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Abstract: Temporal (one-dimensional) Convolutional Neural Network (Temporal CNN, ConvNet) is an emergent tech-
nology for text understanding. The input for the ConvNets could be either a sequence of words or a sequence
of characters. In the latter case there are no needs for natural language processing that depends on a language
such as morphological analysis. Past studies showed that the character-level ConvNets worked well for news
category classification and sentiment analysis / classification tasks in English and romanized Chinese text cor-
pus. In this article we apply the character-level ConvNets to Japanese text understanding. We also attempt
to reuse meaningful representations that are learned in the ConvNets from a large-scale dataset in the form
of transfer learning, inspired by its success in the field of image recognition. As for the application to the
news category classification and the sentiment analysis and classification tasks in Japanese text corpus, the
ConvNets outperformed N-gram-based classifiers. In addition, our ConvNets transfer learning frameworks
worked well for a task which is similar to one used for pre-training.

1 INTRODUCTION

Recently, many deep learning algorithms have
achieved high accuracy in media information process-
ing, such as image and speech recognition. Con-
cretely, a deep convolutional neural network (Con-
vNet, CNN) achieved a winning top-5 test error
rate of 15.3%, compared to 26.2% achieved by
the second-best entry in ILSVRC-2012 competition
(Krizhevsky et al., 2012). Many deep learning ap-
proaches in the field of image recognition reuse the
ConvNets pre-trained on a very large dataset (e.g. Im-
ageNet (Deng et al., 2009)) as a parameter initializa-
tion or feature extractor (Sharif Razavian et al., 2014).
This approaches are called transfer learning, in partic-
ular, inductive transfer.

A successful example of deep learning in the field
of natural language processing is word2vec (Mikolov
et al., 2013a; Mikolov et al., 2013b) which is a
method for producing word embeddings (i.e., low-
dimensional and dense vectors).

In the field of natural language processing, text
classification is a classic and important task because
of many applications. It was important for classic text
classification to make “good” features for a classifier
by hand. For instance, a language-specific sentiment
dictionary for sentiment analysis is often employed

and it needs a language-specific morphological anal-
ysis to make a Bag-of-Words model or a Bag-of-N-
grams model.

There are deep learning approaches for text clas-
sification / sentiment analysis. In the early days,
stacked denoising autoencoders (SDAs) are used for
Amazon review data sentiment analysis (Glorot et al.,
2011). Recursive neural networks (RNNs) based on
a syntax tree are also used for a similar task (Socher
et al., 2013). A syntactic analyzer or a manpower is
needed to generate the syntax tree.

Recent approaches are to apply the temporal Con-
vNets on a sequence of words or a sequence of char-
acters. The former, the word-level ConvNets require
the morphological analyzer of a target language. The
word embeddings pre-trained by unsupervised learn-
ing (i.e., word2vec training) improve classification
accuracy of the word-level ConvNets. On the other
hand, the latter, the character-level ConvNets do not
require the morphological analyzer, the syntactic an-
alyzer, etc. Past studies showed that the character-
level ConvNets worked well for news category clas-
sification and sentiment analysis / classification tasks
in English and romanized Chinese text corpus. How-
ever, any of other languages has not been studied yet.
Additionally, nobody discusses features extracted by
the character-level ConvNets although many discus-
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sions about that are in the field of image recognition.
This study experiments on Japanese text classi-

fication with the ConvNets, and we investigate what
the character-level ConvNets extract and the possibil-
ity of transfer learning in order to make good use of
them.

The remainder of this paper is organized as fol-
lows. Section 2 explains related works dealing with
the temporal ConvNets for text classification and an
overview of transfer learning in the field of image
recognition. Section 3 briefly describes the character-
level ConvNets and the transfer learning frameworks
for experiments. Section 4 provides the dataset de-
scription and the experimental results. Section 5 pro-
vides the discussions for the experimental results. Fi-
nally, section 6 gives a conclusion of this paper.

2 RELATED WORK

2.1 Word-Level ConvNet

The word-level ConvNets approaches which apply the
temporal ConvNets on the sequence of words are pro-
posed by Kim (Kim, 2014) and Severyn et al. (Sev-
eryn and Moschitti, 2015b; Severyn and Moschitti,
2015a). Kim uses multiple window sizes of convolu-
tion filters and experiments on movie sentiment anal-
ysis. Severyn et al. experiment on very short text,
such as Twitter and SMS. Both of their models use
only one temporal convolutional layer and one tempo-
ral pooling layer, namely they are relatively shallow.

2.2 Character-Level ConvNet

The character-level ConvNets approaches which ap-
ply the temporal ConvNets on the sequence of char-
acters are proposed by Santos et al. (dos Santos and
Gatti, 2014; dos Santos et al., 2015) and Zhang et
al. (Zhang and LeCun, 2015; Zhang et al., 2015).
Santos et al. combine the word-level ConvNet with
a pre-trained embedding layer and the character-level
ConvNet with a randomly initialized embedding layer
for a twitter sentiment analysis. Their model is also
relatively shallow, like past studies of the word-level
ConvNets. Zhang et al. are the first to apply the tem-
poral ConvNets only on the sequence of characters.
An acceptable input of their model is the sequence of
one-hot (or 1-of-m) encoded characters. In the case
of English dataset, the dimensionality of one-hot en-
coding is the sum of the number of letters from “a”
to “z”, digits “0” to “9” and signs (e.g., “?”, “!”, etc),
hence at most 70. In the case of Chinese dataset, the
past study uses the romanization by Python library

pypinyin. Hence, the dimensionality of one-hot en-
coding for Chinese input is the same as in the case
of English dataset. Their model is a deep architecture
which is composed of 6 convolutional-pooling layers
and 3 fully-connected layers.

2.3 Transfer Learning based on
ConvNet in Image Recognition

In image recognition of deep learning, many re-
searchers study reuse of the ConvNets pre-trained
on ImageNet (Deng et al., 2009). Razavian et al.
reuse the pre-trained ConvNets as a feature extractor
(Sharif Razavian et al., 2014), and they apply linear
SVM classifier on extracted features. One of other
approaches is replacing weights of the output layer
of the pre-trained ConvNets with randomly initialized
weights and re-training the whole weights of the Con-
vNets on a new task (Girshick et al., 2014; Agrawal
et al., 2014). This approach is called fine-tuning. In
general, accuracy of the ConvNets has a strong ten-
dency to depend on the initial weights. Weight initial-
ization by the pre-trained ConvNets produces better
results than random weight initialization . In partic-
ular, if the number of samples of a training dataset is
small, good initial weights prevent the ConvNets from
overfitting and enhance a generalization ability of the
ConvNets.

3 CHARACTER-LEVEL ConvNet

3.1 Overview

This section shows key modules for applying the tem-
poral ConvNets on the character-level input (dos San-
tos and Gatti, 2014; dos Santos et al., 2015; Zhang
and LeCun, 2015; Zhang et al., 2015).

3.1.1 Input Representation

We employ two types of input representation for ex-
periments. One is a simple one-hot representation
which follows the past study. Another is a distributed
representation (i.e., a character-level embedding) in
order to omit troublesome romanization processing in
the case of Japanese dataset.

Given a sentence composed of N characters
{c1,c2, · · · ,cN}, we first transform each character cn
into the d-dimensional one-hot representation which
has value 1 at index cn and zero in all other positions.
Hence, the sentence composed of the N characters is
transformed into {r1,r2, · · · ,rN} ∈ Rd×N .

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

176



Character-level embeddings require an additional
transformation. The character-level embeddings are
encoded by column vectors in an embedding matrix
W e ∈ Rde×d which is a parameter to be learned. We
transform each one-hot character vector rn into the de-
dimensional character-level embedding re

n ∈ Rde
by

using the matrix-vector product:

re
n =W ern. (1)

The dimensionality of the character-level embedding
de is a hyper-parameter to be chosen by the user. In
the case of the character-level embeddings, the sen-
tence composed of the N characters is finally trans-
formed into {re

1,r
e
2, · · · ,re

N} ∈ Rde×N .
In the following explanation, the vector sn repre-

sents either the vector rn or the vector re
n.

3.1.2 Temporal Convolution

A vector zn ∈ Rd×k applied to temporal convolution
with a filter of window size k is defined as a concate-
nation of the one-hot representations:

zn =
(
sn−(k−1)/2, · · · ,sn+(k−1)/2

)T
. (2)

Hence, the output value of temporal convolution by
the ith filter is as follows:

[
un
]

i=
[
Wzn +b

]
i (3)

where W ∈R f×d×k is the weight matrix composed of
the f convolution filters and b ∈R f is the bias vector.
W and b are parameters to be learned.

3.1.3 Temporal Pooling

Let us define M = N − (k− 1) and temporal max-
pooling size is p. The output value of tempo-
ral convolution by the ith filter can be describe as
(v1,v2, · · · ,vM)i ∈RN−(k−1). Hence, an applied range
of temporal max-pooling

[
ym

]
i is as follows:

[
ym

]
i =

(
vm−(p−1)/2, · · · ,vm+(p−1)/2

)
i. (4)

The dimensionality of the output matrix of the tempo-
ral max-pooling layer is f × (N− (k−1))/p.

3.2 Model Design

We prepare shallow ConvNets and deep ConvNets.
The sequential information in the text whose length is
larger than the window size cannot be taken into con-
sideration with the shallow ConvNets. On the other
hands, multiple convolution and pooling enable the
deep ConvNets to take those information into consid-
eration.

The alphabet set used in the models of one-hot
representation consists of the following 68 characters.

abcdefghijklmnopqrstuvwxyz0123456789
,;.!?:’/\|_@#$%ˆ&*˜‘"+-=<>(){}

The input sentence length (i.e., the number of
input characters) is fixed to 1014. Hence, in the case
of the one-hot representation, the dimensionality of
the input matrix is 68× 1014. The dimensionality of
the character-level embedding is set to 50. Hence,
in the case of the character-level embedding, the
dimensionality of the input matrix is 50× 1014. In
addition, ReLU (Nair and Hinton, 2010) is applied
to all the layers except for the output layer. For the
network training, momentum SGD (Bengio et al.,
2013) is carried out via backpropagation. Then,
the mini-batch size is set to 50 and the momentum
is set to 0.9 and initial learning rate is set to 0.01
which is halved every 3 epochs for 10 times. The
weights of all the models are initialized by “Xavier
initialization” (Glorot and Bengio, 2010).

3.2.1 Deep Model

Zhang et al. design two models of 9 layers deep
neural networks with 6 convolutional layers and 3
fully-connected layers. One of the two models has
a large number of the convolution filters (Large-
C6FC3), while another one has a small number of
those (Small-C6FC3). Cn1FCn2 refers to a network
with n1 convolutional layers and n2 fully-connected
layers. Table 1 and Table 2 list the configurations
of the deep models of Zhang et al. The former lists
the configurations of the 6 convolutional layers of the
deep models and the latter lists the configurations of
the 3 fully-connected layers of the deep models. Each
column of Table 1 indicates the index of the layers,
the number of convolution filters of the large model,
the number of those of the small one, windows size
of the convolution filters and max-pooling size. Each
column of Table 2 indicates the index of the layers,
the number of the output units of the large model and
the number of those of the small one. The 9th layer is
the output layer, hence the number of units of that de-

Table 1: Configurations of the 6 convolutional layers of
Small-C6FC3 and Large-C6FC3.

Layer Large Frame Small Frame Window Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3
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Table 2: Configurations of the 3 fully-connected layers of
Small-C6FC3 and Large-C6FC3.

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the Problem

pends on a problem (e.g., if we deal with a sentiment
polarity classification problem, the number of those
is two.). To regularize the network, dropout (Srivas-
tava et al., 2014) is applied to between the 3 fully-
connected layers with a probability of 0.5.

3.2.2 Shallow Model

We build the shallow character-level ConvNets for
comparing with the deep models of Zhang et al. Ta-
ble 3 and Table 4 list the configurations of the shallow
models like Table 1 and Table 2.

Table 3: Configurations of the convolutional layer of Small-
C1FC1 and Large-C1FC1.

Layer Large Frame Small Frame Kernel Pool
1 1024 256 7 1008

Table 4: Configurations of the fully-connected layer of
Small-C1FC1 and Large-C1FC1.

Layer Output Units Large Output Units Small
2 Depends on the Problem

3.3 Character-level ConvNets for
Transfer Learning

A target task in this section is a text classification
task in a relatively small dataset. To prevent the Con-
vNets from overfitting, we train the ConvNets on a
very large dataset and reuse them with transfer learn-
ing frameworks.

We employ Small-C6FC3 model for experiments
dealing with transfer learning. The following three
transfer learning frameworks are compared each
other:

Scratch. The model without pre-training on the very
large dataset.

Pre-trained Feature. We initialize the 6 convolu-
tional layers of the model with those of the pre-
trained model, and freeze those layers for training.
Thus, the pre-trained model is used for the feature
extractor and only the 3 fully-connected layers are
trained through backpropagation.

Fine-tuning. We initialize all the layers without the
output layer of the model with those of the pre-
trained model and do not freeze any of the layers
for training.

4 EXPERIMENTS

4.1 Baseline Methods

We use a Bag-of-Words model and a Bag-of-N-grams
model as baseline methods. We employ a multino-
mial logistic regression for tf-idf features based on a
dictionary created by the following methods.

Bag-of-Words. In the case of English dataset, pre-
processing (e.g., removing stopwords) is carried
out by Python library gensim. In the case of
Japanese dataset, Japanese morphological analy-
sis is carried out by MeCab (Kudo et al., 2004).
For both of English dataset and Japanese dataset,
we use the most frequent 5000 words as the dic-
tionary.

Bag-of-N-grams. In the case of a English dataset, we
use the most frequent n-grams (up to 5-grams) as
the dictionary. In the case of Japanese dataset,
Japanese romanization is carried out by “Kanji
Kana Simple Inverter” (KAKASI1). We use the
most frequent n-grams (up to 5-grams) that are ro-
manized as the dictionary.

4.2 Datasets and Results for Japanese
Text Classification

This study employs two types of task for each of En-
glish and Japanese with reproduction of the past study
in mind. One of the tasks is news categorization,
while another one is sentiment analysis.

4.2.1 AFPBB Dataset

We collected Japanese news articles including titles,
texts and categories from AFPBB News2 for the
Japanese news categorization task. Table 5 describes
an overview of the corpus. The corpus contains
79,778 articles from May 2006 to May 2016. The
categories of the corpus are composed of “Lifestyle”
, “Politics” , “Science” and “Sports”. We sampled
12,000 articles for each of the categories as a training
dataset while we sampled 500 articles for each of the
categories as a validation dataset and a test dataset.
The romanization is carried out for the input for the
Bag-of-N-grams and the one-hot character-level Con-
vNet.

The results for the AFPBB dataset are shown in
Table 6. From the point of view of classification accu-
racy, the best model is the Bag-of-Words model. The

1http://kakasi.namazu.org
2http://www.afpbb.com/
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Table 5: Overview of AFPBB dataset.

Category Total Train Validation Test
Lifestyle 21,927 12,000 500 500
Politics 18,221 12,000 500 500
Science 13,069 12,000 500 500
Sports 26,561 12,000 500 500

results indicate that C1FC1 one-hot models outper-
form C6FC3 one-hot models, and C6FC3 embedding
models outperform C1FC1 embedding models. We
suppose C6FC3 one-hot models fall into overfitting
because their expressive power derived from the deep
architecture is too much for the small AFPBB dataset
and the deteriorated input information due to the ro-
manization. On the other hands, we suppose that the
intact input information and the relatively deep archi-
tecture improve the accuracy of C6FC3 embedding
models. However, none of the ConvNets outperform
the Bag-of-Words model because they fail to learn
features as good as the dictionary from the relatively
small dataset.

Table 6: Classification accuracy for AFPBB dataset.

Model Accuracy
Bag-of-Words 0.947
Bag-of-N-grams 0.926
Small-C1FC1 one-hot 0.9385
Large-C1FC1 one-hot 0.941
Small-C1FC1 embedding 0.916
Large-C1FC1 embedding 0.9225
Small-C6FC3 one-hot 0.9120
Large-C6FC3 one-hot 0.9295
Small-C6FC3 embedding 0.9365
Large-C6FC3 embedding 0.9395

4.2.2 Rakuten Market Review Dataset

We obtained a Rakuten3 market review dataset from
the Informatics Research Data Repository of National
Institute of Informatics4. We created a subset of it by
extracting only reviews with F1 and F5 and writ-
ten between April 2012 and December 2012 to use in
the Japanese sentiment analysis task. Among senti-
ment analysis tasks, this study deals with a sentiment
polarity classification (a task for classifying a input
text into positive or negative). We sampled 680,000
reviews from the Rakuten market review dataset as
shown in Table 7. We created the dictionary for the
Bag-of-Words and the Bag-of-N-grams from 200,000

3Rakuten, Inc. is one of the largest Japanese electronic
commerce and Internet companies based in Tokyo, Japan.

4http://www.nii.ac.jp/dsc/idr/en/rakuten/rakuten.html

reviews which are randomly sampled from the train-
ing dataset because of the limitations of memory.

Table 7: Overview of Rakuten market review dataset.

Polarity Total Train Validation Test
Positive(F5) 11,434,454 300,000 20,000 20,000
Negative(F1) 370,160 300,000 20,000 20,000

Table 8 shows the results. We had two assump-
tions. One is that the sequential information improves
the accuracy for the sentiment analysis task. An-
other assumption is that the words or the N-grams are
more important than the sequential information in the
news categorization task. However, simple C1FC1
models are not inferior to C6FC3 models which is
able to take the sequential information into consid-
eration. On the contrary, one of the shallow mod-
els, Large-C1FC1 with the character-level embed-
ding is the best model. C6FC3 models outperform
C1FC1 models in the case of the one-hot representa-
tion, while C1FC1 models outperform C6FC3 models
in the case of the character-level embedding. Since a
normal Japanese sentence is shorter than a romanized
Japanese sentence, the applied range of convolution
or max-pooling differs between the normal Japanese
sentence and the romanized Japanese sentence. Thus,
the Japanese character-level embedding enables the
ConvNets to have more broader viewpoints than the
romanized one-hot representation. We suppose that
the broader viewpoints have provided important infor-
mation in the sentiment analysis task, which usually
comes from the sequential information.

Table 8: Classification accuracy for Rakuten market review
dataset.

Model Accuracy
Bag-of-Words 0.95475
Bag-of-N-grams 0.950975
Small-C1FC1 one-hot 0.958525
Large-C1FC1 one-hot 0.963725
Small-C1FC1 embedding 0.967675
Large-C1FC1 embedding 0.969875
Small-C6FC3 one-hot 0.9637
Large-C6FC3 one-hot 0.966825
Small-C6FC3 embedding 0.966925
Large-C6FC3 embedding 0.9689

4.2.3 AG News Dataset

We obtained AG’s corpus of news articles (Del Corso
et al., 2005; Gulli, 2005) from Gulli’s website5 for

5https://www.di.unipi.it/∼gulli/
AG corpus of news articles.html
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English categorization task. We sampled 400,000 ar-
ticles which belong to any of four largest categories
from the corpus for the training dataset, the validation
dataset and the test dataset as shown in Table 9. We
created the dictionary for the Bag-of-Words and the
Bag-of-N-grams from the random sampled 120,000
reviews because of the limitations of memory.

Table 9: Overview of AG news dataset.

Category Total Train Validation Test
World 186,674 90,000 5,000 5,000
Sports 118,103 90,000 5,000 5,000

Business 134,223 90,000 5,000 5,000
Sci/Tech 153,595 90,000 5,000 5,000

Table 10 shows the results. The best model is
Large-C1FC1. There is, however, not much different
between all the models, because all the models could
extract key words as features.

Table 10: Classification accuracy for AG news dataset.

Model Accuracy
Bag-of-Words 0.8689
Bag-of-N-grams 0.87665
Small-C1FC1 0.8701
Large-C1FC1 0.8849
Small-C6FC3 0.87095
Large-C6FC3 0.87925

4.2.4 Amazon Review Dataset

We obtained an Amazon review dataset (McAuley
et al., 2015b; McAuley et al., 2015a) including eight
categories (“Books”, “Electronics”, etc) from the
Stanford Network Analysis Project (SNAP)6 for the
English sentiment analysis task. We sampled 760,000
reviews whose rating is F1 or F5 from this dataset
for the training dataset, the validation dataset and the
test dataset as shown in Table 11. We created the dic-
tionary for the Bag-of-Words and the Bag-of-N-grams
from the random sampled 200,000 reviews because of
the limitations of memory.

Table 11: Overview of Amazon review dataset.

Polarity Total Train Validation Test
Positive(F5) 8,829,533 300,000 40,000 40,000
Negative(F1) 653,333 300,000 40,000 40,000

Table 12 shows the results. The best model is
Large-C6FC3. Since the dictionary based on the fre-
quent words may not contain important key words
for the sentiment analysis, the flexible ConvNets are
proved to be more accurate than the Bag-of-Words
and the Bag-of-N-grams by a 3-5% margin.

6https://snap.stanford.edu/data/web-Amazon.html

Table 12: Classification accuracy for Amazon review
dataset.

Model Accuracy
Bag-of-Words 0.882175
Bag-of-N-grams 0.881275
Small-C1FC1 0.91125
Large-C1FC1 0.925425
Small-C6FC3 0.92155
Large-C6FC3 0.931925

4.3 Datasets and Results for Transfer
Learning

We construct a large-scale dataset including sixteen
categories which are shown in Table 13 for pre-
training from the Amazon review dataset. We call it
a pre-training dataset. Table 14 shows an overview
of the pre-training dataset. The test classification ac-
curacy of Small-C6FC3 for the large-scale dataset is
0.9168.

Table 13: Sixteen categories for pre-training.

Category
Apps for Android
Automotive
Baby
Beauty
Books
Clothing Shoes and Jewelry
Digital Music
Grocery and Gourmet Food
Health and Personal Care
Office Products
Patio Lawn and Garden
Pet Supplies
Sports and Outdoors
Tools and Home Improvement
Toys and Games
Video Games

Table 14: Overview of Amazon review dataset for pre-
training.

Overall Polarity Train Validation Test
F5 Positive 400,000 40,000 40,000
F4 200,000 20,000 20,000
F2 Negative 200,000 20,000 20,000
F1 400,000 40,000 40,000

We choose “Movies and TV”, “Electronics”,
“Home and Kitchen” category to construct the small-
scale datasets for the target task. We call it a tar-
get dataset. It should be noted that the pre-training
dataset does not include these three categories. Ta-
ble 15 shows an overview of the target dataset. The
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ratio of the number of the reviews for each of F1,
F2, 4

¯
and F5 rating is 2:1:1:2, namely this ratio is

the same ratio as the large-scale dataset for the pre-
training as shown in Table 14.

Table 15: Overview of the dataset for main task of transfer
learning. To be specific, “Movies” indicates “Movies and
TV” category and “Home” indicates “Home and Kitchen”
category.

Movies Electronics Home
Train 150,000 150,000 60,000

Validation 30,000 30,000 9,000
Test 30,000 30,000 9,000

Table 16 shows the results. The results indicate
that the Fine-tuning is the best method for all the
datasets. Additionally, the smaller the dataset gets,
the less accurate the Scratch framework gets. From
these facts, making good use of the pre-trained Con-
vNets is very effective for the prevention of overfitting
and the enhancement of the generalization ability.

Table 16: The results of experiments for transfer learning
on the Amazon review dataset. Each of numbers indicates
the classification accuracy.

Model\Dataset Movies Electronics Home
Bag-of-Words 0.85503 0.86033 0.8524
Bag-of-N-grams 0.85603 0.8755 0.8693
Scratch 0.85827 0.87854 0.8581
Pre-trained feature 0.88697 0.88183 0.8988
Fine-tuning 0.8992 0.90523 0.9123

In addition, we used a IMDb review dataset (Maas
et al., 2011) for the target dataset. The task of this
dataset is also the sentiment polarity classification
task. This dataset was collected 50,000 polarized re-
views from the Internet Movie Database7. A negative
review has a score 4 or less out of 10, while a positive
review has a score 7 or more out of 10. The default
training dataset has 25,000 reviews, while the default
test dataset has 25,000 reviews. We randomly sam-
pled 2,500 reviews for the validation dataset from the
default training dataset. Hence, we could use only
22,500 reviews for the training dataset. A polarity ra-
tio of all the datasets is 1:1. Since we have an as-
sumption that a characteristic (e.g., scale, a topic) of
the pre-training dataset influences the results of trans-
fer learning, we construct another pre-training dataset
including only “Movies and TV” category which is
closely related topic to the IMDb review dataset.

Table 17 shows the results. The Scratch frame-
work falls into overfitting because of its depth and
the smallness of the IMDb review dataset. The trans-
fer learning frameworks using the pre-trained Con-

7http://www.imdb.com/

vNets outperform the classic text classification meth-
ods. Furthermore, the framework using the ConvNets
pre-trained on the large-scale dataset including the
various categories outperforms the framework using
the ConvNets pre-trained on the small-scale dataset
including only “Movies and TV” category which is
semantically similar topic to the target dataset.

Table 17: The results of experiments for transfer learning
on the IMDb review dataset. Each of numbers indicates
the classification accuracy. (Various & Large) implies that
each of models is pre-trained on the large-scale pre-training
dataset including various categories (Table 13). (Movies &
Small) implies that each of models is pre-trained on 150,000
Amazon reviews including only “Movies and TV” category.

Model Accuracy
Bag-of-Words 0.81184
Bag-of-N-grams 0.83276
Scratch 0.75288
Pre-trained feature (Various & Large) 0.87408
Fine-tuning (Various & Large) 0.87396
Pre-trained feature (Movies & Small) 0.85156
Fine-tuning (Movies & Small) 0.85256

5 DISCUSSIONS

5.1 Features Extracted by
Character-level ConvNet

Fig.1 is a visualization of one filter weight matrix
in the first layer of the Small-C6FC3 trained on the
Amazon review dataset. Vertical direction of the visu-
alization corresponds to window size, while horizon-
tal direction of that corresponds to the dimensionality
of one-hot encoding. In the visualization, white indi-
cates large positive values, and black indicates large
negative values, and gray indicates values close to
zero. The weight matrix corresponding to letters from
“a” to “z” has large variances for the vertical direction
comparing with the weight matrix corresponding to
other characters. This fact indicates that the ConvNet
has learned to care more about the variations in letters
than other characters. This phenomenon is observed
in other filters as shown in Fig.2. The visualization is
consistent with one shown by Zhang et al.

On the other hands, the visualization of filters
from Small-C1FC1 trained on AFPBB dataset, ar-
ranged like Fig.2, is shown in Fig.3. The phenomenon
is not observed in the filters of Small-C1FC1 trained
on the AFPBB dataset. We suppose that these fil-
ters could not extract general features because of the
smallness of the AFPBB dataset.
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Figure 1: Visualization of one filter weight matrix in the first
layer of the Small-C6FC3 trained on the Amazon review
dataset.

Figure 2: Visualization of random sampled filter weights in
the first layer of the Small-C6FC3 trained on the Amazon
review dataset.

Figure 3: Visualization of random sampled filter weights in
the first layer of the Small-C1FC1 trained on the AFPBB
dataset.

The visualization of the filter weight matrix of the
ConvNet is shown in the past study. It is, however,
hard to understand what the ConvNet extracts from
the input text. Therefore, we attempt to investigate
N-gram features to which a convolution filter of the
ConvNet strongly responds. Since the window size
of the first layer of all the ConvNets in this study is
set to 7, we measure the output value of a convolu-
tion filter for each of 7-grams and make a ranking
based on the value as shown in Table 18. The filter
is trained on the AG news dataset. In order to quali-
tatively evaluate the result, we extract articles which
have these 7-gram strings as its substring. We find
that many of these articles have “save (or above or
raise) $(the number)” as its substring. Actually, many
of these articles are related to corporate cost-cutting, a
sharp rise in oil prices, etc. Furthermore, for the quan-
titative evaluation, we extract articles which match
the regular expression corresponds to the disjunction
of all the 7-grams shown in Table 18 and count the
number of the matched articles belong to each cate-
gory. The result is 22 for “Business”, 0 for “Sports”,
1 for “World” and 3 for “Sci/Tech”. The result in-
dicates that the feature extraction by the character-
level ConvNets works well for text understanding.
We suppose that the filter is able to represent at least
5×4×3×1×1×3×3 = 540 kinds of 7-grams.

5.2 Transfer Learning in Text
Classification

C6FC3 models have a large number of parameters.
It is hard for the deep ConvNets to learn appropriate

Table 18: Ranking of the output values of the convolution
of one filter and 7-grams. The filter is trained on the AG
news dataset.

7-gram Convolution Ouptut Value
ave $70 1.02668
ove $70 0.98627
ave $10 0.97948
ts: $10 0.96571
ise $10 0.95659
the $19 0.95559
9;s $10 0.94505
ove $10 0.93909
ave $72 0.93072
ave $20 0.93069

parameters which maximize the generalization ability
if the number of the samples of the training dataset
is small. Since all the datasets in the experiments
in Section 4.3 are relatively small-scale, the Scratch
frameworks, in other words, the vanilla deep Con-
vNets are almost the same or less accurate than the
Bag-of-Words model and the Bag-of-N-grams model.
The transfer learning frameworks, however, outper-
form the Bag-of-Words model and the Bag-of-N-
grams model.

In addition, the experimental results on the IMDb
review dataset imply that scale of the pre-training
dataset is more important than a topic similarity be-
tween the pre-training dataset and the target dataset.

6 CONCLUSION

This study improves the classification accuracy by ap-
plying the character-level ConvNets to a large-scale
Japanese text corpus in comparison with classic text
classification methods. We analyze the features ex-
tracted by the character-level ConvNets. The result
of the analysis shows that one of the filters of the
convolutional layer of the ConvNet could represent
multiple N-grams. In addition, we provide the pos-
sibility of transfer learning by the ConvNets for text
classification. We reuse the ConvNets pre-trained on
the large-scale dataset to initialize the weights of the
ConvNets for a target task which consists of relatively
small dataset. This transfer learning framework im-
proves the generalization ability and prevents from
overfitting for the target task just like in the field of
image recognition.

As future work, we would like to investigate
transfer learning from a task to another task (e.g.,
from a categorization task to a sentiment analy-
sis task.). Additionally, we would like to pre-train
the Japanese character-level embedding layer with
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a character-level skip-gram model or a Continuous
Bag-of-Characters model inspired by the Continuous
Bag-of-Words (CBoW) model.
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