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Abstract: This study presents a novel iterative algorithm of joint depth and alpha matte optimization via stereo 
(JDMOS). This algorithm realizes simultaneous estimation of depth map and matting image to obtain final 
convergence. The depth map provides depth information to realize automatic image matting, whereas the 
border details generated from the image matting can refine the depth map in boundary areas. Compared with 
monocular matting methods, another advantage offered by JDMOS is that the image matting process is 
completely automatic, and the result is significantly more robust when depth information is introduced. The 
major contribution of JDMOS is adding image matting information to the cost function, thereby refining the 
depth map, especially in the scene boundary. Similarly, optimized disparity information is stitched into the 
matting algorithm as prior knowledge to make the foreground–background segmentation more accurate. 
Experimental results on Middlebury datasets demonstrate the effectiveness of JDMOS. 

1 INTRODUCTION 

Modern computer vision applications, such as novel 
view generation or z-keying require high-quality 
disparity maps. For these applications, producing 
precisely delineated disparity borders (Matsuo et al., 
2015; Liu et al., 2014), which is traditionally 
difficult in stereo matching, is specifically 
important. In this study, we use the rich information 
near boundaries in image mattes to refine the quality 
of a depth map. 

Image matting can be described as a labeling 
problem of extracting the foreground object by 
obtaining per-pixel opacity from its background. 
Basically, an image is composed of a foreground I 
and background B mixed with a certain degree of 
opacity α, which can be defined as: 

ܫ ൌ αܨ ൅ ሺ1 െ (1) ܤሻߙ

The image matting algorithm can segment the 
foreground and background of an image. However, 
Equation (1) is an ill-posed problem, because the 
foreground F, background B, and opacity αare 
unkonwn. Therefore, the existing matting algorithms 
(Levin et al., 2008'; Chuang et al., 2001) require the 
user to first label the foreground from the 
background as additional constraints, which make 

the matte quality deeply influenced by labeling 
processing. As shown in Figure 1(b), if the 
foreground and background specified by user is not 
comprehensive, the quality of matting result will be 
greatly degrade,compared with the red box in Figure 
1(c). Figure 1(d) represents the trimap and its 
resulting opacity (Figure 1(e)) accurately. 

Image matting can be considered as a coarse 
estimation of depth. Therefore, using depth is a 
natural way to bootstrap the process and 
automatically generate the trimap for image matting 
(Singaraju et al., 2011). The image depth can also 
provide new information for image matting to 
improve its accuracy when implementing multi-layer 
matting. It is a natural way to combine stereo 
matching algorithm and image matting algorithm to 
optimize each other iteratively.  

The two major contributions of this study are: 
fusing of depth and color information to obtain high-
quality fine-edge detail in the matting map and free 
user interaction in the matting process. The 
remainder of this paper is organized as follows. 
Section 2 is a brief summary of the state-of-the-art 
stereo matching and image matting algorithms. In 
Section 3, the algorithm framework of  disparity and 
image matting is described, which consists of two
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Figure 1: Human–computer interaction-based image matting. Image (a) is the original input. Image (b) is a trimap provided 
by users. The resulting opacity diagram of image (c) has too much noise based on image (b). Figure (d) provides another 
trimap by a user. Clearly, the opacity of image (e) obtained by the trimap of image (d) is more accurate. 

steps: initialization and iterative optimization. We 
adopt a local stereo matching algorithm to generate 
the depth map via the opacity information. The 
algorithm proposed by Levin (Levin et al., 2008) is 
used to solve the opacity. Subsequently, we filter it 
with the disparity value. The experimental results in 
Section 4 show that the proposed algorithm is 
effective in disparity and image matting. A brief 
summary of the study and future research work are 
presented in Section 5. 

2 RELATED WORKS 

Most stereo vision disparity map algorithms have 
been implemented using multistage techniques. 
These techniques, as codified by Scharstein and 
Szeliski, consist of four main steps: matching cost 
computation, cost aggregation, disparity selection, 
and disparity refinement (Scharstein and Szeliski, 
2002). Generally, stereo vision disparity map 
algorithms can be classified into local and global 
approaches (Hamzah et al., 2016). Local algorithms 
usually calculate the matching cost for a given point 
based on the window. Examples of implementation 
of such methods are provided by the work of 
Mattoccia et al. (Mattoccia et al., 2010), Arranz et 
al. (Arranz et al., 2012), Xu et al. (Xu et al., 2013), 
and Chen et al. (Chen et al., 2015). A representative 
global algorithm is the stereo matching technique via 
graph cuts, proposed by Boykov et al. (Boykov et al., 
2001). 

For the problem of image matting, the existing 
algorithms require the user to provide a trimap as 
input to distinguish the foreground and background 

regions. The most widely used algorithm is the 
Bayesian model (Chuang et al., 2001), which 
transforms the matting problem into a maximum a 
posteriori, given the color of each pixel on the 
current image, and computes the maximum possible 
values of the foreground, background, and alpha. 
Wang et al. used the belief propagation to expand 
the local area of the sample points (Wang et al., 
2007). Based on the color linear assumption, Levin 
et al. proposed a quadratic optimization function but 
only included opacity (Levin et al., 2008). Although 
the existing algorithms have contributed good 
results, most of them need interaction with the user. 

Combining stereo matching and image matting 
algorithms can avoid user interaction. Researchers 
have been doing this method for a decade (Baker et 
al., 1998; Szeliski et al., 1998); however, the process 
of combining the two algorithms has a slow 
progress. For example, Zitnick et al. first computed 
the disparity map, and then used the matting 
algorithm according to disparity boundaries (Zitnick 
et al., 2004). This method relies heavily on the 
quality of the disparity map. Once the disparity map 
boundary is extracted incorrectly, this method 
cannot achieve the desired effect. In this study, we 
propose the joint depth and alpha matte optimization 
via stereo (JDMOS) algorithm. We do not need 
accurate disparity map at initialization, but only 
several foreground and background areas to generate 
the initial matting. During the iteration, the boundary 
details of objects in the disparity map are enhanced 
by combining the matting information. 
Consequently, the trimap region is enlarged 
gradually through the optimized disparity map to 
obtain higher quality matting. 
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3 ALGORITHM 

Generally, without the loss, the algorithm uses the 
left and right images as input. These images are 
assumed to be rectified; thus, correspondences lie on 
the same horizontal scan line. Our method provides 
a depth map and matting information as output. 

 
Figure 2: Overview of JDMOS. 

As shown in Figure 2, JDMOS has two main 
phases: an initialization phase, in which an initial 
matte is extracted from a coarse depth; and an 
iterative optimization phase, in which the matte and 
depth are refined. In the initialization phase, the 
initial depth map is first generated by combining the 
sum of absolute differences (Tippetts et al., 2011) 
and the graph cut algorithm. Then, the trimap is 
obtained via the disparity map, and the initial 
opacity is calculated according to the method 
proposed by Levin et al. (Levin et al., 2008). During 
the iterative optimization stage, the opacity 
information of the left and right images is first added 
to the cost aggregation function to enhance the 
disparity map, especially the boundary region. The 
enhanced depth map is then used to provide a more 
reliable trimap for the matting, and the opacity is 
bilaterally filtered using disparity and color 
information. The entire optimization process is 
iterated until satisfactory results are obtained. 

 

3.1 Initialization 

3.1.1 Initial Disparity 

First, we use the improved SAD algorithm as the 
cost aggregate function. The cost function is used to 
calculate the color distance costCூ . The gradient 
distance cost C׏  in the window of the size ሺ2݊ ൅
1ሻൈሺ2݊ ൅ 1ሻ  for each disparity values belongs 
toD ൌ ሼ1, 2, … , ݀௠௔௫ሽ , where ݀௠௔௫  represents the 
maximum disparity ranges: 

,ݔூሺܥ ,ݕ ݀ሻ ൌ ෍ ෍ ݔ௟ሺܫ| ൅ ݅, ݕ ൅ ݆ሻ െ ݔ௥ሺܫ ൅ ݀ ൅ ݅, ݕ ൅ ݆ሻ|
௡

௝ୀି௡

௡

௜ୀି௡

 (2)

,ݔሺ׏ܥ ,ݕ ݀ሻ ൌ ෍ ෍ ݔ௟ሺܫ׏| ൅ ݅, ݕ ൅ ݆ሻ െ ݔ௥ሺܫ׏ ൅ ݀ ൅ ݅, ݕ ൅ ݆ሻ|
௡

௝ୀି௡

௡

௜ୀି௡

 (3)

where x and y respectively represent the horizontal 
and vertical coordinates of the center point p of the 
window, d ∈ D ; I୪		  and I୰  represent the 
corresponding pixel values of the left and right 
images, respectively. ܫ׏௟  and ܫ׏௥  represent the 
gradient values at the corresponding points of the 
left and right images, respectively. Combining the 
color and gradient matching cost functions, we 
obtain the following: 

,ݔሺܥ ,ݕ ݀ሻ ൌ ,ݔூሺܥ ,ݕ ݀ሻ ൅ ,ݔሺ׏ܥߣ ,ݕ ݀ሻ (4) 

where 	λ  is the weight that balances the effect of 
color and gradient information on matching costs. 
Experientially, λ can be a small value. 

Second, we use winner-take-all to select the 
optimal disparity value d୮ of the pixel p; the formula 
is defined as follows: 

݀௣ ൌ min݃ݎܽ
ௗ∈஽

,ݔሺܥ ,ݕ ݀ሻ. (5) 

Finally, we use the graph cut algorithm to 
segment the target image, and we obtain a series of 
segments S ൌ ሼSଵ, Sଶ,⋯ , S୧,⋯ , S୫ሽ . The average 
disparity value of each pixel in the S୧ is calculated as 
the final parallax value of the segmentation plane to 
remove the noise of the disparity map and enhance 
the disparity plane: 

݀ௌ೔ ൌ
∑ ௝݀௝∈ௌ೔

| ௜ܵ|
 (6) 

where | ௜ܵ| is the number of pixels in the segment ௜ܵ. 

3.1.2 Initial Matte 

As shown in Figure 3, a watershed algorithm is used 
to divide a given depth map, binaries the segmented 
disparity map into foreground and background 
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according to the specified threshold value, then 
erode the foreground and background, and dilate the 

 

Figure 3: Initial matte. (a) Input image; (b) initialized 
disparity map; (c) segmentation of the initial disparity map 
using the watershed algorithm; (d) the trimap 
automatically generated by the erosion of foreground, 
background, and dilation of unknown regions; (e) 
initializing the opacity. 

unknown region to generate trimap automatically. 
According to the method proposed by Levin et al., 
the basic idea is to eliminate F and B in Equation (1) 
based on the assumption of color linearity and 
obtains a quadratic optimization function (Levin, 
2008): 

ሻߙሺܬ ൌ min
௔,௕

 (7) ߙܮ்ߙ

where L is the matting laplacian, which ሺi, jሻ୲୦ entry 
is 

,ሺ݅ܮ ݆ሻ ൌ ෍ ൮ߜ௜௝ െ
1
|௞ݓ|

ቌ1 ൅ ሺܣ௜ െ ௞ሻߤ ቆ෍݇ ൅
ߝ

|७ܫ௞ݓ|
ቇ
ିଵ

൫ܣ௝ െ ௞൯ቍ൲ߤ
ሺ௜,௝ሻ∈௪ೖ

 (8) 

Here, ߜ௜௝  is the Kronecker delta, ܣ௜  is a 3ൈ1 
vector of the RGB for pixel in window ݓ௞, ߤ௞ is a 
3ൈ1 mean vector of the colors in a windows ݓ௞, ∑݇ 
is a 3ൈ3 covariance matrix, |ݓ௞| is the number of 
pixels in this window, and ܫଷ  is the 3ൈ3  identity 
matrix. 

3.2 Optimization 

In this section, we apply a two-step procedure. First, 
given the opacity, add the opacity consistency of the 
left and right images to the cost aggregation function 
to enhance the disparity map. Second, given the 
optimized disparity map, obtain more reliable trimap 
and filter opacity to refine mattes. These two steps 
are iterated, and results show that the proposed 

algorithm can achieve satisfactory results with only 
two to three iterative steps. 

3.2.1 Optimize Disparity Plane 

The opacity information of the left and right images 
is obtained. Subsequently, similar method is applied 
in the window of size ሺ2n ൅ 1ሻൈሺ2n ൅ 1ሻ for each 
disparity value that belongs toD ൌ ሼ1,2,⋯ , d୫ୟ୶ሽ, 
where d୫ୟ୶ represents the maximum parallax range. 
We use Cఈ to measure the matching cost of the left 
and right opacities: 

,ݔఈሺܥ ,ݕ ݀ሻ ൌ ෍ ෍ ݔ௟ሺߙ| ൅ ݅, ݕ ൅ ݆ሻ െ ݔ௥ሺߙ ൅ ݀ ൅ ݅, ݕ ൅ ݆ሻ|

௡

௝ୀି௡

௡

௜ୀି௡

 (9) 

where α௟  and α௥ represent the opacity of the 
corresponding pixel of the left and right images, 
respectively. 

Cఈ is added to Equation (4); then, the optimized 
cost aggregation function Cᇱ is obtained as follows: 

,ݔᇱሺܥ ,ݕ ݀ሻ ൌ Cሺݔ, ,ݕ ݀ሻ ൅ ,ݔఈሺܥߦ ,ݕ ݀ሻ (10) 

where ξ is the balance parameters. 

3.2.2 Optimize Matte 

Given the optimized disparity map, we use the 
watershed segmentation. When generating the 
trimap, we can narrow the uncertain region by 
reducing the erode/dilation band size around 2–4 
pixels. 

The disparity value is added as the 4th channel 
with the original R, G, and B channels for a color 
image, and the ܣ௜  in Equation (8) is modified to 
combine RGB with disparity D to fully utilize the 
optimized disparity information and enhance the 
matting effect (Zhu et al., 2009). 

Although Zhu et al. added weight to the disparity 
value (Zhu et al., 2009); the basic assumptions of 
Levin et al. regarding color linear assumption are 
disproved. Figure 4(c) shows the RGB value 
distribution of all the pixels in a small window and 
verifies the correctness of the color linearity 
assumption. Figures 4(d), 4(e), and 4(f) can be used 
as the projection of the RGBD values of all the 
pixels in the small window on R, G, and B and show 
that the values of the pixels in a small window do 
not lie on a single line in the RGBD space, 
especially at the boundaries of the disparity 
variation.
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Figure 4: Distribution of pixels within a small window: (a) Original image; (b) a small window selected from image (a); (c) 
distribution of the RGB distribution of all the pixels in window (b); (d) distribution of the RGD of all the pixels in window 
(b); (e) distribution of the RBD values for all the pixels in window (b); (f) distribution of the GBD values for all the pixels 
in windows (b). Images (c), (d), (e), and (f) can also be viewed as the projections of the RGBD values of all the pixels in 
window (b) on D, B, G, and R, respectively. 

Therefore, we propose a method to weigh the 
opacity obtained via the method (Levin et al., 2008) 
using the disparity and color information. Evidently, 
if the disparity values of the two pixels are 
significantly different, then these are likely to belong 
to different layers and the weight becomes smaller. 
If the colors of the two pixels are similar, the weight 
value will increase accordingly. After filtering, the 
opacity of pixel i become: 

௜ߙ ൌ
∑ ஼ܹ൫ܫሺ݅ሻ, ሺ݆ሻ൯ܫ ∙ ஽ܹ൫݀ሺ݅ሻ, ݀ሺ݆ሻ൯ ∙ ሺ݅ሻ௝∈ௐሺ௜ሻߙ

∑ ஼ܹ൫ܫሺ݅ሻ, ሺ݆ሻ൯ܫ ∙ ஽ܹ൫݀ሺ݅ሻ, ݀ሺ݆ሻ൯௝∈ௐሺ௜ሻ
 (11) 

where Wେ and Wୈ  denote the weights of color and 
disparity distances, respectively, which are defined 
as follows: 

஼ܹ൫ܫሺ݅ሻ, ሺ݆ሻ൯ܫ ൌ ݌ݔ݁ ൜െ ቚหܫ௜ െ ௝หቚܫ
ଶ
௖ൗݓ ൠ (12) 

									 ஽ܹ൫ܫሺ݅ሻ, ሺ݆ሻ൯ܫ ൌ ݌ݔ݁ ൜െ ቚห݀௜ െ ௝݀หቚ
ଶ
ௗൗݓ ൠ (13) 

where wୡ  and wୢ  are used to adjust the weight of 
the color and distance of disparity value, 
respectively. 

4 EXPERIMENTS 

We evaluate JDMOS using the Middlebury dataset. 
The parameters in Equations (4) and (10) are set to 
the constant values of λ ൌ 0.8  and ξ ൌ 0.5 . With 
CPU at 2.00 GHz, it takes approximately 20 s to 
process an image size of 384ൈ288 averagely. 

4.1 Optimized Result 

By applying the methods in the initialization and 
optimization phases, we compare the disparity map 
and matting before and after optimization. The 
experimental results on Tsukuba are shown in Figure 
5. On the initial depth map (e), several abnormal 
points (black holes) are present on the left side of the 
paper box, and several noise spots appear in the 
initial mattes (c). After two iterations, the depth map 
(f) is enhanced at the boundaries because of the 
increase in matting information. Similarly, since the 
depth of information is incorporated into the image 
matting algorithm, mattes (b) have also been 
significantly improved in the foreground and 
background layers. The entire experiment process is 
automated without human interaction. More results 
on Kid are shown in Figure 6. 
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Figure 5: Experiment results of the algorithm on the Tsukuba image. 

 

Figure 6: More results from the Kid image. 

4.2 Algorithm Robustness 

We compare the method proposed by Levin (Levin, 
2008) as manual matting with JDMOS. As shown in 
Figure 7, manual matting has poor performance in 
some cases, in which the input of the user's input is 
not representative. Conversely, our algorithm is 
relatively robust. 

The quality of the manual matting is heavily 
dependent on the input of the user. Figures 7(a) and 
7(e) are two different user inputs. The information 
provided in Figure 7(e) is more comprehensive, 
making the result more accurate, as shown in Figure 
7(f). For Figure 6(a), the area between the face and 
arm of the baby is only a few pixels away (Figure 
7(a) at the red frame). Marking a certain background 
information between them is difficult for the user. 

Therefore, neither of the two types of manual 
matting distinguishes the area correctly, as shown in 
Figures 7(d) and 7(h). In contrast, our algorithm 
does not rely on human manipulation, thereby 
resulting in more robust image matting; Figure 7(n) 
further proves that the proposed algorithm can solve 
the problem mentioned above by integrating the 
disparity information into the image matting based 
on the ground truth. 

5 CONCLUSION 

In this study, given the complementary nature of 
alpha matte and depth, an iterative feedback method 
is presented to enhance their quality mutually. 

Joint Depth and Alpha Matte Optimization via Stereo

431



 

 

 

Figure 7: Comparison among JDMOS, manual matting, and matting via ground truth. Image (a) is a user input; (b) is the 
opacity obtained by (a) as a trimap; (c) and (d) are enlarged views of the red frame in (b); (e) is another user input; (f) is the 
opacity obtained by (e) as a trimap; (g) and (h) are enlarged views of the red frame in (f); (i) is the disparity map after 
optimization; (j) is the opacity obtained via (i); (k) and (l) are enlarged views of the red box in (j); (m) is the ground truth; 
(n) is the opacity obtained by (m); and (o) and (p) are enlarged views of the red box in (n). 

Compared with manual matting, our proposed 
algorithm is free from human interaction, which 
avoids uncertainty generated from user operations 
and can handle what humans cannot address. For 
example, the area between foreground and 
background is extremely narrow that users cannot 
mark on it. Experiments show that JDMOS is robust 
to a few difficult situations and can reduce the error 
of the disparity map and improve the accuracy of the 
image matting. 

The matting problem is under-constrained and 
intrinsically difficult. JDMOS has made some 
important advancement in this problem; however, 
one limitation remains to be addressed. The quality 
of the result is partly dependent on the quality of the 
initial depth map. 

In the following study, we will focus on the 
improvement of the optimization function. We 
expect to combine binocular stereo matching with 
the image matting algorithm using only one energy 
optimization function to fuse the two information 
more closely. Also, we are interested in editing 
multiple regions in an image. 
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