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Abstract: In this paper, a problem of image segmentation quality is considered. The problem of segmentation quality 
is viewed as selecting the best segmentation from a set of images generated by segmentation algorithm at 
different parameter values. We use superpixel algorithm SLIC supplemented with the simple post-
processing procedure for generating a set of partitioned images with different number of segments. A 
technique for selecting the best segmented image is proposed. We propose to use information redundancy 
measure as a criterion for optimizing segmentation quality. It is shown that proposed method for 
constructing the redundancy measure provides it with extremal properties. Computing experiment was 
conducted using the images from the Berkeley Segmentation Dataset. The experiment confirmed that the 
segmented image corresponding to a minimum of redundancy measure produces the suitable dissimilarity 
when compared with the original image. The segmented image that was selected using the proposed 
criterion, gives the highest similarity with the ground-truth segmentations, available in the database. 

1 INTRODUCTION 

The paper deals with the problem of image 
segmentation quality. According to Haralik and 
Shapiro (Haralik and Shapiro, 1985), segmentation 
is the process of partitioning image represented as a 

region   into n non-overlapping subregions 
1

 , 

2
 ,..., n . The elements in subregions are grouped 

by some feature and differ from the elements of the 
adjacent areas. Formal definition of segmentation is 
given in (Gonsales and Woods, 2008). Any of 
segmentation algorithms has one or more 
parameters. A problem of setting parameters of the 
algorithm arises. Parameters should be set in order to 
provide the best quality of the segmentation result. 
The problem of finding parameter values is rather 
difficult. In this work, we formulate the problem of 
segmentation quality as follows. Suppose, for a 
given input image U  we obtain a set of Q

segmented images 
1 2

{ , , ..., , ..., }
QqV V V VV  . It is 

necessary to choose image qV  providing minimum 

for a given performance criterion ( , )qM U V :  

 min arg min ( , ) , 1, 2, ...,q
q

q M U V q Q  .  

When solving different tasks of image analysis, 
suitable quality criterion should be applied. This 
may be a visual evaluation of an expert or any 
quantitative measure. The results of segmentation 
are usually compared with an image partitioned 
manually and accepted as ground-truth (Arbelaez, 
2011). If the segmentation operation is considered as 
clustering of pixels, then the set-theoretical, 
statistical, and information-theoretical measures 
(Wagner, 2007) proposed to compare data clustering 
results, are used. The most commonly used are: chi-
square measure; Rand Index (Rand, 1971) and its 
variants; Fowlkes-Mallows measure (Fowlkes and 
Mallows, 1983); mutual information and normalized 
mutual information (Ana, 2003); variation of 
information (Meilă, 2003, 2005). These measures 
make it possible to compare different versions of 
partitioning image into non-overlapping regions. In 
paper (Arbelaez, 2011), the authors noted that the 
standard methodology for estimating efficiency of 
segmentation algorithms is not yet developed. 

In paper (Frosio, 2015) another approach is 
proposed. Parameters of the superpixel segmentation 
algorithm (Felzenszwalb, 2004) were chosen 
depending on the result of estimating similarity of 
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segmented and original images. As a measure of 
similarity the authors proposed to use weighted 
uncertainty index calculated using the values of the 
normalized mutual information (Witten, 2002; Ana 
and Jain, 2003) between the color channels of the 
input and segmented images. The authors proposed 
to choose parameter value that provides the best 
segmentation in terms of visual perception. The 
dependence of the uncertainty index on parameter 
value (and accordingly, the number of the 
subregions) is approximately monotonous (see 
(Frosio, 2015) and Fig.1). At the training step, the 
expert estimations of the results of segmenting series 
of images at different parameter values were 
obtained. Next, using SVM-like classifier the areas 
of under-segmentation, over-segmentation, and 
optimal segmentation were formed in the space 
“parameter - uncertainty index”. At image 
processing step, parameter of graph-cut 
segmentation algorithm is selected using an iterative 
procedure. Procedure starts from the parameter 
boundary values. Parameter is adjusted till the 
uncertainty index reaches the region of optimal 
segmentation. The drawbacks of this approach are 
the subjectivity of expert assessments and the fact 
that the segmentation algorithm will produce 
acceptable results only for those types of images that 
were involved in the training process. 

In this paper, we say that the segmentation V  of 
image U is “good” if applied segmentation 
algorithm does not produce a significant loss of 
information. Information losses are estimated by 
theoretical-information dissimilarity measure 
between original image U  and segmentation V . 
“Good”segmentation contains information only on 
the most important objects fixed in the original 
image, and as in (Frosio, 2015), is the best in terms 
of visual perception. In work (Atick, 1990), a 
theoretical-information model of the human visual 
system is proposed. The model is based on Barlow 
hypothesis (Barlow, 1961) about minimizing data 
redundancy at the early stages of signal processing 
in the human visual system.  

In this work, basing on principle of minimizing 
data redundancy (Atick 1990), we propose to use a 
measure of information redundancy as a 
segmentation quality criterion. We show that a 
particular method of forming information-theoretical 
model of segmentation system provides the 
redundancy measure with extremum. In order to 
demonstrate that segmented image corresponding to 
minimum of the redundancy measure is the best, i.e., 
it yields an acceptable dissimilarity with the original 
image and ground-truth segmentations, we conduct 

an experiment on images taken from Berkeley 
Segmentation Dataset BSDS500 (Arbelaez, 2011). 

2 SEGMENTATION ALGORITHM 
AND POSTPROCESSING 
PROCEDURE 

A method for choosing the best variant of 
segmentation is applied to the superpixel algorithm 
SLIC (Simple Linear Iterative Clustering) (Achanta, 
2012) supplemented with the post-processing 
procedure. The procedure is proposed below. In the 
next section a brief description of the SLIC 
algorithm is given. 

 

Figure 1: Uncertainty index W as a function of number of 
segments K computed for test image taken from BSDS500 
dataset. 

2.1 SLIC Segmentation Algorithm 

The main idea of the segmentation algorithm SLIC 
(Achanta, 2012) consists in clustering pixels in 
restricted areas, into which the analyzed image is 
divided in a regular manner. 

Each point of the image is characterized by five-

dimensional vector 
1 2 3

( , , , , )Tp c c c x y , where 

1 2 3
, ,c c c  - are the point coordinates in the selected 

color space, ,x y  - are the spatial coordinates of an 
image pixel. The authors of the algorithm (Achanta, 
2012) used CIE Lab color space.  

The algorithm includes the following steps.  
1. The image is divided into K  fragments of 

size a a , which are taken as an initial 
approximation of superpixel clusters. Geometric 

centres 
k

C  of the fragments are selected as the 

initial centres of superpixels. 
2 Fragment centres are moved to the lowest 

color gradient position in a 3 3  neighborhood. 
3. The local clusters are formed in a 2 2a a  
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neighborhood of the centers kC  similarly to k-

means algorithm. Distance D  between the center 
and the fragment point is computed as a combination 

of Euclidean distances cd  and sd  of the color and 

spatial components describing point. 

2 2 2

1 1 2 2 3 3
( ) ( ) ( ) ,

j i j i j icd c c c c c c       (1) 

2 2( ) ( )
j i j isd x x y y    , (2) 

2

2 2s
c

d
D d m

a
   

 
 

, (3) 

where m  is a parameter specifying the ratio of the 
contributions of the two components of the image 
description in the distance value D ; i  and j  are 

the point numbers. 
4. New cluster centers are determined and the 

displacements of cluster centers are computed. 
5. Steps 3 and 4 are repeated as long as the 

displacements of centers between iterations will not 
exceed a predetermined value. 

To allocate homogeneous regions corresponding 
to objects fixed in the image, it is necessary to merge 
superpixels. For this purpose, a post-processing 
procedure is proposed in the next section. 

2.2 Post-Processing Procedure 

In order to merge superpixels into homogeneous 
regions corresponding to objects in the original 
image, a two-step post-processing procedure is 
proposed. 

At the first step neighboring superpixel areas are 
combined. For making a decision on merging, a 
threshold decision rule is used. This rule allows 
merging if the following inequality is taking place: 

1
( , )

i jcd C C   , (4) 

2 2 2

1 1 2 2 3 3

( , )

( ) ( ) ( )

i j

j i j i j i

cd C C

c c c c c c



     
, 

 
(5) 

where ( , )
c i j

d C C  is the distance between centers of 

adjacent superpixels with numbers i  and j  in the 

selected color space; 
1 2 3

, ,
k k k

c c c  are the coordinates 

of centre kC ; 
1

  is a threshold value. 

The second step is intended to merge superpixel 
clusters throughout the entire image. As at the first 

step, the decision rule allows merging if the 
following inequality holds: 

2
( , )

i jcd C C   , (6) 

where 
2

  is a threshold value. 

Procedure includes the following operations: 
(a) scanning array of centers of superpixel image 
clusters and forming a logical matrix for combining 
neighboring superpixels by the rule (4, 5); 
(b) merging neighboring superpixels; 
(c) determining new cluster centers; (d) scanning 
array of centers of superpixel image clusters and 
forming a logical matrix for combining superpixels 
by the rule (6); (e) merging superpixels. 

Results of segmenting an image, taken from 
dataset BSDS500, is shown in Figure 2. 

(a) (b) 

(c) (d) 

Figure 2: Results of segmenting image taken from dataset 
BSDS500: (a) input image; (b) superpixels produced by 
SLIC algorithm; output of the first (c) and second (d) steps 
of the post-processing procedure. 

The segmentation technique based on SLIC 
algorithm with post-processing is controlled by four 
parameters: initial superpixel size a ; color and 

spatial component ratio m ; threshold values 
1

  and 

2
 . Segmentation result depends on the choice of 

these parameters. In the next section, an 
information-theoretical technique for obtaining the 
best segmentation result is proposed. 

3 CHOOSING THE BEST 
SEGMENTATION 

Parameters of the algorithm are chosen as follows. 
The initial superpixel size a  fit the size of the 
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smallest objects that should be outlined in image. 
Parameter m  the authors of works (Achanta, 2010; 
Achanta, 2012) set equal to 2. The result of 

segmentation also depends on parameters 
1

  and 

2
  of the conditions (4-6). These parameters will be 

chosen using information-theoretical measures. To 
apply information-theoretical approach, a 
probabilistic model of relationship between the input 
and the segmented images is needed. Segmentation 
quality will be estimated using one of the color 
channel (for example L) of images in the CIE Lab 
color space.  

Let the initial and segmented images be the input 
and the output of a stochastic information system. 
Levels of lightness in images are the continuous 
random variables U  and V  with probability mass 
functions of ( )p u  and ( )p v , where u  and v  are 

the values of U  and V , respectively. Operation of 
segmentation can be represented by an information 
channel model:  

( ),V F U    (7)

where U  is an input signal, V  is a channel output, 
F  is a transformation function, and   is a channel 

noise. We assume that noise   is Gaussian random 

variable with zero mean value and variance 
2

 ; 

variables V  and   are independent. 

We propose to use a redundancy measure as a 
criterion of segmentation quality. The redundancy 
measure is defined as follows (Atick, 1990): 

( , )
1

( )

I U V
R

C V
  , (8) 

where ( ; )I U V  is a mutual information between the 

system input and output, ( )C V  is a channel 

capacity. We take ( ) ( )C V H V , where ( )H V  is an 

entropy of the output. Then, taking into account that 
( ; ) ( ) ( | )I U V H V H V U  , the expression (8) 

takes the form:  
( | )

( )

H V U
R

H V
 , (9) 

where ( | )H V U  is a conditional entropy of the 

output V  under condition that the input is equal to 
U .  

We will show that the redundancy measure of the 
segmentation system described by the model (7-9) 
depends on number of segments and can have a 
minimum. 

Probability mass function of the output may be 

represented by a sum 

1

( ) ( ) ( )
K

k k

k

p v P v v v


  , (10) 

where ( )
k

P v  is a probability of lightness value kv  

assigned to pixels of a segment having number k , 
( )

k
v v   is a delta-function, K  is a number of 

segments in the output image. To find analytic 
dependence ( )R K , we will use a continuous version 

of model (7). Taking into account expression (10), 
differential entropy of the output can be written as 
follows:  

( ) ( ) log ( )H V p v p v dv




     

 
1

( ) log ( )
K

i i
i

P v P v


  . (11) 

Let all values iv  be equiprobable: ( ) 1 /iP v K . 
Then it follows from (11) that 

( ) logH V K . (12) 
Next, we shall find an expression for differential 

conditional entropy ( | )H V U . Conditional entropy 

( | )H V U  is a measure of information about signal 

noise   measured at the system output. In this case, 

we may take (Haykin, 1999): 
( | ) ( )H V U H  . (13) 

Differential entropy of the Gaussian noise is 
equal to (Haykin, 1999) 

21
( ) log log(2 )

2
H e      , (14) 

where 
2

  is a variance of the system noise.  

We assume that the probability mass function of 
the input image lightness is represented as a 
Gaussian mixture model of K  components, which 
may overlap partially. The components of the 
mixture correspond to the segments of the output 
image V . Areas of component overlappings 
generate noise  . The overlapping areas are formed 

by pixels of U  having the same lightness values, 
but related to different segments in image V . 
Substituting (12)-(14) into (9), we get the following 
expression for redundancy measure: 

2log log(2 )
( )

2 log

e
R K

K


 . (15) 

It follows from (15) that the redundancy measure 
depends linearly on logarithm of system noise 
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variance and inversely on logarithm of number of 
produced segments K . Function (15) have 

minimum at a point minK  if the noise variance 
2

  

is close to zero at small K  and rapidly grows when 
K  increases. Computing experiments confirmed 
that such behavior of the noise variance is taking 
place.  

Taking into account dependency of the 
redundancy measure R  on number of segments K ,  
the best segmented image should be selected in the 
following way. The input image U  is segmented 
using algorithm SLIC with post-processing 

procedure at different values of parameter 
1

 . As a 

result, a set of Q  segmented images 

1 2
{ , , ..., }

Q
V V VV   is obtained. Next, for input 

image U  and each of the segmented images 

, 1, 2, ...,
q

V q Q , the redundancy measure R  is 

computed. We choose image 
q

V  providing minimum 

to R : min( )qR V R . Image 
q

V  divided into minK  

segments fits parameter value 
1 1min   . If it is 

necessary to apply the second step of the post-
processing procedure, the output of the first step 
(which is the input image at the second step) should 

be redundant. It means that 
1

  should be chosen as 

1 1min   . Then the proposed above technique 

should be applied for finding the best value of 
2

 . 

4 COMPUTING EXPERIMENT 

In this work, in the experiments we used 25 images 
from the Berkeley Segmentation Dataset BSDS500 
(Arbelaez, 2011) transformed to CIE Lab color 
space. The experiment includes three stages. At the 
first stage, each of the test images is segmented 
using algorithm SLIC and post-processing procedure 

at different values of parameter 
1

 . Each of the 

images generates a set of Q  segmented images 

1 2
{ , , ..., }

Q
V V VV  . For input image U  and each 

of the segmented images , 1, 2, ...,
q

V q Q  the 

redundancy measure R  is computed. To involve all 
color channels, we use the weighted version of the 
redundancy R : 

( , )
( ) ( ) ( )

( ) ( ) ( )

L L a a b b

L a b

w qU V
R H U R H U R H U

R
H U H U H U


 

 
, (16) 

where iR  is the redundancy measure determined in 

color channel { , , }i L a b  of images U  and 
q

V ; 

iH  is the entropy of the color channel i  of the input 

image. 
At the second stage, segmentation quality is 

estimated. We estimate the amount of information 
about the input image, which was lost in 
segmentation process. For this purpose we compare 
the set of Q  segmented images with the input image 

U  using normalized version of variation of 
information proposed in (Meilă, 2003, 2005) for 
comparing clusterings. This metric was also used in 
(Arbelaez, 2011) for comparing segmented images. 
Here we use the weighted index based on this 
metric: 

( , ) ,
( ) ( ) ( )

( ) ( ) ( )

L L a a b b

L a b

w qVI U V
VI H U VI H U VI H U

H U H U H U


 

 
(17) 

( ) ( ) 2 ( , )
( , )

,( )
i i q i q

i q
q

H U H V I U V
VI U V

U VH

 
 , (18) 

where ( , )w qVI U V  is the weighted variation of 

information; iVI  is the distance between color 

channels i  of images U  and 
q

V ; iI  is their mutual 

information; ( , )qU VH  is the joint entropy. 

At the third stage, using the weighted index (17) 
based on metric (18), we compare a set of Q  

segmented images with the ground-truth 

segmentations GT

tV , 1, 2,...,t T , (T  is a number of 

ground-truth segmentations for a test image U ) 
available in BSDS500 dataset. 

The results of the experiments are demonstrated 
on the images shown in Figure 3.  

At the first stage of the experiment we apply 
SLIC algorithm and the first step of post-processing 
procedure to all test images. For each of the test 
images a set of segmented images is generated at 
initial superpixel size 16a   pixels, 2m   (see 

Section 3), and threshold values 
1

  changing in the 

range 
1

0 3.6    with increment equal to 0.2. 
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(a) (b) 

Figure 3: Test images taken from BSDS500 dataset.  

Relationship between threshold 
1

  and number 

of segments K  in images qV  generated by one of 

the test images is shown in Figure 4. 

Figure 4: Relationship between threshold value 
1

 and 

number of segments K . 

For each test image and related set of segmented 
images we computed the weighted redundancy 

measure wR . Dependencies of measure wR  on 

number of segments K  for the test images shown in 
Figure 3(a,b) are depicted in Figure 5 (a) and (b). 

Minima of wR  are reached at 28K  , and 55K   

that correspond to threshold values 
1

2   and 

1
2.6  , respectively.  

In order to estimate the distance between the 
input and the segmented images, we compute 
weighted normalized variation of information (17). 

The curves representing ( , )w qVI U V  as the functions 

of number of segments are shown in Figure 5(a, b) 
by dashed lines. One can see that distance between 
the input and segmented image decreases when K  

grows and become nearly stable at minK  

corresponding to minimal redundancy value. 
Normalized variation of information and its 

components computed in the lightness image 
channel are represented in Figure 6 as the functions 
of number of segments. 

(a) 

 
(b) 

Figure 5: Dependency of redundancy wR and normalized 

variation of information wVI on number of segments K

for images shown in Figure 3. 

 
Figure 6: Normalized variation of information ( , )VI U V in 
one of the color channels and its components: marginal 
entropies ( )H U and ( )H V , mutual information ( ; )I U V

, and joint entropy ( , )U VH as the functions of K . 

At the last stage we compared sets of segmented 
images with ground-truth segmentations. The result 
of comparing obtained for image shown in Figure 
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3(b) is represented in Figure 7 as the curves 
reflecting relationship between normalized variation 

of information ( , )
GT

w t qVI VV , 1, 2, ...,q Q , 

1, 2, ...,t T , and number of segments K  in images 

qV . It can be seen from Figure 7 that for the 

majority of the ground-truth segmentations, the 

distance ( , )
GT

w t qVI VV  is minimal when image qV  is 

partitioned into 55 segments. This qV  gives 

minimum to redundancy measure wR . Taking into 

account the fact that ground-truth segmentations 
were produced manually, we can conclude that the 
proposed technique allows one to obtain the best 
segmentation in terms of visual perception.  

Figure 7: Normalized variation of information 

( , )
GT

w t qVI VV computed for segmented images qV and 

ground-truth segmentations with different number of 

segments GTK . 

Ground-truth segmentations of images shown in 
Figure 3 and segmented images fitting condition of 
minimum of the redundancy measure, are depicted 
in Figure 8. It can be seen from Figure 8 that the 
main details of the original images are captured in 
the segmented images as well as in the ground-truth 
segmentations. 

To show the efficiency of the proposed 
technique, we introduce the following relative 
difference: 

min min

max

GTK K
K

K


  , (19) 

where minK  is a number of segments corresponding 

to minR ; min

GTK  is a number of segments in image qV , 

which corresponds to the minimum of distance 

( , )
GT

w t qVI VV ; maxK  is the highest possible number 

of segments in images qV  obtained from input 

image U . 

(a) (b) 

(c) (d) 

Figure 8: Segmented and ground-truth images: 
(a) segmented image from Figure 3(a), 28K  ; 
(b) ground-truth segmentation, 12K  ; (c) segmented 
image from Figure 3(b), 55K  ; (d) ground-truth 
segmentation, 9K  . 

For example, for image shown in Figure 3 (b) 

min 55K  , max 621K  , and min 181GTK   for the 

ground-truth segmentation with number of segments 

49GTK  ; min 55GTK   for other ground-truth 

segmentations (see Figure 7). Histogram of K  
values computed for 25 test images and 125 ground-
truth segmentations (5 ground-truth segmentations 
per each of the test images) is depicted in Figure 9. 
Figure 9 shows that there exists a sufficiently large 
group of test images such that magnitude of K  is 
rather small. The ground-truth segmentations of 
these images are close enough in the sense of 
measure (17-18) to segmentations, which minimize 

redundancy of information wR .  

5 CONCLUSIONS 

In this work, the problem of image segmentation 
quality was considered. The problem of 
segmentation quality was studied as a task of 
selecting the best segmentation from a set of images 
generated by segmentation algorithm at different 
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parameter values.  

Figure 9: Histogram of K values computed for 25 test 
images and 125 ground-truth segmentations; ν is a 
frequency of occurrence of particular K value. 

A technique based on theoretical-information 
criterion was proposed for selecting the best 
segmented image. We proposed to use information 
redundancy measure as a performance criterion. It 
was shown that the proposed way of constructing the 
redundancy measure provides the performance 
criterion with extremum. Computing experiment 
was conducted using 25 images from the Berkeley 
Segmentation Dataset. The experiment confirmed 
that the segmented image corresponding to a 
minimum of redundancy measure, produced the 
suitable information dissimilarity when compared 
with the original image. The segmented image, 
which was selected using the proposed criteria, gives 
the minimal distance from the majority of ground-
truth segmentations available in BSDS500 database. 

We used SLIC segmentation algorithm 
supplemented with the post-processing procedure for 
generating sets of partitioned images with different 
number of segments. The proposed technique of 
optimizing segmentation quality can be combined 
with other segmentation algorithms. 

The future research will be aimed at the 
improving segmentation noise model and estimating 
the boundaries of application domain. 
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