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Abstract: A core component of the oil supply chain is the distribution of products. Of the different types of distribution 
modes used, transportation by pipeline is one of the safest and most cost-effective ways to connect large 
supply sources to local distribution centers, where products are loaded into tanker trucks and delivered to 
customers. This paper presents a two-level optimization approach for detailed scheduling of tree-like pipeline 
systems with a unique refinery and several distribution centers. A mixed-integer linear programming (MILP) 
formulation is tackled in each level, with the upper and lower level models providing the aggregate and 
detailed pipeline schedules, respectively. Both models neither discretize time nor divide a pipeline segment 
into packs of equal size. Solutions to two case studies, one using real-life industrial data, show significant 
reductions in both operational cost and the CPU time with regards to previous two level approaches.

1 INTRODUCTION 

In today’s competitive environment, supply chain 
management is a major concern for companies and 
has received growing attention in recent years.  The 
oil supply chain deals with a complex structure and 
comprises many costly stages such as: oil exploration, 
refining and product distribution, with transportation 
costs already surpassing 400 billion dollars in the 
early eighties (Bodin et al., 1983). 

Different types of distribution modes are used in 
the oil supply chain where the pipeline mode is the 
most reliable and cost-effective way of transporting 
high volumes of oil products between refineries 
(upstream) and distribution centers nearby consumer 
markets (downstream). Transportation scheduling of 
petroleum products via pipelines is one of the most 
challenging management problems with several 
operational restrictions to be considered.  

Pipelines convey a variety of oil derivatives such 
as heating oil, motor gasoline, jet fuel, and liquefied 
gas (one after the other). The products usually move 
through several pipelines before reaching their final 
destinations. Since there is not a physical barrier in 
between products, some mixing occurs, producing a 
contaminated product that is referred to as interface 

material. An effective sequence of pipeline input and 
output operations can considerably reduce pipeline 
operating costs. 

In recent years, several authors have applied 
rigorous optimization tools to pipeline scheduling 
problems, relying both on discrete- (Rejowski and 
Pinto, 2003, 2004; Magatao et al., 2004; Herran et al., 
2010) and continuous-time MILP formulations 
(Cafaro and Cerda, 2004; Castro, 2010; Cafaro and 
Cerda, 2011; Mostafaei and Ghaffari, 2014; 
Mostafaei et al. 2015a). They have generally 
considered two operational plans for the pipeline 
systems: aggregate and detailed, depending on the 
way pipeline input and output operations are 
performed. Aggregate plans define the optimal batch 
sizes and the sequence of batch injections during the 
time horizon, while detailed plans deal with 
sequencing and timing of batch removals during a 
pumping operation. 

Mostafaei and co-workers (Ghaffari and 
Mostafaei, 2015; Mostafaei et al., 2016, 2017) 
developed continuous time MILP models to tackle the 
operational planning of straight pipeline networks 
that permits to achieve both the aggregate and the 
detailed plans in single step. Compared to a two-level 
approach developed by Cafaro et al. (Cafaro et al. 
2012), they achieved better detailed schedules.  
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Cafaro and Cerda (2010) introduced a continuous 
time MILP formulation for aggregate scheduling of 
tree-like pipelines. Castro (2010) and Mostafaei et al. 
(2015b) developed continuous time MILP 
formulations to solve the detailed scheduling of the 
same problem in a single step. However, the single 
level optimization framework is computationally 
expensive for large-scale problems. It is the main goal 
of this paper to propose a computationally more 
efficient approach relying on hierarchical 
decomposition to generate the detailed schedule. 

In previous two level approaches for straight 
pipelines (Cafaro et al. 2011, 2012), each product 
delivery operation in the lower level model should be 
accomplished in the time interval determined in the 
upper level model. Such a decision may not avoid 
unnecessarily flow restarts if a depot is alternatingly 
active in the aggregate schedule. This limitation is 
also relaxed in this paper. 

The rest of the paper is organized as follows: 
Section 2 presents a brief description of the problem 
under study. Section 3 builds a hierarchically 
decomposition approach for the detailed scheduling 
of the tree-like pipeline networks. The efficacy of the 
proposed approach is tested using two case studies, 
leading to the results in Section 4. The last section 
puts forward the conclusions and sums up the paper. 

2 PROBLEM STATEMENT 

We deal with a short-term scheduling problem where 
a tree-like pipeline must convey oil derivatives from 
a single refinery to several distribution centers 
(depots). Such a pipeline system consists of a trunk 
line known as mainline (pipeline	݊0) and several 
secondary lines emerging from the mainline at 
different sites (branch points). Figure 1 shows a tree-
like pipeline network with two secondary lines 
(pipelines	݊1,	݊2). A pipeline segment ends with a 
depot and/or a branch point. The secondary line ݊2 in 
Figure 1 has two segments and two depots. 

 

Figure 1: Tree-like pipeline system. 

Batches of petroleum products pumped at the 
refinery are diverted to mainline depots or/and 
branched into secondary lines. The aim is to 

determine the optimal batch input and output 
operations in order to meet depot requirements at 
minimum total cost subject to the following rules: (1) 
pipeline segments remain full at any time; (2) each 
pumping operation involves at most one batch 
injection at the refinery (3) pipelines work in a single 
flow direction, from left to right in the diagrams, (4) 
the refinery should pump product into the mainline in 
admissible injection rates; (5) in the detailed level, a 
pumping operation can at most have one batch input 
in each pipeline and in each depot whereas the 
aggregate plan relaxes such assumption; (6) pipeline 
segments should operate in acceptable flowrate 
ranges, whereas in the aggregate level there are no 
flowrate segment restrictions; (7) the valves of active 
depots and segments remain open throughout the 
pumping operation while they may be turned on/off 
several times in the aggregate plan. 

Given are the following: (i) the number of 
products to be injected by the refinery (ii) the time 
horizon length measured in hours (h), (iii) the 0-1 
matrix of forbidden sequences between products, (iv) 
capacity of pipeline segments measured in m3, (v) 
volumetric coordinate of depots (m3), (vi) volumetric 
coordinate of branch points (m3), (vii) pump rate at 
refinery measured in m3/h, (viii) flowrate range in 
pipeline segments (m3/h), (ix) maximum/ minimum 
volume injected to each pipeline and diverted to 
depots during each pumping operation (m3), (x) 
product inventory at refinery and product demand at 
depots (m3). 

3 OPTIMIZATION MODEL 

In this section, we present a two-level approach for 
the detailed scheduling of tree-like pipelines. We will 
sequentially solve the aggregate (upper level) and the 
detailed (lower level) pipeline scheduling models 
recently developed by Mostafaei et al. (2015b). The 
aggregate model (referenced hereafter as the AP 
model) will focus on batch input sequencing problem 
whereas the detailed schedule (DP model) will 
consider batch output sequencing problem in depots. 
The approach uses the common sets defined in 
Mostafaei et al (2015b): (1) ݇ ∈  pumping runs (2) ;ܭ
݊ ∈ ܰ; pipelines, (3) ݏ ∈ ܵ௡; depots or segments of 
pipeline ݊, (4) ݅ ∈ ܫ ൌ ሼ݅ଵ, ݅ଶ, … ሽ; batches to move 
inside the pipeline network, (5) ܫ୬ୣ୵; new batches to 
be pumped into the mainline (ܫ୬ୣ୵ ⊆ ௡ܫ (6) ,(ܫ ൌ
௡௢௟ௗܫ ∪  ௡௡௘௪; batches  to move in pipeline ݊, withܫ
 ݊ indicating the batches initially inside pipeline	௡௢௟ௗܫ
and ܫ௡௡௘௪	denoting the batches to be transferred within 
the planning horizon; (7) ݌ ∈ ܲ; oil products, (8) 
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௡௦ܫሺ	௡௦ܫ 	⊆  ,௡ݏ ௡ሻ; batches to be diverted into depotܫ
(9)	 ௜ܲ; product contained in old batch ݅ and (10) ܫ ௡ܰ; 
non-empty old batches in secondary line ݊. Note that 
pipeline ݊0 is referred to as the mainline. 

Two alternative objective functions will be 
explored through the optimization approach. The 
objective function of the AP model will minimize the 
operational cost of pipeline, including pumping, 
interface and backorder costs. The DP model will 
reduce the pump operating and maintenance costs 
subject to fully fulfilling all product deliveries 
accomplished by the aggregated plan. As stated by 
Hane and Ratliff (1995), most of the pipeline energy 
consumption and the pump maintenance costs are 
linked to flow restarts in idle pipeline segments and 
consequently it is important to minimize the number 
of pipeline segments where the flow is resumed or 
stopped. Restarting the flow in a segment is 
equivalent to saying that the segment is active 
through the current pumping run but inactive during 
the previous one. The opposite condition identifies 
the stop of the pipeline segment.  

Note that minimizing the number of flow 
stoppages brings another economic benefit to the oil 
industry since the size of the interface volume 
between adjacent batches inside a segment tends to 
increase while it stays inoperative. Future work will 
involve enforcing pipeline segments to contain a 
single product when they are inactive. 

Here we present the AP and DP model. The list 
of model entities can be found in Mostafaei et al. 
(2015b). 

3.1 Aggregate Level (AP)  

3.1.1 Pumping Sequence 

Let ܵ ௞ܶ be the start time of pumping run ݇ and ܮ௞ be 
its duration. Pumping run ݇ can start if the previous 
run ݇ െ 1 is completed. The length of all runs must 
not surpass the length of planning horizon. 

 
ܵ ௞ܶ ൌ ܵ ௞ܶିଵ ൅ ,௞ିଵܮ 		∀݇ ∈ ሺ݇ܭ ൒ 2ሻ (1) 

෍ ௞ܮ
௞∈௄

൑ ݄୫ୟ୶ (2) 

3.1.2 Tracing the Location of Batches 

The continuous variable ܲܮ ௜ܸ,௡,௞ is used to track the 
upper location of batch ݅ ∈  ௡ in pipeline ݊ at the endܫ
of pumping run ݇ . This variable is equal to the volume 
of batches ݅ ᇱሺ݅ᇱ ൒ ݅ሻ pursing batch ݅ ∈  ௡ at the end ofܫ
pumping run ݇. 

 

ܲܮ ௜ܸ,௞,௡ ൌ ෍ ܵܲ ௜ܸᇲ,௞,௡,
௜ᇲ∈ூ೙:௜ஸ௜ᇲ

∀݅ ∈ ,௡ܫ ݇ ∈ ,ܭ ݊ ∈ ܰ (3) 

3.1.3 Injecting Batches from the Refinery 

Binary variable ߣ௜,௞ is equal to one if batch ݅ ∈  ௡଴ isܫ
receiving material from the refinery during pumping 
run ݇ . During run ݇ , batch ݅  can receive material if the 
lower coordinate of the batch (ܲܮ ௜ܸ,௞,௡ െ ܵܲ ௜ܸ,௞,௡) 
touches the origin of the mainline at the end of 
pumping run ݇ . If ߣ௜,௞ ൌ 1, a positive volume of batch 
݅ will be injected into the pipeline at the acceptable 
pump rate belonging to the interval [ݎݒ௡଴

୫୧୬, ௡଴ݎݒ
୫ୟ୶]. 

 

෍ߣ௜,௞
௜∈ூ

൑ 1, ∀݅ ∈  ୬ୣ୵ (4)ܫ

ܲܮ ௜ܸାଵ,௞ିଵ,௡଴ ൑ ܲ ௡ܸ଴൫1 െ ,௜,௞൯ߣ ∀݅ ∈ ,௡଴ܫ ݇ (5) 
ܲܫ ௡ܸ଴

୫୧୬ߣ௜,௞ ൑ ܲܫ ௜ܸ,௞,௡଴ ൑ ܲܫ ௡ܸ଴
୫ୟ୶ߣ௜,௞, ∀݅ ∈ ,௡଴ܫ ݇ (6) 

෍
ܲܫ ௜ܸ,௞,௡଴

௡଴ݎݒ
୫୧୬

௜∈ூ೙బ

൑ ௞ܮ ൑ ෍
ܲܫ ௜ܸ,௞,௡଴

௡଴ݎݒ
୫୧୬

௜∈ூ೙బ

,				∀݇ (7) 

3.1.4 Product Allocation to Batches 

Batch ݅ can at most convey a single product ݌. Binary 
variable ݕ௜,௣ is used to allocate products to batches. 
The volume of batch ݅ containing product ݌ pumped 
from the refinery (ܲܲ ௜ܸ,௣,௞) should be within a given 
range. If it conveys a product, new batch ݅ ∈  ௡௘௪ willܫ
be pumped into the mainline in one or more pumping 
operations. Since each batch can convey a single 
product, the volume of batch ݅ containing ݌ pumped 
through run ݇ is equal to ܲܫ ௜ܸ,௞,௡଴. 

 
∑ ௜,௣௣∈௉ݕ ൑ 1, ∀݅ ∈  (8)  ܫ
ܲܲ ௣ܸ

୫୧୬ݕ௜,௣ ൑ ∑ ܲܲ ௜ܸ,௣,௞௞ ൑ ܲܲ ௣ܸ
୫ୟ୶ݕ௜,௣, ∀݅ ∈ ,௡௘௪ܫ ݇  (9) 

∑ ௜,௣௣∈௉ݕ ൑ ∑ ,௜,௞ߣ ∀݅ ∈ ௡௘௪௞∈௄ܫ   (10) 
∑ ܲܲ ௜ܸ,௣,௞ ൌ௣ ܲܫ ௜ܸ,௞,௡଴, ∀݅ ∈ ,௡଴ܫ ݇  (11) 

3.1.5 Batch Removal at Depots 

Through pumping run ݇, a batch ݅ ∈  ௡௦ can beܫ
discharged to depot ݏ௡	only if: (i) its upper coordinate 
has reached the output facility of depot	ݏ௡	ሺ߬௦,௡ሻ at 
time	ܵ ௞ܶ and (ii) its lower coordinate has not 
surpassed	߬௦,௡. If binary variable ݔ௜,௦,௞,௡ is equal to 1, 
depot	ݏ௡	receives a certain volume of batch ݅ ∈  ௡௦ܫ
ܲܦ) ௜ܸ,௦,௞,௡) that is bounded by ሺ߬௦,௡ െ ܲܮ ௜ܸାଵ,௞ିଵ,௡ሻ 
plus the material injected to batch ݅ from the origin of 
pipeline ݊ during time interval [	ܵ ௞ܶ; 	 	ܵ ௞ܶାଵ]. 
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ܲܮ ௜ܸାଵ,௞ିଵ,௡ ൑ ߬௦,௡ ൅ ൫ܲ ௡ܸ െ ߬௦,௡൯൫1 െ ,௜,௦,௞,௡൯ݔ
∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ 

(12) 

ܲܮ ௜ܸ,௞,௡ ൒ ߬௦,௡ݔ௜,௦,௞,௡,			∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ (13) 

ܲܦ ௦ܸ,௡
୫୧୬ݔ௜,௦,௞,௡ ൑ ܲܦ ௜ܸ,௦,௞,௡ ൑ ܲܦ ௦ܸ,௡

୫ୟ୶ݔ௜,௦,௞,௡,
∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ 

(14) 

෍ܲܦ ௜ܸ,௦ᇲ,௞,௡

௦

௦ᇲ

൑ ሺ߬௦,௡ െ ܲܮ ௜ܸାଵ,௞ିଵ,௡ሻ ൅ ܲܫ ௜ܸ,௞,௡

൅ሺܲ ௡ܸ െ ߬௦,௡ሻሺ1 െ ,௜,௦,௞,௡ሻݔ ∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ 

(15) 

 
The volume of batch ݅ containing product ݌ 

discharged to depot ݏ ∈ ܵ௡will be equal to ܲܦ ௜ܸ,௦,௞,௡ 
if batch ݅  conveys product ݌, otherwise it will be zero. 

 
∑ ܲܦܲ ௜ܸ,௣,௦,௞,ௗ ൌ௣∈௉ ܲܦ ௜ܸ,௦,௞,௡, ∀݅ ∈ ,	௡ܫ ݏ ∈ ܵ௡, ݇, ݊  (16) 

∑ ܲܦܲ ௜ܸ,௣,௦,௞,ௗ௞∈௄ ൑ ܲܦ|ܭ| ௦ܸ,௡
୫ୟ୶ݕ௜,௣, ∀݅ ∈ ,	௡ܫ ݏ ∈ ܵ௡, ݊  (17) 

3.1.6 Material Transferred to Secondary 
Lines 

Through pumping run ݇, a batch ݅	in mainline can be 
diverted to secondary line ݊	(ݑ௜,௞,௡ ൌ 1) if its upper 
and lower coordinates satisfy ܲܮ ௜ܸ,௞,௡଴ െ
ܵܲ ௜ܸ,௞ିଵ,௡଴ ൑ ܲܮ ௡ andߪ ௜ܸ,௞,௡଴ ൒  ௡. It means theߪ
upper coordinate of batch ݅	 has already reached 
branch point ݊ and its lower coordinate has not 
surpassed the coordinate of branch point (ߪ௡). 
If	ݑ௜,௞,௡ ൌ 1, a portion of batch ݅ has entered 
secondary line ݊ (ܲܫ ௜ܸ,௞,௡ሻ. 

 
ܲܮ ௜ܸାଵ,௞ିଵ,௡଴ ൑ ௡ߪ ൅ ሺܲ ௡ܸ଴ െ ௡ሻ൫1ߪ െ ,௜,௞,௡൯ݑ

∀݅ ∈ ,௡ܫ ݇, ݊ ് ݊0 
(18) 

ܲܮ ௜ܸ,௞,௡଴ ൒ ,௜,௞,௡ݑ௡ߪ ∀݅ ∈ ,௡ܫ ݇, ݊ ് ݊0 (19) 

ܲܫ ௡ܸ
୫୧୬ݑ௜,௞,௡ ൑ ܲܫ ௜ܸ,௞,௡ ൑ ܲܫ ௡ܸ

୫୧୬ݑ௜,௞,௡,
∀݅ ∈ ,௡ܫ ݇, ݊ ് ݊0 

(20) 

Let us define binary variable ݖ௜,௡ to identify the 
existence of batch ݅ in secondary line ݊. For non-
empty old batch ݅ ∈ ௜,௡ݖ ௡௢௟ௗ we haveܫ ൌ 1 and for 
new batches ݅ ∈  :௡௡௘௪ܫ

 
௜,௡ݖ ൑ ∑ ௜,௞,௡௞∈௄ݑ ൑ ,௜,௡ݖ|ܭ| ∀݅ ∈ ,௡୬ୣ୵ܫ ݊ ് 0  (21) 

3.1.7 Interface and Forbidden Sequences 

Batch ሺ݅ ൅ 1ሻ௡଴ is injected into the mainline right 
after ݅௡଴ and consequently there will always be a 
contamination product at their common boundary 
which is referred to as interface. The volume of the 
interface material depends on the specific products ݌ 
and ݌’ is assumed to be given by parameter ܺܫܯ௣,௣ᇱ. 
If continuous variable ܨܶܰܫ௜,௣,௣ᇲ,௡ is the interface 
volume between batch ݅ and its successor in pipeline 

݊ conveying products ݌ and ݌′, we have the following 
conditions for batches in the mainline and secondary 
lines, where the domain of Eq. (23) is ݅, ݅ᇱ ∈
௡൫݅ᇱܫ ൏ ݅, ௡୭୪ୢ൯ܫ൫ݐݏݎ݂݅ ൏ ݅൯, ,݌ ᇱ݌ ∈ ܲ, ݊ ് ݊0: 

 
௜,௣,௣ᇱ,௡଴ܨܶܰܫ ൒ ௜,௣ݕ௣,௣ᇲ,௡଴൫ܺܫܯ ൅ ௜ିଵ,௣ᇲݕ െ 1൯,

∀݅ ∈ ,௡଴ܫ ,݌ ᇱ݌ ∈ ܲ. 
(22) 

௜,௣,௣ᇱ,௡ܨܶܰܫ ൒ ௜,௣ݕ௣,௣ᇲ,௡൫ܺܫܯ ൅ ௜ᇲ,௣ᇲݕ ൅ ௜,௡ݖ ൅ ௜ᇲ,௡ݖ െ
∑ ௜ᇲᇲ,௡ݖ
௜ିଵ
௜ᇲᇲஹ௜ᇲାଵ െ ௣,௣ᇲ݄ܿݑ݋ܶ െ 2൯,  

(23) 

 
For quality reasons, some products should not 

touch each other inside the pipeline. The next 
equations prevent forbidden sequences in the 
mainline and secondary lines. 

 
௜,௣ݕ ൅ ௜ିଵ,௣ᇲݕ ൑ 1 ൅ ݅∀	,௣,௣ᇲ݄ܿݑ݋ܶ ∈ ܫ

୬ୣ୵, ,݌ ᇱ݌ ∈ ܲ (24) 
௜,௡ݖ ൅ ௜ᇲ,௡ݖ ൑ ∑ ௜ᇲᇲ,௡ݖ െ ௜,௣ݕ െ ௜ᇲ,௣ᇲݕ

௜ିଵ
௜ᇲᇲஹ௜ᇲାଵ ൅

௣,௣ᇲ݄ܿݑ݋ܶ ൅ 3, ∀݅ ∈ ,௡୬ୣ୵ܫ ݅ᇱ ൏ ݅, ,݌ ᇱ݌ ∈ ܲ, ݊ ് ݊0  
(25) 

3.1.8 Size of Batch ࢏ at the End of Run ࢑ 

At the end of pumping run	݇, the size of batch ݅ in 
pipeline ݊ can be obtained from its size at time ܵ ௞ܶ 
(ܵܲ ௜ܸ,௞ିଵ,௡) by adding the material that has entered 
pipeline ݊ and subtracting the material transferred to 
its depots and split lines. The next equations compute 
the size of batch ݅  in the mainline and secondary lines. 

 
ܵܲ ௜ܸ,௞,௡଴ ൌ ܵܲ ௜ܸ,௞ିଵ,௡଴ ൅ ܲܫ ௜ܸ,௞,௡଴ െ
∑ ܲܦ ௜ܸ,௦,௞,௡଴௦∈ௌ೙బ െ ∑ ܲܫ ௜ܸ,௞,௡, ∀݅ ∈ ,௡଴ܫ ݇ ൒ 1௡∈ே   (26) 

ܵܲ ௜ܸ,௞,௡ ൌ ܵܲ ௜ܸ,௞ିଵ,௡ ൅ ܲܫ ௜ܸ,௞,௡ െ
∑ ܲܦ ௜ܸ,௦,௞,௡௦∈ௌ೙ , ∀݅ ∈ ,௡ܫ ݇ ൒ 1, ݊ ് ݊0.	  (27) 

3.1.9 Mass Balance  

The total volume entering pipeline ݊ is equal to the 
volume leaving the pipeline. 

 
∑ ܲܫ ௜ܸ,௞,௡଴௜∈ூ೙బ ൌ ∑ ∑ ܲܦ ௜ܸ,௦,௞,௡଴௜∈ூ೙బ௦∈ௌ೙బ ൅
∑ ∑ ܲܫ ௜ܸ,௞,௡௜∈ூ೙బ , ∀ ݇ ∈ ௡∈ேܭ   

(28) 

∑ ܲܫ ௜ܸ,௞,௡௜∈ூ೙ ൌ ∑ ∑ ܲܦ ௜ܸ,௦,௞,௡,௜∈ூ೙௦∈ௌ೙ ∀	݇ ∈ ,ܭ ݊ ് ݊0  (29) 

3.1.10 Material Transferred from Batch ࢏ to 
Mainline’ Depots and Secondary 
Lines 

It is possible that during the execution of a pumping 
run the volume of batch ݅  in the mainline can be taken 
by multiple active depots and secondary lines. In this 
case, the volume from batch ݅ to these depots and 
lines is limited by the following equations. 

 
∑ ܲܦ ௜ܸ,௦,௞,௡଴௦∈ௌ೙బ:ఙ೙ஹఛೞ,೙బ ൅ ∑ ܲܫ ௜ܸ,௞,௡

௡
௡ᇲ∈ே:௡´ஹଵ ൑ ௡ߪ െ

ܲܮ ௜ܸାଵ,௞ିଵ,௡଴ ൅ ܲܫ ௜ܸ,௞,௡଴ ൅ ܲ ௡ܸ଴൫1 െ ,௜,௞,௡൯ݑ ∀݅ ∈
,௡଴ܫ ݇ ∈ ,ܭ ݊ ∈ ܰ  

(30) 
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∑ ܲܦ ௜ܸ,௦ᇲ,௞,௡଴
௦
௦ᇲ∈ௌ೙బ

൅ ∑ ܲܫ ௜ܸ,௞,௡௡ஹଵ:ఙ೙ஸఛೞ,೙బ ൑ ߬௦,௡଴ െ

ܲܮ ௜ܸାଵ,௞ିଵ,௡଴ ൅ ܲܫ ௜ܸ,௞,௡଴ ൅ ܲ ௡ܸ଴൫1 െ ,௜,௦,௞,௡଴൯ݔ ∀݅ ∈
,௡଴ܫ ݇ ∈ ,ܭ ݏ ∈ ܵ௡଴	  

(31) 

3.1.11 Meeting Demand 

The total volume of product ݌ unloaded to depot ݏ௡ 
during the planning horizon should be as large as 
 .௡ݏ at depot ݌ ௣,௦,௡, the demand of product݀݊ܽ݉݁ܦ
Note that it is possible that some demand is not 
satisfied within the planning horizon. Slack variable 
 ௣,௦,௡ stands for the unsatisfied demand of݇ܿܽܤ
product ݌ at depot ݏ௡. 

 
∑ ∑ ܲܦܲ ௜ܸ,௣,௦,௞,ௗ௜∈ூ೙௞∈௄ ൒ ௣,௦,௡݀݊ܽ݉݁ܦ െ
,௣,௦,௡݇ܿܽܤ ݌∀ ∈ ܲ, ݏ ∈ ܵ௡, ݊ ∈ ܰ  

(32) 

3.1.12 Objective Function of Model AP 

min ݖ ൌ ෍ ෍ ෍ܥ ௣ܲ. ܲܲ ௜ܸ,௣,௞

௣∈௉௜∈ூ೙బ௞∈௄

൅෍෍෍෍ .௣,௣ᇲܨܫܥ ௜,௣,௣ᇲ,௡ܨܶܰܫ
௣ᇲ∈௉௣∈௉௜∈ூ௡∈ே

൅෍෍෍ܤܥ௣,௦,௡. ௣,௦,௡݇ܿܽܤ
௣∈௉௦∈ௌ௡∈ே

 

3.2 Detailed Level (DP) 

All constraints in model AP are part of model DP 
except for the interface and forbidden sequence 
constraints. The remaining constraints of model DP 
model are listed below. 

3.2.1 Feeding Depots and Secondary Lines 

In detailed level, active depots must simultaneously 
receive materials while inserting a new batch from the 
refinery. Such a condition enforces active depot 	ݏ௡ to 
receive material from batch ݅  during run ݇  if the upper 
coordinate of the batch at the end of pumping run ݇ െ
ܲܮ) 1 ௜ܸ,௞ିଵ,௡) has reached the volumetric coordinate 
of the output facility of depot ݏ௡	ሺ߬௦,௡ሻ. Moreover, the 
lower coordinate of the batch ݅ should not surpass 
ሺ߬௦,௡ሻ at the end of pumping run ݇. So Eqs. (12)-(13) 
need to be changed by the following. 

 
ܲܮ ௜ܸାଵ,௞,௡ ൑ ߬௦,௡ ൅ ൫ܲ ௡ܸ െ ߬௦,௡൯൫1 െ ,௜,௦,௞,௡൯ݔ

∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ 

(33) 

ܲܮ ௜ܸ,௞ିଵ,௡ ൒ ߬௦,௡ݔ௜,௦,௞,௡, ∀݅ ∈ ,௡௦ܫ ݏ ∈ ܵ௡, ݇, ݊ (34) 

 
Note that in detailed plan, the product delivery to 

an active depot will be accomplished from a single 

batch. This is not a model restriction but a practical 
fact since delivery rates may vary with products. 
Active secondary lines will also receive material from 
a single batch in detailed level during each pumping 
operation and therefore Eqs (18)-(19) should be 
replaced by the following: 

 
ܲܮ ௜ܸାଵ,௞,௡଴ ൑ ௡ߪ ൅ ሺܲ ௡ܸ଴ െ ௡ሻ൫1ߪ െ ,௜,௞,௡൯ݑ

∀݅ ∈ ,௡ܫ ݇, ݊ ് ݊0 

(35) 

ܲܮ ௜ܸ,௞ିଵ,௡଴ ൒ ,௜,௞,௡ݑ௡ߪ ∀݅ ∈ ,௡ܫ ݇, ݊ ് ݊0 (36) 

 
Note that Eqs (33)-(36) increase the number of 

pumping runs required to find the optimal solution, 
which is detrimental for computational performance. 
This is one of the reasons for applying two level 
approaches for detailed pipeline schedule. 

3.2.2 Activated and Stopped Volume 

In detailed level, it is important to detect the pipeline 
segments where the flow is resumed or stopped. To 
this end, we need to determine the status of pipeline 
segment in two consecutive runs. Binary variable 
 takes the value of 1 if some material moves in	௦,௞,௡ݒ
segment	ݏ௡	through pumping run	݇.	Since the 
pipeline network features a unique refinery, 
segment	ሺݏ െ 1ሻ௡ will be active if segment	ݏ௡ is 
active, as imposed by Eq (37). The first segment of 
mainline is active if the segment is receiving products 
from the refinery (∑ ௜,௞ߣ ൌ 1௜∈ூ೙బ ), and vice versa. 
The first segment of a secondary line ݊  will be active 
when some material is transferred to this line from the 
mainline (∑ ௜,௞,௡ݑ ൌ 1௜∈ூ೙బ ), and vice versa. On the 
other hand, depot 	ݏ௡ will be idle if segment	ݏ௡ is idle, 
as imposed by Eq (40). 

 

௦,௞,௡ݒ ൑ ,௦ିଵ,௞,௡ݒ ݏ∀ ∈ ܵ௡, ݇, ݊ (37) 
௦,௞,௡଴ݒ ൌ ∑ ௜,௞,௜∈ூ೙బߣ ∀݇, ݏ ൌ  ሺܵ௡଴ሻ  (38)	ݐݏݎ݂݅
௦,௞,௡଴ݒ ൌ ∑ ௜,௞,௡,௜∈ூ೙బݑ ∀݇, ݊, ݏ ൌ  ሺܵ௡ሻ  (39)	ݐݏݎ݂݅
∑ ௜,௦,௞,௡௜∈ூ೙బݔ ൑ ,௦,௞,௡ݒ ݏ∀ ∈ ܵ௡, ݇, ݊  (40) 

The model also needs to specify the status of the 
mainline segments branching into secondary lines 
(segments	1ݏ௡଴ and 3ݏ௡଴ in Figure 1). Since ߪ௡ is the 
volumetric coordinated of branch point ݊ and ߬௦,௡ is 
the volume of segment	ݏ௡, we have: 

 
௦ଵ,௞,௡ݒ ൑ ,௦,௞,௡଴ݒ ∀݇, ݊, ݏ ∈ ሼܵ௡଴|	ߪ௡ ൌ ߬௦,௡଴ሽ (41) 

 
To compute activated and stopped volumes, we 

first need to determine the active volume of any 
pipeline ݊	 at the end of pumping run ݇ through 
continuous variable ܣ ௞ܸ,௡ ሺthe volume from the 
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origin of ݊ to the end of furthest active segment ݏ௡). 
The active volume of a secondary line will be zero if 
its first segment is idle. 

 
ܣ ௞ܸ,௡ ൒ ൫ݒ௦,௞,௡ െ .௦ାଵ,௞,௡൯ݒ ߬௦,௡, ∀݇, ݊, ݏ ∈ ܵ௡ (42) 
ܣ ௞ܸ,௡ ൑ ߬௦,௡ ൅ ൫ܲ ௡ܸ െ ߬௦,௡൯൫1 െ ௦,௞,௡ݒ

൅ ,݇∀				,௦ାଵ,௞,௡൯ݒ ݊, ݏ ∈ ܵ௡ 
(43) 

ܣ ௞ܸ,௡ ൑ ܲ ௡ܸݒ௦,௞,௡, ∀݇, ݊ ് 0, ݏ ൌ ሺܵ௡ሻ (44)ݐݏݎ݂݅
 

Activated volume of pipeline ݊ during run ݇ 
ܥܣ) ௞ܸ,௡) is the idle volume of the pipeline ݊ through 
run ݇ െ 1, while the stopped volume (ܵܶ ௞ܸ,௡) is the 
active volume through run ݇ െ 1. 

 
ܥܣ ௞ܸ,௡ ൒ ܣ ௞ܸ,௡ െ ܣ ௞ܸିଵ,௡,			∀݇ ∈ ,ܭ ݊ ∈ ܰ (45)
ܵܶ ௞ܸ,௡ ൒ ܣ ௞ܸିଵ,௡ െ ܣ ௞ܸ,௡,			∀݇ ∈ ,ܭ ݊ ∈ ܰ (46)

3.2.3 Flowrate in Pipeline Segment 

Aggregate plans usually prevent enforcing flowrate 
constraints on pipeline segments. These are important 
since segments typically have different diameters. 
The detailed plan, as an operational rule, should 
consider flowrate restrictions, where ݏݒ௦,௡୫୧୬ and 
 ௦,௡୫ୟ୶ are minimum and maximum stream flowratesݏݒ
in segment ݏ௡. The flowrate in segment ݏ௡ can be 
computed by the total volume of materials moving 
along ݏ, divided by the pumping run length ܮ௞.	Eq 
(47) enforces flowrate limitations in mainline 
segment whereas Eq (48) restrains flowrates in 
secondary segments. 

 
௦,௡଴ݏݒ௞ܮ

୫୧୬ െ ܲܫ ௡ܸ଴
୫ୟ୶൫1 െ ௦,௞,௡଴൯ݒ ൑

∑ ∑ ܲܦ ௜ܸ,௦ᇲ,௞,௡଴௜∈ூ೙బ௦ᇲ∈ௌ೙బ
௦ᇲஹ௦

൅ ∑ ∑ ܲܫ ௜ܸ,௞,௡௜∈ூ೙బ௡∈ே
ఙ೙ஹఛೞ,೙బ

൑

௦,௡଴ݏݒ௞ܮ
୫ୟ୶, ݏ∀ ∈ ܵ௡଴, ݇ ∈   ܭ

(47) 

௦,௡୫୧୬ݏݒ௞ܮ െ ܲܫ ௡ܸ
୫ୟ୶൫1 െ ௦,௞,௡൯ݒ ൑

∑ ∑ ܲܦ ௜ܸ,௦ᇲ,௞,௡௜∈ூ೙௦ᇲ∈ௌ೙
௦ᇲஹ௦

൑ ,௦,௡୫ୟ୶ݏݒ௞ܮ ݏ∀ ∈ ܵ௡, ݇ ∈

,ܭ ݊ ് ݊0  

(48) 

3.2.4 Objective Function of DP Model  

min ݖ ൌ෍෍൫ܣܥ௡ܥܣ ௞ܸ,௡ ൅ ௡ܵܶܵܥ ௞ܸ,௡൯
௞∈௄௡∈ே

൅ ෍ ෍ܨܥ ∙ ௜,௞ߣ
௞∈௄௜∈ூ೙బ

 

4 DECOMPOSITION APPROACH 

The detailed scheduling of multi-branched tree 
structure pipeline networks will become an 
intractable problem even for short term horizons if all 
decisions related to the pipeline input and output 
operations are to be made in a single step. To find the 
best detailed schedule in reasonable time, we first 

solve the AP model to find the optimal batch 
sequence in each pipeline at minimum interface, 
pumping and backorder costs. The resulting solution 
helps us to identify the exact elements of sets 
,௡ܫ ,௡௘௪ܫ  and consequently reduce the	௡୬ୣ୵,ܫ and		௡௦ܫ
constraints domain. Then, after fixing the binary 
variables ݖ௜,௡ and ݕ௜,௣ and removing the interface and 
forbidden constraints, we solve the DP model to meet 
demand with minimum number of flow 
resumes/stoppages and pumping operations. The 
proposed decomposition procedure will hereafter be 
called DSM and is depicted in Figure 2. 

 

Figure 2: Proposed DSM framework. 

4.1 Optimal Number of Pumping Runs 

To solve both the upper and the lower models, we 
should first guess the number of pumping operations 
for each step. Like previous continuous time 
approaches, we use an iterative procedure to find the 
optimal number of pumping operations |ܭ| to be 
performed. In fact, searching for the optimal solution 
can be extremely costly, but if the initial guess on the 
number of pumping runs is accurate, no more than 
two iterations are usually required. Since all 
operations may not involve the maximum volume 
ܲܫ) ௡ܸ଴

௠௔௫), a simple expression for the number of 
pumping operations of model AP can be: 

 

	ቒ
∑ ∑ ∑ ஽௘௠௔௡ௗ೛,ೞ,೙೛ೞ೙

ூ௉௏೙బ
೘ೌೣ ቓ ൑   ୅୔|ܭ|

 
Moreover, the number of pumping operations in 

the model DP cannot be greater than the number of 
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product deliveries in model AP (PD୅୔) and lower 
than the number of pumping runs in AP: 

 
୅୔|ܭ| ൑ ୈ୔|ܭ| ൑ PD୅୔ 

4.2 Previous Two Level Approaches 

Cafaro and co-workers (2012) were the firsts to 
develop a two-level approach for the detailed 
scheduling of straight pipeline systems. In their 
approach (hereafter CC), after finding the product 
sequence with minimum pumping and interface costs, 
they fix the aggregate batch sizes, the starting and 
completion times of each pumping operation in AP, 
and solve the second stage to generate a detailed 
schedule. In fact, the start and end of pumping 
operations for a batch injection in the lower level 
must exactly comply with the start and end times 
specified for that batch injection in the upper level 
model. To this end, each product delivery in the lower 
level model should be accomplished in the same time 
interval performed in the upper level model. Since the 
solution quality for the detailed scheduling problem 
depends on the sequence of product deliveries, the 
CC model does not usually find cost-effective 
transportation plans. 

5 COMPUTATIONAL RESULTS 

Two case studies, one of them using industrial data, 
were solved to validate the efficiency of the proposed 
two level approach. The implementations were on an 
Intel® Core(TM) i5-4210U (2.7 GHz) with 6 GB of 
RAM, running Windows 7, 64-bit operating system 
using GAMS/CPLEX 12.6 in parallel deterministic 
mode (using up to 4 threads). 

5.1 Example 1 

This example deals with a small network and aims to 
show how we select the elements of sets ܫ௡, ,௡௘௪ܫ  ௡୬ୣ୵ܫ
and 	ܫ௡ୱ  in the lower level model (detailed schedule). 
We assume that the aggregated transportation plan in 
Figure 3 is already available. The pipeline topology 
and its initial status at the start time of planning 
horizon (time ݐ ൌ 0.00	h) is depicted in the first row 
of Figure 3. The flowrate in pipeline segments can 
vary between 0.3 and 1.0 m3/h and the time horizon 
has a length of 96 h (4 days). The maximum volume 
input per pumping run is 60 m3 while the minimum is 
10 m3. The same condition holds for the minimum 
and maximum batch size diverted to depots. The unit 
stoppage cost is 0.4 in each segment. 

The aggregate pipeline schedule contains two 
pumping operations. The first operation takes place 
from time 0.0 h to 30.0 h and involves increasing the 
amount of product P3 in batch B3 and diverting 20 m3 
of B2 into the secondary line and 10 m3 of batch B1 
into depot N2. The second pumping operation from 
30.0 to 90.0 h injects 60 m3 of new batch B4 into the 
mainline and the following delivery operations are 
accomplished at depots: depot N1 receives from 
batches B3 and B4; batch B2 goes to depots N2 and 
N3. 

To solve DP (lower level model) we should first 
guess the number of pumping operations and specify 
the exact elements of sets ܫ௡, ,௡௘௪ܫ  ௡ୱ. Fromܫ	 ௡୬ୣ୵ andܫ
the aggregated plan, there are a total of 6 product 
deliveries to depots and so 2 ൑ ୈ୑|ܭ| ൑ 6. We will 
start solving the problem with |ܭ|ୈ୑ ൌ 2	and keep 
increasing |ܭ|ୈ୑ until no improvement is found in 
the objective function. 

From the solution obtained from the AP model, 
we can now refine the elements of sets ܫ௡, ,௡௘௪ܫ  ௡୬ୣ୵ܫ
and 	ܫ௡ୱ  and reduce the domain of the constraints. It 
can be observed from Figure 3 that only new batch 
B4 is injected into the mainline. There are three old 
batches B1, B2 and B3 and so	ܫ௡଴ ൌ ሼB4, B3, B2, B1ሽ. 
Two new batches B2 and B3 are injected into the 
secondary line (pipeline	݊1) and so ܫ௡ଵ

୬ୣ୵ ൌ ሼB3, B2ሽ. 
There is only one old batch B1 inside the secondary 
line and so ܫ௡ଵ ൌ ሼB1, B2, B3ሽ. Depot N1 only 
receives product from batches B3 and B4 and so 
௡଴ܫ
୒ଵୀୱଵ ൌ ሼB3, B4ሽ. Similarly, we have ܫ௡଴

୒ଶୀୱଶ ൌ
௡ଵܫ
୒ଷୀୱଵ ൌ ሼB1, B2ሽ. 

 

 

Figure 3: Aggregate pipeline schedule for Example 1. 

Figure 4 shows the optimal detailed schedule for 
Example 1 using DSM. It contains 4 batch injections 
at the refinery and 7 product deliveries to depots. The 
injection of batch B3 (and batch B4) from the refinery 
is now accomplished through a sequence of two short 
pumping runs. There is only one segment stoppage 
during 4 days that happens in the secondary line 
during time interval [60.00, 90.00]. 
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Figure 5 shows the optimal pipeline schedule for 
Example 1 using CC. Like DSM, 4 batch injections 
should be accomplished to fully satisfy the given 
demands. Note that 10 m3 of batch B1 are being 
discharged into depot N2 during time interval [0.00, 
30.00] of the aggregate plan of Figure 3. This depot 
should extract the same amount of material during 
time interval [0.00, 30.00] of the detailed plan. In 
contrast, it remains inactive in DSM (see Figure 4). 
The aggregate transportation plan enforces depot N2 
to be idle during [30.00, 60.00] and to be active 
during [60.00, 90.00] in CC. Such a change in the 
status of depot N2 leads to a stoppage in the last 
segment during the third pumping operation. 
Superfluous flow shutdowns can also be observed in 
the secondary line that are due to the change in the 
status of depot N3 that alternatingly becomes active 
and idle. 

 

 

Figure 4: Detailed schedule for Example 1 using DSM. 

Table 1: Computational results for Example 1. 

 DSM CC 
# Pumping runs 4 4 
# Constraints 646 646 
# Binary vars 90 90 
#Continuous vars 285 285 
CPUs 0.47 0.42 
Stop vol (m3) 20 70 
Obj. Funa ($) 8 28 
aBoth DSM and CC only minimize pipeline stoppage volumes. 

 
Table 1 gives the computational results of 

Example 1 for the CC, DSM approaches. Though the 
number of pumping operations is the same, the 
stopped volume of the pipeline in the proposed 
approach decreases from 70 to 20 m3. Such a lower 
shutdown volume in pipeline leads to cost savings of 
71.42 %. 

 

Figure 5: Detailed schedule for Example 1 using CC. 

5.2 Example 2 (Real-Life Case Study) 

Here we consider a large-scale real-world example 
from Mostafaei et al. (2015a), involving an Iranian 
tree-like pipeline with a refinery, a mainline, two 
secondary lines and six depots (check first row of 
Figure 6). The first secondary line with two depots 
starts 3000 m3 away from the mainline’ origin while 
the other secondary line (single depot) leaves the 
mainline after 15000 m3. Batches of four products 
(P1-P4) should be conveyed and it is forbidden for P1 
to touch P4. The product injection rate can vary 
between 300 and 800 m3/h, and the time horizon has 
a total length of 192 h. In both aggregated and 
detailed levels, at most 13000 m3 of each product can 
be injected into the mainline during each operation. 
Other data for this example, together with the 
aggregate transportation plan, can be found in 
Mostafaei et al. (2015b). 

Table 2: Computational results for Example 2. 

 DSM CC  Mostafaei et al. 
(2015b) 

# Pumping runs 13 22 12 
# Constraints 5076 9090 5864 
# Binary vars 671 1381 782 
#Continuous vars 2500 6281 3714 
CPUs 64.4 412.60 468.23 
Restart vol (m3) 39200 118400 39200 
Obj. Funa ($) 15680 47360 15680 
aBoth DSM and CC only minimize pipeline restart volumes.  

 
Figure 6 shows the optimal detailed schedule for 

Example 2 using DSM. It contains 13 pumping 
operations and 50 product deliveries to depots. Model 
size and computational requirements for Example 2 
are reported in Table 2.
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Figure 6: Detailed schedule for Example 2 using DSM. 

Three interesting conclusions can be derived from 
the results. The first, is that the optimal detailed 
schedule by the CC approach involves 22 pump 
operations against 13 by DSM. The second, is that the 
solution CPU time has been reduced by a factor of 7 
with regards to CC. The third, is that the objective 
function value for DSM is 66.89 % less expensive 
than the one for CC. This is due to substantial 
reductions on shutdown volumes. Compared with the 
single level approach of Mostafaei et al (2015b), the 
proposed DSM approach finds the same solution in a 
lower CPU time. 

6 CONCLUSIONS 

This paper presented a novel optimization framework 
for the detailed scheduling of treelike pipeline 
networks. The network consists of a refinery, a trunk 
line, a set of split lines and multiple depots. A 
computationally efficient two-level approach based 
on a pair of MILP models has been presented. In the 
upper level, the optimal sequence of batches in each 
pipeline is found while the lower level deals with the 
detailed plan that computes the optimal sequence of 
batch removals at depots. Through the solution of two 
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case studies, we showed that the proposed model is 
more flexible than previous hierarchical approaches 
and is able to solve large scale problems in reasonable 
time. Future work will involve applying the proposed 
method for multi-level tree pipeline networks, with 
intermediate due dates on demands over long-term 
horizons. 
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