
An Analysis of Virtual Loss in Parallel MCTS

S. Ali Mirsoleimani1,2, Aske Plaat1, Jaap van den Herik1 and Jos Vermaseren2

1Leiden Centre of Data Science, Leiden University Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2Nikhef Theory Group, Nikhef Science Park 105, 1098 XG Amsterdam, The Netherlands

Keywords: MCTS, Virtual Loss, Tree Parallelization, Search Overhead, Exploitation-exploration Trade-off.

Abstract: Monte Carlo tree search algorithms, such as UCT, select the best-root-child as a result of an iterative search
process consistent with path dependency. Recent work has provided parallel methods that make the search
process faster. However, these methods violate the path-dependent nature of the sequential UCT process.
Here, a more rapid search thus results in a higher search overhead. The cost thereof is a lower time efficiency.
The concept of virtual loss is proposed to compensate for this cost. In this paper, we study the role of virtual
loss. Therefore, we conduct an empirical analysis of two methods for lock-free tree parallelization, viz. one
without virtual loss and one with the virtual loss. We use the UCT algorithm in the High Energy Physics
domain. In particular, we methodologically evaluate the performance of the both methods for a broad set
of configurations regarding search overhead and time efficiency. The results show that using virtual loss for
lock-free tree parallelization still degrades the performance of the algorithm. Contrary to what we aimed at.

1 INTRODUCTION

Since its inception in 2006 (Coulom, 2006), the
Monte Carlo Tree Search (MCTS) algorithm has
acquired much interest among optimization resear-
chers. MCTS is a sampling algorithm that uses si-
mulation results to guide itself through the search
space, obviating the need for domain-dependent heu-
ristics. Starting with the game of Go, an Asian bo-
ard game (Chaslot et al., 2008a), MCTS has achieved
accomplishments in different domains such as High
Energy Physics (HEP) (Kuipers et al., 2013; Ruijl
et al., 2014). The success of MCTS depends on the
balance between exploitation (look in areas which ap-
pear to be promising) and exploration (look in areas
that have not been well sampled yet). The most po-
pular algorithm in the MCTS family which addresses
this dilemma is the Upper Confidence Bound (UCB)
for Trees (UCT) (Kocsis and Szepesvári, 2006).

At each iteration, MCTS adds a new node to a
tree by first selecting a path inside the tree and then
using Monte Carlo simulations. This iterative pro-
cess is path-dependent which means that the outco-
mes of previous iterations guide the future selections.
Recently, several studies have addressed the topic of
making parallel methods for MCTS such as tree, root,
and leaf parallelizations. Here we focus on tree paral-
lelization that distributes different iterations of MCTS
among parallel workers. Therefore, it has to violate
the path dependency feature of sequential MCTS to
make the algorithm faster.

In tree parallelization, the performance is decre-
asing when increasing the number of parallel wor-
kers. It is widely believed that the performance loss
is due to redundant search being done by separate pa-
rallel workers (i.e., Search Overhead)(Chaslot et al.,
2008a). Therefore, a method called virtual loss is pro-
posed for a lock-based tree parallelizations to force
parallel workers to traverse different paths inside the
MCTS tree. However, virtual loss then affects the ba-
lance between exploitation and exploration in UCT
algorithm (Chaslot et al., 2008a).

In this paper, we evaluate the benefit of using
the virtual loss in lock-free (instead of locked-based)
tree parallelizations for a full configuration of exploi-
tation/exploration factors in UCT and parallel wor-
ker threads. The result is reported concerning search
overhead and time efficiency.

The main contribution of this paper is to conduct
a methodological evaluation of using virtual loss for
lock-free tree parallelization, regarding search over-
head (SO) and time efficiency (Eff). The algorithms
are evaluated in problems from the High Energy Phy-
sics domain. Our goal is to find a trade-off between
SO and Eff. The follow-up research would be to opti-
mize the trade-off for efficiency.

The remainder of this paper is structured as fol-
lows: Section 2 briefly discusses the required back-
ground information. Section 3 discusses related work.
Section 4 gives the experimental setup, together with
the experimental results. Finally, a conclusion is gi-
ven in Section 5.

648
Mirsoleimani S., Plaat A., van den Herik J. and Vermaseren J.
An Analysis of Virtual Loss in Parallel MCTS.
DOI: 10.5220/0006205806480652
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 648-652
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BACKGROUND

Below we provide some background information on
MCTS (Section 2.1) and the Horner schemes (Section
2.2).

2.1 Monte Carlo Tree Search

A search tree is the main building block of the MCTS
algorithm. Each node of the tree represents a posi-
tion in the search space. The algorithm constructs
the search tree incrementally, expanding one node in
each iteration (see Figure 1). Each iteration has four
steps (Chaslot et al., 2008b). (1) In the selection step,
beginning at the root of the tree, child nodes are se-
lected successively according to a selection criterion
until a leaf node is reached. (2) In the expansion step,
unless the selected leaf node ends the game, a random
unexplored child of the leaf node is added to the tree.
(3) In the simulation step (also called playout step),
the remainder of the path to a final state is comple-
ted by playing random moves. In the end, a score ∆
is obtained that signifies the score of the chosen path
through the state space. (4) In the back-propagation
step (also called backup step), the ∆ value is propaga-
ted back through the traversed path in the tree, which
updates the average score (win rate) of a node. The
number of times that each node in this path is visited
is incremented by one. Figure 1 shows the general
MCTS algorithm. Below we discuss the UCT algo-
rithm (2.1.1), tree parallelization (2.1.2), search over-
head (2.1.3), and time efficiency (2.1.4).

2.1.1 The UCT Algorithm

The UCT algorithm provides a solution for the pro-
blem of exploitation (look into existing promising
areas) and exploration (look for new promising areas)
in the selection phase of the MCTS algorithm (Kocsis
and Szepesvári, 2006). A child node j is selected to
maximize:

UCT (j) = X j +Cp

√
ln(n)

n j
(1)

where X j =
w j
n j

, w j is the number of wins in child j, n j

is the number of times child j has been visited, n is the
number of times the parent node has been visited, and
Cp≥ 0 is a constant. The first term in UCT equation is
for exploitation and the second one is for exploration.
The level of exploration of the UCT algorithm can be
adjusted by the Cp constant. (High Cp means more
exploration.)

function UCTSEARCH(r,m)
i← 1
for i≤ m do

n← select(r)
n← expand(n)
∆←playout(n)
backup(n,∆)

end for
return

end function

Figure 1: The general MCTS algorithm.

2.1.2 Tree Parallelization

In tree parallelization one MCTS tree is shared among
several threads that are performing simultaneous se-
arches (Chaslot et al., 2008a). The main challenge
in this method is using data locks to prevent data
corruption. A lock-free implementation of this al-
gorithm addresses the problem as mentioned earlier
with better scaling than a locked approach (Enzen-
berger and Müller, 2010). Therefore, in our imple-
mentation of tree parallelization, locks are removed.
Figure 2 shows the tree parallelization algorithm wit-
hout locks.

Here we note that in tree parallelization with local
locks, it is still possible that different threads traverse
the tree in mostly the same way. This phenomenon
causes thread contention when two different threads
visit the same node concurrently, and one thread is
waiting for a lock that is currently being held by anot-
her thread. Increasing the number of threads exacer-
bate this problem. (Chaslot et al., 2008a) suggested
a solution to assign a temporary virtual loss (a mar-
ker) to a node when a thread selects it (Chaslot et al.,
2008a). Without the marker, there is a higher chance
for thread contention.

Implementing of the virtual loss is straight for-
ward. A thread is selecting a path inside the tree to
find a leaf node. It is reducing the UCT value of all
of the nodes that belong to the path, assuming that the
playout from the leaf node results in a loss. Therefore,
The virtual loss will inspire other threads to traverse
different paths and avoid contention. A thread remo-
ves the assigned virtual loss immediately before the
backup step when updating the nodes with the real
playout result. It is worth mentioning that tree paral-
lelization with virtual loss is more explorative com-
pared to plain tree parallelization because the virtual
loss encourages different threads to explore different
parts of the tree regardless of the value of Cp. Regar-
ding the virtual loss, UCT(j) decreases as more thre-
ads select node j, which encourage other threads to
favor other nodes.

An Analysis of Virtual Loss in Parallel MCTS

649

✈✵

✈✶

✈✹ ✈✺

✈✽

✈✷ ✈✸

✈✻

✈✾

✈✼

✈✶✵

✶

✷

✸

Figure 2: Tree parallelization without locks. The curly ar-
rows represent threads. The rectangles are leaf nodes.

2.1.3 Search Overhead

Parallel MCTS usually expands more nodes (i.e.,
more playouts) in the tree than the sequential MCTS.
In this paper, we define search overhead as

SO = number of playouts in parallel
number of playouts in sequential −1.

2.1.4 Time Efficiency

Parallel MCTS that has more search overhead is less
time efficient. In this paper, we define time efficiency
as

E f f = time in sequential
number of workers in parallel · time in parallel .

2.2 Horner Schemes

Horner’s rule is an algorithm for polynomial compu-
tation that reduces the number of multiplications and
results in a computationally efficient form. For a po-
lynomial in one variable

p(x) = anxn +an−1xn−1 + ...+a0, (2)

the rule simply factors out powers of x. Thus, the
polynomial can be written in the form

p(x) = ((anx+an−1)x+ ...)x+a0. (3)

This representation reduces the number of multipli-
cation to n and has n additions. Therefore, the total
evaluation cost of the polynomial is 2n.

Horner’s rule can be generalized for multivariate
polynomials. Here, Eq. 3 applies on a polynomial
for each variable, treating the other variables as con-
stants. The order of choosing variables may be dif-
ferent, each order of the variables is called a Horner
scheme.

The number of operations can be reduced even
more by performing common subexpression elimina-
tion (CSE) after transforming a polynomial with Hor-
ner’s rule. CSE creates new symbols for each subex-
pression that appears twice or more and replaces them
inside the polynomial. Then, the subexpression has to
be computed only once.

3 RELATED WORK

(Chaslot et al., 2008a) reported that tree paralleliza-
tion with local locks and virtual loss performs as well
as root parallelization in the game of Go. However,
(Sephton et al., 2014) suggested that adding a virtual
loss to tree parallelization with local locks has almost
no effect on the performance for the game of Lords of
War.

(Soejima et al., 2010) also analyzed the perfor-
mance of root parallelism in detail. The authors found
that a majority voting scheme gives a better perfor-
mance than the conventional approach of playing the
move with the greatest total number of visits across
all trees. They suggested that the findings in (Chaslot
et al., 2008a) are explained by the fact that root paral-
lelism performs a shallower search, making it easier
for UCT to escape from local optima than the deeper
search conducted by plain UCT. In root parallelism,
each process does not build a search tree larger than
the sequential UCT. Moreover, each process has a lo-
cal tree that contains characteristics which differ from
tree to tree. Recently, (Teytaud and Dehos, 2015) pro-
posed a new idea by distinguishing between tactical
behavior and strategic behavior. They transferred the
RAVE (Rapid Action Value Estimate) ideas as deve-
loped by (Gelly and Silver, 2007), from the selection
phase to the simulation step. This transfer implied
that by influencing the tree policy also the Monte-
Carlo policy is influenced. It leads to a different se-
arch method.

4 EMPIRICAL STUDY

In this section, the experimental setup is described
(4.1), followed by the experimental results (4.2) and a
discussion (4.3).

4.1 Experimental Setup

We perform a sensitivity analysis of Cp on the num-
ber of iterations for different thread configurations for
one expression, namely HEP(σ) which is a polyno-
mial from HEP domain with 15 variables (Kuipers
et al., 2013).

The plain UCT algorithm and parallel methods are
implemented in C++. Each data point represents the
average of 20 runs.

In our experiments, the maximum number of pla-
youts is 10,240. Throughout the experiments, the
number of threads is multiplied by a factor of two.

The results are measured on a dual socket machine
with 2 Intel Xeon E5-2596v2 processors running at

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

650

0

2

4

S
O

Cp=0.0 Cp=0.1 Cp=0.2

0

2

4

S
O

Cp=0.3 Cp=0.4 Cp=0.5

0

2

4

S
O

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64

0

2

4

S
O

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 3: Search overhead (SO) for Horner (average of 20 instances for each data point). Tree parallelization is the green cir-
cle, and tree parallelization with virtual loss is the blue triangle. Note the higher SO of the blue triangle (lower performance).

0

100

200

E
ff
(%

)

Cp=0.0 Cp=0.1 Cp=0.2

0

50

100

E
ff
(%

)

Cp=0.3 Cp=0.4 Cp=0.5

0

50

100

E
ff
(%

)

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64
0

50

100

E
ff
(%

)

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 4: Efficiency (Eff) for Horner (average of 20 instances for each data point). Tree parallelization is green circle and tree
parallelization with virtual loss is blue triangle. Note that the virtual loss have a lower efficiency (lower performance).

An Analysis of Virtual Loss in Parallel MCTS

651

2.40GHz. Each processor has 12 cores, 24 hyper-
threads and 30 MB L3 cache. Each physical core has
256KB L2 cache. The pack TurboBoost frequency is
3.2 GHz. The machine has 192GB physical memory.
Intel’s icc 14.0.1 compiler is used to compile the pro-
gram.

4.2 Experimental Results

Below we provide our experimental results. Figure
3 shows the SO of both methods. With four tokens
(a parallel thread can run each token) both methods
have similar SO for all values for Cp. However, plain
tree parallelization has smaller SO than tree paralleli-
zation with the virtual loss on all points.

Figure 4 shows the Eff of each method. We see
that plain tree parallelization outperforms tree paral-
lelization with the virtual loss in almost all tokens for
all values of Cp. The only exception is when the num-
ber of tokens is 4 and Cp is 0 and 0.3.

4.3 Discussion

It is interesting that adding virtual loss degrades the
performance of lock-free tree parallelization in the se-
lected problems. This outcome may be due to the
several factors. We mention two of them. (1) Vir-
tual loss enables parallel threads to search different
parts of the shared tree, thus reducing the synchroni-
zation overhead caused by using the locks (Soejima
et al., 2010). However, when the algorithm is lock-
free, there is not such an overhead. (2) Virtual loss
disturbs the exploitation/exploration balance of UCT
algorithm. With these ideas we look again at Figures
3 and 4.

5 CONCLUSION

We investigated the virtual loss method for lock-free
tree parallelization and showed that the virtual loss
method suffered from a high search overhead, which
downsized the performance, thus the efficiency. Our
most important observations include: (1) In tree pa-
rallelization, search overhead is increased and time
efficiency is decreased when increasing the number
of parallel worker threads, (2) In a case that virtual
loss is used, there is almost no improvement in search
overhead and time efficiency. Originally virtual loss
was designed to improve the performance of lock-
based tree parallelization for the game of Go. Howe-
ver, our preliminary results using an application from
High Energy Physic domain shows that lock-free tree
parallelization can achieve better performances by a

lower search overhead and a higher efficiency without
using virtual loss. If this trend continues then this new
setting (without virtual loss) is to be preferred.

ACKNOWLEDGEMENTS

This work is supported in part by the ERC Advanced
Grant no. 320651, “HEPGAME.”

REFERENCES
Chaslot, G., Winands, M., and van den Herik, J. (2008a).

Parallel Monte-Carlo Tree Search. In the 6th Interna-
tioal Conference on Computers and Games, volume
5131, pages 60–71. Springer Berlin Heidelberg.

Chaslot, G. M. J. B., Winands, M. H. M., van den Herik, J.,
Uiterwijk, J. W. H. M., and Bouzy, B. (2008b). Pro-
gressive strategies for Monte-Carlo tree search. New
Mathematics and Natural Computation, 4(03):343–
357.

Coulom, R. (2006). Efficient Selectivity and Backup Ope-
rators in Monte-Carlo Tree Search. In Proceedings
of the 5th International Conference on Computers
and Games, volume 4630 of CG’06, pages 72–83.
Springer-Verlag.

Enzenberger, M. and Müller, M. (2010). A lock-free mul-
tithreaded Monte-Carlo tree search algorithm. Advan-
ces in Computer Games, 6048:14–20.

Gelly, S. and Silver, D. (2007). Combining online and
offline knowledge in UCT. In the 24th Internatio-
nal Conference on Machine Learning, pages 273–280,
New York, USA. ACM Press.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-
Carlo Planning Levente. In Fürnkranz, J., Scheffer,
T., and Spiliopoulou, M., editors, ECML’06 Procee-
dings of the 17th European conference on Machine
Learning, volume 4212 of Lecture Notes in Computer
Science, pages 282–293. Springer Berlin Heidelberg.

Kuipers, J., Plaat, A., Vermaseren, J., and van den Herik, J.
(2013). Improving Multivariate Horner Schemes with
Monte Carlo Tree Search. Computer Physics Commu-
nications, 184(11):2391–2395.

Ruijl, B., Vermaseren, J., Plaat, A., and van den Herik, J.
(2014). Combining Simulated Annealing and Monte
Carlo Tree Search for Expression Simplification. Pro-
ceedings of ICAART Conference 2014, 1(1):724–731.

Sephton, N., Cowling, P. I., Powley, E., Whitehouse, D.,
and Slaven, N. H. (2014). Parallelization of Informa-
tion Set Monte Carlo Tree Search. In Evolutionary
Computation (CEC), 2014 IEEE Congress on, pages
2290–2297.

Soejima, Y., Kishimoto, A., and Watanabe, O. (2010). Eva-
luating Root Parallelization in Go. IEEE Transacti-
ons on Computational Intelligence and AI in Games,
2(4):278–287.

Teytaud, F. and Dehos, J. (2015). One the Tactical and Stra-
tegic Behaviour of MCTS When Biasing Random Si-
mulations. ICCA Journal, 38(2):67–80.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

652

