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Abstract: In this paper an algorithm to extract the skin and obtain the segmentation of bones from patients in CT 
volumes is described. The skin is extracted using an adaptive region growing algorithm followed by 
morphological operations. The segmentation of bone structures is implemented by the minimization of an 
energy function and using a convex relaxation minimization algorithm to minimize the energy term. The 
cost terms in the energy function are computed using the distance between the mean and variance 
parameters within bone structures in a training set and the mean and variance parameters computed locally 
at each voxel position (x,y,z) in a test dataset. Several performance metrics have been computed to assess 
the algorithm. Comparisons with two techniques (thresholding and level sets) have been carried out and the 
results show that the algorithm proposed clearly outperform both techniques in terms of accuracy in the 
delimitation results.  

1 INTRODUCTION 

The analysis of bone structures is interesting for 
physicians, surgeons and radiologists in many 
applications, such as bone fractures, cancer, analysis 
of bone densities, diagnosis of some diseases 
(osteoporosis, rheum, arthrosis), etc. Usually, in 
these analysis, simple operations, such as 
thresholding, are performed to extract bone 
structures in CT 3D volumes. However, the 
thresholding technique is not valid when some of 
those diseases happen, as Hounsfield values within 
bones may have different values as those expected. 
Furthermore, Hounsfield values within bones vary 
due to the different components (mainly periosteum, 
compact (hard) bone, cancellous (spongy) bone and 
bone marrow), making the segmentation of these 
structures difficult. Fig. 1 shows a CT slice where 
these Hounsfield differences can be appreciated. 
Note that Hounsfield values in cancellous bone, for 
instance, are quite similar to those values in 
surrounding organs, making thresholding techniques 
fail as they select either only the boundaries of bones 
or some other soft tissues around the bone structures. 
Besides, even boundaries in bone structures 
(compact bone) can be difficult to be segmented due 
to some of the diseases above mentioned. 

 

Figure 1: Different parts within bones in CT volumes. 

Another problem that physicians have to face is 
the high computational cost when managing 3D CT 
volumes. Thus, automatic algorithms able to 
segment complete bone structures would be very 
useful for specialists in the field, decreasing the time 
in selecting them. 

Many works have been presented to carry out the 
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segmentation of bone structures (Kang et al., 2003; 
Sebastian et al., 2003; Cheng et al., 2013; Cervinka 
et al., 2014; Aslan et al., 2009; Calder et al., 2011; 
Kratky et al., 2008; Perez et al., 2015), being graph 
cuts and level set algorithms (Kratky et al., 2008) 
considered as representative of the state-of-the-art 
methods. However, the main drawbacks in all these 
works is that either they are focused in one or two 
bone structures (hip, acetabulum, femoral head, 
vertebral bodies, etc.), thus losing generality, or they 
require high computational times or suffer from high 
sensitivity to initialization (Kratky et al., 2008).  

In this paper an algorithm to segment bone 
structures is described. The procedure tries to be fast 
and general to any kind of bone structures. The 
paper is organized as follows: Section 2.1 describes 
the extraction of the skin surface in order to facilitate 
the selection of bone structures by removing 
artificial structures that may have high Hounsfield 
values outside the patient and reducing the areas 
within each slice to be analyzed. Although there are 
few works addressing the segmentation of skin in 
CT volumes (Kang et al., 2014; Xiangrong et al., 
2004; Banik et al., 2010), the delimitation of the skin 
can be very useful in order to facilitate the 
segmentation of other organs or structures such as 
liver, heart, muscle tissues, lung etc. Section 2.2 
describes the algorithm developed to perform the 
bone segmentation. Basically, the segmentation of 
bone structures is implemented applying the 
continuous max-flow algorithm by Yuan et al., 
(2010) building an energy function to be minimized. 
The cost terms in the energy function are obtained 
from distance images which are built by computing 
the distance between the local mean and variance in 
each CT voxel to the parameters mean and variance 
computed from all the voxels in bone structures 
within a training dataset.  Section 3 shows the results 
and finally, the conclusions and future work are 
described.  

2 METHODOLOGY 

2.1 Skin Selection 

In order to facilitate the segmentation of bone 
structures, the first stage of the algorithm extracts 
the surface skin of the patients in the CT volumes 
under analysis. The common techniques to 
delimitate the skin in CT volumes are based on the 
use of global thresholds and edge detection 
techniques (Kang et al., 2014; Zhou et al., 2004; 
Banik et al., 2010). However, global thresholds are 

not valid in all the cases and edge detection 
techniques usually have problems with edge 
delimitation and connection. As indicated in the 
work by Zhou et al., (2004), skin has a depth of 
about 2mms. Considering that the CT volumes 
throughout this work have an xy spatial resolution of 
about 0.781mm/pixel, 2mms corresponds to 
approximately 3 pixels in the xy plane directions. 
 

 

Figure 2: Skin (in blue) of three patients in different CT 
slices. 

The skin selection stage is performed in two 
steps. In the first step, a neighbourhood-connected 
region growing algorithm is applied to select inner 
structures within the body. For this, some seeds 
within the patient are selected. These seeds are 
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selected randomly and automatically by selecting 
some voxels corresponding to bone (voxels with 
Hounsfield values over 1700). The inclusion 
criterion only takes into account Hounsfield values 
within a range specified by the user by means of two 
range values. Experimentally, the best lower and 
upper inclusion values were 800 and 2500, 
respectively. Only voxels with values within the 
range are selected if also their neighbouring voxels 
have Hounsfield values within the same range. With 
this algorithm, artifacts or air (like in lungs or 
outside the body) are discarded. The result is a 
binarized image. 
 

 
Figure 3: Examples of the 3D surface (skin) of a patient. 
Left figures correspond to the surface before the skin 
extraction operation. Right figures show the outer surface 
of the patient.  

The outer boundary of the binarized image will 
correspond to the skin. Thus, in the second step, an 
structure element of 3 voxels in the xy axis and 1 
voxel in the z axis is employed. Using a simple 
erosion morphological operation and substracting 
the result to the original binarized image, the skin 
can be obtained.  

Fig. 2 shows the skin boundaries of three CT 
slices corresponding to three different patients. Fig. 
3 shows two examples of the 3D surface (skin) of a 
patient. Left figures correspond to the surface before 
the skin extraction operation. Right figures show the 
outer surface (skin) of the patient. Note in Fig. 2 and 
3 how artificial artefacts, such as sheets or bed, have 
been removed. 

2.2 Bone Segmentation 

The algorithm for bone segmentation has three 
different stages.  

2.2.1 Normalization 

In the first stage, a thresholding operation is 
performed in order to remove soft tissue (such as fat 
or some organs) with Hounsfield values below those 
present in bones. To compute this threshold a set of 
training CT slices were analyzed to determine the 
minimum value present in all the bone structures. 
More particularly, the training set was composed by 
10 CT slices extracted from CTs of different patients 
and different to those used in the test set. 
Subsequently, a threshold was chosen under this 
minimum value. The thresholding operation 
guarantees that all the bone structures are maintained 
in the CT slices while removing all those soft tissue 
structures which could interfere in the bone structure 
delimitation. The experimentally threshold obtained 
had a value of 900 HU (Hounsfield Units). With this 
thresholding operation all the bone structures are 
still clearly visible while many of the soft tissues 
have been removed.  

Finally, the CT volumes are scaled with the 
following scaling operation: 

)_max(

Im_
Scaled_Im

settraining

Thresh
  (1)

where Thresh_Im is the thresholded Image obtained 
in the previous step and Scaled_im is the Image 
obtained after the scaling operation. The maximum 
value within the training set is used also to scale the 
Dicom CT slices. Note that with this scaling 
operation the Dicom slices will have values in the 
range [0,1].  

2.2.2 Computation of Statistical Distance 
Image 

In the second stage, using all the voxels within bone 
structures in all the scaled CT slices belonging to the 
training set, the mean and variance parameters are 
extracted. This set of two parameters is denoted as 
RSP (Reference Statistical Parameters). Then, for 
each CT volume in the test dataset and at each voxel 
position (x,y,z), the parameters mean and variance 
are computed using a 5x5 local neighborhood around 
the voxel position (x,y,z). Then, the Euclidean 
distance from this computed set of parameters to the 
reference parameter set RSP (mean and variance) is 
obtained. This distance value is stored in the called 
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SDI (Statistical Distance Image) image at the same 
positions (x,y,z).  

Fig 4 shows two slices corresponding to two 
different patients (first row) and the corresponding 
two SDI images obtained (second row). Note that 
voxels belonging to bones have low values whereas 
voxels not corresponding to bones present high 
values.  

2.2.3 Convex Relaxation to Implement Bone 
Segmentation 

In the last stage, the convex relaxation technique 
proposed by Yuan et al. (Yuan et al, 2010) is used to 
perform the segmentation stage. Yuan et al. 
modified the classical discrete min-cut max-flow in 
graph-cut implementations by creating a continuous 
domain and allowing the labeling terms to be 
continuous. The fast max-flow implementation by 
Yuan et al. provided a convex solution and, as 
proved by Yuan et al., their implementation 
outperformed the classical graph-cut techniques both 
in terms of speed and accuracy. Yuan et al.  
demonstrated that their fast max-flow 
implementation is equivalent to the continuous s-t 
min-cut problem as follows:  
 

   
 


 dxxuxCdxxCxudxxCxu ts

xu
)()()())(1()())((min

1,0)( (2)

where u(x) is the continuous labeling function and 
sC and tC  are the cost terms in the energy function. 

Note that according to Eq. (1), the cost term sC
should take low values inside bone structures and 
high outside them. On the contrary, tC  should take 
high values inside bone structures and low values 
outside them.   In our experiments, Cs and Ct were 
computed as follows: 

 

Cs-1Ct

SDI))/2-(1 (Scaled_Im=Cs


  (3)

 

The most right term in Eq. (2) is a penalty term. C(x) 
is a penalty function that penalizes voxels at 
boundaries with low gradients.  
This C(x) function is computed as follows: 
 

)Im(_1
)(

xScaleda

b
xC


  (4)

where a and b are constants and were obtained 
empirically. The parameters a and b took the values 
10 and 0.2 respectively. In the third row of Fig. 4 the 
cost terms Cs corresponding to two slices of two 
different cases are shown. 

The energy term described in Eq. (2) is 
minimized using the algorithm described by Yuan et 
al. in (Yuan et al., 2010).  

3 RESULTS 

Bone structures in 45 slices belonging to 15 different 
CT volumes (and different to those in the training 
set) were manually segmented by an expert and used 
as groundtruth to assess the algorithm. The CT 
volumes were composed on average of 250 CT 
slices. The same CT slices were processed as 
described in the previous section and several 
evaluation metrics were computed. These metrics 
have been computed in terms of TP (true positive 
voxels), FP (False positive voxels), TN (true 
negative voxels) and FN (False negative voxels). TP 
are those voxels classified by the algorithm as bone 
and also by the expert in their manual segmentation. 
FP are those voxels classified as bone by the 
algorithm but not by the expert. TN correspond to 
voxels classified as not belonging to bones both by 
the algorithm and by the groundtruth segmentation. 
Finally, FN are those voxes classified as not 
belonging to bones by the algorithm but they 
correspond to bones according to the groundtruth. 
The metrics used for the evaluation are DICE, 
Jaccard, Sensitivity, Specificity, PPV and are 
computed as follows: 

FNFPTP

TP





2

2
Dice  (5)

FNFPTP

TP


dJaccar  (6)

FNTP

TP
ySensitivit


  (7)

TNFP

TN
ySpecificit


  (8)

FPTP

TP
PPV


  (9)

A conventional PC (Intel ® Core ™ i7-2670QM, 
CPU @ 2,20GHz, 6GB RAM) was used in all of 
these evaluations. 

In order to compare the results obtained by the 
algorithm with other state-of-the-art methodologies, 
comparisons using the same evaluation metrics with 
a level set implementation and with the classical 
thresholding technique have been carried out. 
Particularly, the level set methodology adopted in 
the experiments is the Distance Regularized Level 
Set Evolution (DRLSE) implementation (Li et al, 
2010). The same test dataset was used to perform the 
comparisons. 

In the Level-Set implementation some 
configurable parameters are selected to perform the 
segmentation. Particularly, the parameter values
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Figure 4: First row (a): Original CT slices. Second row (b): SDI images corresponding to the slices in the first row. Third 
row (c): Cost Image terms used as input in the convex relaxation algorithm. 

20 , timestep 5t , 5.1 and 1 required 
by the algorithm were used in our experiments. The 
DRLSE algorithm was applied to the 45 scaled 
dicoms (Scaled_Im) described in the previous 
section.  

Regarding to the thresholding implementation, a 
threshold is selected and all Hounsfield values under 

that threshold are set to zero. In our experiments the 
threshold selected was that providing the best 
results. Experimentally, using the training set, the 
threshold value obtained was 1100. 

Table 1 shows the evaluation metrics for the 
algorithm described throughout this paper and the 
two segmentation techniques above indicated.  The 
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average computational time required to segment one 
slice for every algorithm is also indicated. Note that 
the algorithm described throughout this paper was 
the only providing good results, followed by the 
thresholding implementation. The level set 
implementation had difficulties when several bone 
structures are present or when some bone structures 
had diffuse boundaries or low gradient values. In 
many of these cases the DRLSE algorithm required 
a very high computational time (high number of 
iterations) to provide acceptable results. Note, 
according to Table 1, that the standard deviation 
obtained in the different metrics when using the 
DRLSE algorithm are high, thus showing that the 
method performed very well in some slices (Dice 
Coefficient of 0.94 in the best case), whereas it was 
incapable of performing the segmentation in others 
(Dice Coefficient of 0.04 in the worst case).  

In terms of computational times, the thresholding 
technique was the fastest one requiring only about 
0.023 seconds to segment one slice. Considering a 
CT volume composed of about 100 slices, this 
would imply a processing time of only 2 seconds. 

Table 1: Metrics obtained in the different experiments. 
The values in the table represent the mean value of each 
metric ± its standard deviation. 

 Thresholding DRLSE 
Algorithm 
proposed 

Dice 0.79±0.09 0.59±0.35 0.9±0.053
Jaccard 0.66±0.13 0.49±0.34 0.83±0.087

PPV 0.80±0.13 0.52±0.37 0.86±+0.085

Sensitivity 0.80±0.16 0.94±0.21 
0.97±0.049 

 
Specificity 0.99±0.01 0.88±0.13 0.99±0.005

Computational 
Time (seconds 

per slice) 
0.11±0.05 2752±657  89±6.73 

In Fig. 5 the results obtained using the three 
different methodologies are shown. Only some slices 
are shown for visualization purposes. The red 
contours correspond to the groundtruth segmentation 
provided by the expert. Blue regions correspond to 
the segmentation results obtained with each 
algorithm. Note that the thresholding technique is 
not able to select all the voxels within bones as they 
present Hounsfield values under the specified 
threshold. It can be also appreciated that the level set 
technique had difficulties when the number of bone 
structures is very high (second row, first colum) or 
selected non bone tissue if it was enclosed within a 
bone structure (third row, first colum).  

4 CONCLUSIONS 

In this paper a technique to implement the selection 
of bone structures in CT volumes is described. The 
first stage consists in the delimitation of the skin 
(outer surface of the patient) in order to facilitate the 
segmentation of the bone structures by reducing the 
computational cost required. Note that the 
computation of the Statistical Distance Image has a 
considerable computational cost. Thus, discarding 
the outer elements in the patient together with the 
application of a threshold to discard soft tissues 
decreases significantly the number of voxels to be 
processed. Threfore, the computational time to 
implement the segmentation is considerably 
reduced.  

A convex relaxation technique is applied using 
the Histogram Distance Image as input. The convex 
relaxation technique employed is the fast continuous 
max-flow implementation by Yuan et al., (2010) 
using the previously computed SDI image as cost 
term in the energy function. 

Comparison with an state-of-the-art algorithm 
(DRLSE implementation) (Li et al., 2010) and the 
thresholding technique, which is the preferred and 
fastest technique in most of the tools used in the 
clinical practice, show that the algorithm proposed 
clearly outperform both techniques in terms of 
accuracy in the delimitation results.  

In future implementations, comparisons with 
other techniques will be carried out. Note that the 
performance results provided by the DRLSE 
implementation were low and maybe other 
techniques could be more suitable in the 
segmentation of bone structures. 

Besides, in future works, the two-label algorithm 
described will be modified in order to identify a high 
number of labels thus allowing the identification of 
other kind of structures.  
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Figure 5: First Column (a) shows the results (blue regions) provided by the DRLSE algorithm. Central column (b) shows 
the results (blue regions) provided by the thresholding implementation. Right column shows the results provided by the 
algorithm described (blue regions). The groundtruth segmentations are contoured in red.  
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