or a missile launcher.

The application of a language in a context thus spe-
cializes the language by implicitly adding a mapping
of language concepts to engineering concepts in this
context. This is a subtle refinement of the language
that is usually never explicitly given in a formal way.
To capture the role of the context we introduce the con-
cept of Language Application along with Language
Definition. Language application refers to a language
definition but is always present for a given context.

A language can have properties that can help in
classifying its application. We select two key language
properties: role and abstraction level. Example lan-
guage abstraction levels are conceptual, logical, and
physical. Languages play different roles in an engi-
neering process. Example roles are:

’front-end’ : languages optimized for the engineers’
goals of developing systems;

intermediate : languages used throughout (automated)
refinement to represent aspects of the development.
Some intermediate languages are never used di-
rectly by engineers and may have no concrete syn-
tax;

decoration : languages that can be used to drive the
realization process, for example, to customize code
generation;

formal languages : support formal analysis;

Refinement of Language Architecture Specifica-
tions. An engineering process can be specified at
different levels of abstraction. Abstract specifications
are expected to be refined by adding details to process
contributions while respecting their original intention.
We need to be able to express for every process con-
tribution the goal(s) of its presence. As a first attempt
we choose to define the goals in natural language.

Language Architecture must be capable of captur-
ing the Refinement process of the involved languages.
Imagine a process description in which we state that a
specification is given in a state machine language with-
out further restrictions. A refinement of the process
can state that UML state machines are used. Another
refinement dimension concerns language implementa-
tion technologies. At some abstract level, a language
can be defined by the concepts available in a domain
(a domain ontology). A technological refinement is
to give a concrete language implementation using a
grammar or a metamodel.

Artifacts. There are engineering contributions that
are not languages but just Artifacts used in the engi-
neering process. A typical example is a specification
document. It may be a combination of models in dif-
ferent languages and natural text. When the artifact

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

150



is directly defined by a language, we call it Language
Artifact. Other more complex artifacts (e.g. specifica-
tion document, contributing libraries, reference data,
projects) can be defined as compositions of artifacts,
some of them possibly being language artifacts. Fol-
lowing our goal to explicate every language aspect
of engineering contributions, it should be possible to
specify which languages are used in a composite ar-
tifact. It should be noted that in many cases there is
no need to make the existence of artifacts explicit. For
example, in a transformation chain where outputs re-
late to inputs it is not necessary to give concrete input
artifacts.

Transformations. In design processes we observe
decomposition and refinement. Both can be seen as
a Transformation. The input and output of transfor-
mations are specified by languages. A transformation
can be composed of other transformations arranged
in a flow via intermediate languages. Again, we need
to reason transparently about a transformation being
potentially a group of transformations.

When we detail the properties of a transformation,
a language mapping concept can be used. The goal
here is not to exhaustively specify a transformation,
but to use an elementary way of describing what the
transformation should do, as an addition to the goals
we can define on any engineering process contribution.

Concepts in the Engineering Environment. To re-
late the previously discussed process contributions to
actual deliverables of the engineering process or to any
other supporting tool we need to consider the context
or the environment of the process.

The main outcome of a process is a system or a sys-
tem component. As a motivating example for treating
systems as process contributions, consider data ob-
tained as a result of system calibration. The data can
be fed back in the engineering process and therefore it
is important to denote the system as a source.

Another important kind of engineering contribu-
tions consists of development tools. A model checker
that consumes formal specifications in a given lan-
guage is a tool that supports the engineering process
and is a part of the process environment. Again, the in-
terest is in the language aspects of the tools. We glob-
ally categorize process contributions into language
processing contributions and non-processing contri-
butions. They all expose languages as the relevant
interfaces, but the first category can in addition expose
language interfaces with a direction. A Transforma-
tion is a kind of language processing contribution. An
Artifact is a kind of non-processing contribution.

Language processing contributions can be part of
the result of the engineering process itself. A system
that uses configuration language to customize its oper-
ations is an example of the result of a process that is a
language processing contribution itself.

There are also language processing contributions
that support the engineering process, such as build
environments, test environments, etc. A kind of non-
processing contribution other than Artifact is a storage
environment like an archive.

General Organization of Language Architecture.
Until now we identified specific process contributions
and relations that we consider to be elements of lan-
guage architectures. We also apply several well-known
organizational principles when describing language ar-
chitectures. All process contributions require a group-
ing or encapsulation concept with the option to se-
lectively expose languages as interfaces. We propose
a construct inspired by components in UML and in
some architectural description languages. A compo-
nent may encapsulate a potentially complex internal
structure and if needed, can expose languages by using
a port-like construct. This Language Port can be used
to specify a language as an interface to the process
contribution. A directed variant of a port can be used
on processing components.

To connect elements, we need relations that have
references to the languages at their ends. There can be,
for example, a Flow relation from a language artifact
to a transformation via a language that is specified as
an input.

The issue of language compatibility arises when
using flows that point to languages at their ends. Syn-
tactic compatibility may be derived from construction
relations, for instance, in case of a generalization, spe-
cialized languages will be compatible with their gen-
eral language. Syntactic compatibility is, however, not
always sufficient. Semantic compatibility has to be
considered for the application context of the involved
languages. The concept of model typing (Steel and
Jézéquel, 2007) is also useful when resolving compati-
bility questions. Non-compatible connections imply a
need for a transformation.

4 APPLYING LANGUAGE
ARCHITECTURE IN PRACTICE

In this section we discuss aspects of applying the con-
cept of language architecture in practice. First, the
most important use cases are described based on our
experience (Section 4.1). They serve as drivers for

Language Architecture: An Architecture Language for Model-Driven Engineering

151



developing the tool support for language architectures.
Currently available tool is an editor for specifying lan-
guage architecture models. It is based on a metamodel
explained in Section 4.2.

4.1 Use Cases of Language Architecture

We identify a number of uses cases for language ar-
chitecture on the basis of the industrial challenges in
Section 2.

Define Engineering Process. The architect can de-
fine the engineering process in terms of input/output
language(s), transformations, and engineering com-
ponents. Language architecture enables architects to
refine or abstract parts of the architecture. Multiple
refinements of an abstract entity can co-exist. A re-
finement tree can be derived for all components in the
architecture. Refinement links support traceability of
language architecture elements, which in turn is the
enabling instrument for performing impact analysis
and assessments.

Analyze Language Architecture. As the language
architectures are captured in a processable form, they
can be analyzed to find incompleteness, incompati-
bilities, redundancy, potential re-use, etc. Moreover
impact analysis on the architectures can be carried out
in case of the evolution of languages.

Validate language architecture The validity of lan-
guage relations and refinements in a language architec-
ture can be checked. If needed, transformations could
be added or language choices may be reconsidered.

Extend Language Architecture. Depending on tech-
nology constraints and organizational choices, refine-
ments can be created up to the level of physical lan-
guage or transformation definition units (such as ecore,
qvto, xml). In this case, the language architecture con-
cepts can be re-used or extended, for example in the
reference architecture definition (see Section 4.3). The
rules/considerations/guidelines can be defined and as-
sociated with engineering process automation aspects.

4.2 Metamodel Design of Language
Architecture

Based on the concepts defined in the language archi-
tecture description and the use cases, a metamodel of
language architecture is created.

Figure ??fig:lanarchiMM shows a snippet of the
metamodel, where a number of main concepts are
described. There are three types of components in
a language architecture: Artifact, ProcessingCompo-
nent, and LanguageDefinition. As mentioned before,
Transformation, System, and Enviroment are all types

of processing components. A Language can be a Lan-
guageDefinition or LanguageApplication. Moreover,
languages can be exposed via ports: LanguagePort
and DirectedPort. Finally, relations between languages
(LanguageRelation) can be expressed having language
references (ports, language definitions, language appli-
cations etc.) as relation ends.

4.3 Reference Architecture

Within a certain environment (e.g. a company), a num-
ber of choices are made concerning languages to be
used, technological aspects and processes that are fol-
lowed. These choices are often formulated as rules
that guide the engineering process. Examples of rules
relevant to language aspects are the definitions of ab-
straction levels, roles and choices of languages. Addi-
tionally, rules need to be defined concerning technolo-
gies to apply, guidelines for tools, interfaces between
disciplines, connections to existing processes and oth-
ers.

We call a set of such rules a Reference Architecture.
The reference architecture provides the framework of
choices and guidelines to refine language architectures
in a specific context. From a practical perspective, we
envisage that a reference architecture can be realized
as a library of engineering contributions that are reused
and refined in language architectures.

Figure 3 shows the relation between language archi-
tecture and reference architecture. Multiple language
acrhitectures can exist in the framework of a single
reference architecture. They can be extended with
practical details such as the used build environments,
deployment strategies and other. In this paper, we only
focus on language architecture.

5 TOOL SUPPORT

In this section, the current implementation of an ed-
itor for language architectures (LanArchi Editor) is
described with a small example.

5.1 An Example of Language
Architecture for Model-based
Testing

The complexity of languages and relations can grow
rapidly even in a simple constellation, for example, a
Model-based Testing (MBT) product, which allows
generation of a test harness and a partial test suite
based on the specification of a system. The goal of
this example is to transform an ASD (G.H. Broadfoot,

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

152



Figure 2: An extract of the metamodel of language architecture: only a number of main concepts are shown here.

Figure 3: Language Architecture and Reference Architec-
ture.

2005) model to a SpecExplorer (Veanes et al., 2008)
test harness. ASD provides a language for specify-
ing component interfaces and designs, and a tool that
checks the models for presence of deadlocks and live-
locks. SpecExplorer is a tool for model-based testing
based on .Net.

In order to design a small engineering process that
fulfills the example task, we take the ASD “language”
with some additional test-related specifications as an
input and the SpecExplorer “language” as an output
from which the harness can be generated. In the previ-
ous statements the term language is in quotes because,
as we will see shortly, ASD and SpecExplorer are
technologies that expose more than one language. Fig-
ure 4 shows the main elements in this simple language
architecture.

To be more specific (Figure 5), we can further re-
fine the elements in this language architecture. Both
input and output “languages” are sets of languages.
We make a distinction between the languages that pro-
vide the concepts used by engineers to build models
and the languages for serializing these models (re-
ferred to as Concepts and Storage respectively). To
fill the gap between ASD models and SpecExplorer
tests, a transformation needs to be built. ASD models
are state machines that specify how an event is han-

dled for every state. We call this style state-centric.
SpecExplorer takes events as a leading concept speci-
fying reactions for every event. We refer to this style
as transition-centric. Therefore, in our example the
required transformation obtains a transition-centric
specification from a state-centric one. This task is
generic and can be used for languages that adhere to
the mentioned specification styles. We decided to built
a generic reusable transformation from technology neu-
tral state machine-like language (named System SM)
to transition-centric specifications for specifying test
suites. In this way we can deal with other pairs of
input and output languages apart from ASD and Spec-
Explorer. Instead of ASD, we can use UML state
machines or Excel state tables as inputs. Likewise, we
can vary the test harness by transforming to concep-
tually similar but technologically different tool-sets.
For instance, instead of SpecExplorer, Eclipse MBT
can be used as output. Moreover, the additional test
specifications are translated in parallel to SpecExplorer
‘cord’ scripts.

Figure 4: The abstract overview of our example: in this
diagram the high-level architecture is shown. There is a
transformation definition called ASD2Spec. This definition
has two input ports (System Specification and Test Contribu-
tion) and one output port (TestSuite).

Language Architecture: An Architecture Language for Model-Driven Engineering

153



Figure 5: A screen-shot of the LanArchi editor: the left area is the drawing area where users can build their diagrams, the right
area is the palette area where a number of notations are given.

5.2 The Language Architecture Models
of the Example

With LanArchi tool, the architecture of our example
can be constructed in different abstraction levels. Fig-
ure 4 shows an abstract architecture of the example. It
provides a high-level view for users to understand the
overall architecture.

To show the detailed information of the architec-
ture model, a refined version can be created. Figure 5
shows a screen-shot of the model in the LanArchi edi-
tor. There are two definitions of artifacts: ASD Specifi-
cation and SpecExplorer TestSuite. Each one has a tool
set and concepts of the corresponding language. By us-
ing several chained transformations (shown as arrows
or as boxes for a reified view), ASD Storage can even-
tually be transformed to SpecExplorer Storage. The
figure also shows the intermediate languages (System
SM and Test Suite) and the possibility to use differ-
ent inputs (UML StateMachine) and outputs (Eclipse
MBT).

6 FUTURE DIRECTION

The presented work on language architectures is ongo-
ing and can be extended in several directions concern-
ing the underlying concepts and the toolset.

Language Architecture Assessments. When an en-
gineering process is expressed in a language architec-
ture, it can be assessed if it satisfies certain criteria.
Examples of criteria on engineering contributions are:

• Maturity level to identify the degree of automation
or weak spots in the engineering process. Stake-
holders might use this information for planning
further process automation or to estimate project
risks.

• Inventory of knowledge and expertise levels to plan
personnel trainings.

• KPIs such as generated line of code (LOC) and
number of clients as a means to evaluate business
cases.

Language Architecture Patterns. In order to sup-
port language reuse and variability modeling, language
architecture patterns can be developed to address qual-
ity attributes such as interoperability (prevent vendor
lock-in), development costs, extensibility, scalability,
maintainability.

7 RELATED WORK

As already mentioned, the concept of Language Archi-
tecture is a form of megamodel, i.e. a model where
some model elements refer to other models. There
exist several applications of megamodeling for differ-
ent purposes. (Iovino et al., 2012) use megamodels
to depict dependencies among models that need to be
considered during model co-evolution. (Diskin et al.,
2013) propose a graph-oriented view on megamodels
and analyze the meaning of edges and vertices. The
goal is to make explicit the meaning of relations among
the models instead of treating them just as a graph edge.
Linguistic architecture approach (Favre et al., 2012)

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

154



aims at making the relations between software arte-
facts and their languages explicit. This approach also
puts forward the idea that a linguistic architecture is
a specific view that should be considered along with
other views used in architecture descriptions.

Our approach shares commonalities with some of
these works: language architectures should support in
dealing with coupled evolution of models and indeed,
we perceive them as views over existing software ar-
chitecture, engineering process descriptions, and even
enterprise architecture. Our driving concern for defin-
ing language architectures is to make an explicit repre-
sentation of the role of languages in automating engi-
neering processes. One consequence is that languages
should be adequately described to serve the need of
different stakeholders.

The need of considering a significant amount of
inter-related languages, the support for language reuse,
and presenting a language to different stakeholders are
among the challenges identified in a process called
Globalization of DSLs (Cheng et al., 2015) (Clark
et al., 2015). (Clark et al., 2015) define globaliza-
tion of DSLs as “purposeful construction, adaptation,
coordination and integration of explicitly defined lan-
guages, to be amenable to mechanical and cognitive
processing, with the goal of improving quality and
reducing the cost of system development”. In our prac-
tice we face these challenges in the scope of large
companies and therefore our proposal contributes to
solving some of them. Furthermore, several concepts
found in the conceptual models in (Clark et al., 2015)
are also present in our metamodel.

8 CONCLUSION

The growing application of DSLs in non-trivial indus-
trial settings has a significant impact on engineering
processes. Languages are the key enablers for engi-
neering process automation. Management needs to
understand the role of DSLs in relation to business
goals and to take them into account when resources
are allocated and people need to be trained. This calls
for a language-centric view on system and process ar-
chitecture descriptions. In this paper we proposed the
concept of Language Architecture and a metamodel
for a DSL in order to enable building such language
centric views.

With the support of language architectures, lan-
guage designers are aware of the main concerns that
need to be addressed during the design process: the
role of the language, the relations to its environment,
the purpose of the language tool support. Promoting
reuse of language components and fragments of trans-

formation chains is also a very important aspect of our
work. Furthermore, language architectures can assist
in the strategic planning of process automation based
on maturity assessment of process contributions.

Next steps for further development include profes-
sionalization of the tool and experimenting how it can
support the reported industrial challenges. From theo-
retical perspective we plan to align with the work on
DSL globalization in order to achieve better concep-
tual foundation for language architectures.

ACKNOWLEDGMENTS

We thank Mark van den Brand for his valuable com-
ments on the paper.

REFERENCES

Alvarez, C. and Casallas, R. (2013). MTC Flow: A Tool to
Design, Develop and Deploy Model Transformation
Chains. In Proceedings of the Workshop on ACadeMics
Tooling with Eclipse, ACME ’13, pages 7:1–7:9, New
York, NY, USA. ACM.

Bézivin, J., Jouault, F., Rosenthal, P., and Valduriez, P.
(2005). Modeling in the large and modeling in the
small. In Model Driven Architecture, pages 33–46.
Springer.

Cheng, B. H. C., Degueule, T., Atkinson, C., Clarke, S.,
Frank, U., Mosterman, P. J., and Sztipanovits, J. (2015).
Motivating Use Cases for the Globalization of DSLs,
pages 21–42. Springer International Publishing, Cham.

Clark, T., Van Den Brand, M., Combemale, B., and Rumpe,
B. (2015). Conceptual Model of the Globalization
for Domain-Specific Languages. In Combemale, B.,
Cheng, B. H., France, R. B., Jézéquel, J.-M., and
Rumpe, B., editors, Globalizing Domain-Specific Lan-
guages, volume 9400 of Lecture Notes in Computer
Science, pages 7–20. Springer International Publishing.

Diskin, Z., Kokaly, S., and Maibaum, T. (2013). Mapping-
Aware Megamodeling: Design Patterns and Laws. In
Software Language Engineering - 6th International
Conference, SLE 2013, Indianapolis, IN, USA, October
26-28, 2013. Proceedings, pages 322–343.

Favre, J.-M., Lämmel, R., and Varanovich, A. (2012). Mod-
eling the linguistic architecture of software products. In
International Conference on Model Driven Engineer-
ing Languages and Systems, pages 151–167. Springer.

Iovino, L., Pierantonio, A., and Malavolta, I. (2012). On the
impact significance of metamodel evolution in MDE.
Journal of Object Technology, 11(3):3: 1–33.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL
in a nutshell. International Journal on Software Tools
for Technology Transfer (STTT), 1(1):134–152.

Mengerink, J., Schiffelers, R., Serebrenik, A., and van den
Brand, M. (2016). DSL/Model Co-Evolution in Indus-

Language Architecture: An Architecture Language for Model-Driven Engineering

155



trial EMF-Based MDSE Ecosystems. In Workshop on
Model Evolution at MoDELS 2016.

Nierstrasz, O. (2016). The Death of Object-Oriented Pro-
gramming. In International Conference on Fundamen-
tal Approaches to Software Engineering, pages 3–10.
Springer.

G.H. Broadfoot (2005). ASD case notes: Costs and bene-
fits of applying formal methods to industrial control
software. In Fitzgerald, J., Hayes, I., and Tarlecki, A.,
editors, FM 2005: Formal Methods, LNCS, vol. 3582,
pages 548–551. Springer, Heidelberg.

Steel, J. and Jézéquel, J.-M. (2007). On model typing. Soft-
ware & Systems Modeling, 6(4):401–413.

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W.,
Tillmann, N., and Nachmanson, L. (2008). Model-
based testing of object-oriented reactive systems with
Spec Explorer. In Formal methods and testing, pages
39–76. Springer.

Voelter, M. (2014). Generic tools, specific languages. PhD
thesis, TU Delft, Delft University of Technology.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

156


