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Abstract: Economic and technologic progresses states the analysis of human’s exhaled air as a promising tool for 
medical diagnosis and therapy monitoring. Challenges of most pulmonary breath acquisition devices are 
related to the substances’ concentrations that are source (oral cavity, esophageal and alveolar) dependent and 
their low values (in ppbv - pptv range). We introduce a prototype that is capable of collecting samples of 
exhaled air according to the respiratory source and independent of the metabolic production of carbon dioxide. 
It also allows to access the breathing cycle in real-time, detects the optimized sampling instants and selects 
the collection pathway through the implementation of an algorithm containing a machine learning process. A 
graphical interface allows the interaction between the operator/user and the process of acquisition making it 
easy, quick and reliable. The imposition of breath rhythm led to improvements in accuracy of obtaining 
samples from specific parts of the respiratory tract and it should be adapted according to their age and 
physiological/health condition. The technology implemented in the proposed system should be taken into 
consideration for further studies, since the prototype is suitable for selectively sampling exhaled air from 
persons according to its age, genre and physiological condition. 

1 INTRODUCTION 

The detection and measurement of exhaled 
substances is advantageous as a reliable, reproducible 
and non-invasive diagnostic and prognostic tool in a 
wide variety of medical conditions to assess different 
vital organ functions (Miekisch et al., 2004; 
Baumbach et al., 2009; Di Francesco et al., 2005; 
Manolis et al., 1983; Miekisch et al., 2006; Amman 
et al., 2007; Dweik et al., 2008).  The human exhaled 
air accommodates a complex mixture of molecules 
which are expelled in every breath (~75% of nitrogen, 
~15% of oxygen, ~5 of carbon dioxide (CO2) and 
~6% of water vapour, inorganic compounds, volatile 
organic compounds (VOCs) and aerosols). By 
measuring the concentration of those molecules, it is 
possible to quantify each person’s individual score 
reflecting the state of health (Lourenço et. al, 2014).  

There are different main targets in the analysis of 
exhaled air capable to identify potential diseases, but 
VOCs are the most studied and interesting to look for 
as biomarkers of pathological conditions (Miekisch et 
al., 2004; Baumbach et al., 2009; Di Francesco et al., 
2005; Manolis et al., 1983; Miekisch et al., 2006; 

Amman et al., 2007; Dweik et al., 2008; Lourenço et 
al., 2014; Mazzatenta et al., 2013). The concentration 
of these compounds in the exhaled air varies 
depending on the respiratory origin of exhaled air to 
be analyzed, including oral cavity, esophageal and 
alveolar air (Phillips et al., 1999; Di Natale et al., 
2014; Ruzsanyi et al., 2013).   

Furthermore, the concentration of most of the 
VOCs present in the exhaled air is very low (ppbv – 
pptv or µgl-1 – ngl-1 range). Thus, the detection of such 
small amounts in fractions of exhaled air from 
different respiratory origins has revealed itself one of 
new challenges to overcome in the most recent 
pulmonary breath sampling devices.  

Even though there are several studies in this field, 
the clinical importance of these compounds is yet to 
be discovered. This work does not aim to evaluate any 
group of compounds or specific VOCs. Instead, focus 
will be given to the process of exhaled air sampling 
according to user’s characteristics by evaluating the 
influence of imposing a controlled breath rhythm. 
These aspects obviously can influence the studies 
involving the analyses of samples containing these 
compounds.  
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1.1 Breath Sampling Devices 

Multiple apparatus and methods are used in breath 
studies, which in general are performed with patients 
either providing their breath for storage and 
subsequent later analysis (offline analysis) or 
breathing directly into the analyzer for immediate 
analysis (online analysis). Different approaches are 
used, depending on the breath constituents to analyze, 
being gas-phase the more indicated for VOC analysis 
(Beauchamp et al., 2015).  Nevertheless, controlling 
breath sampling is crucial to enable the identification 
of part of the respiratory tract from which the sample 
derived and to ensure that comparative data is 
generated between studies. The control is actually 
made by using CO2, flow, pressure temperature or 
humidity sensors (Beauchamp et al., 2015).  

However, there are several constraints while 
sampling the exhaled air for analysis (Alonso et al., 
2013). Despite different breath sampling 
methods/devices used and several types of analysis 
developed in the last decade, most of them are lacking 
in accuracy and precision in the collection of an 
exhaled air sample (Alonso et al., 2013). The 
technology used in exhaled air collection, introduce 
high variability in breath samples due to: the way the 
air is expelled, the breath frequency, the length and 
depth of the breath cycle and the mental and physical 
condition of the patient (Basanta et al., 2007; Droz et 
al., 1986; Risby, 2008). 

1.2 Respiratory Cycle Monitoring 

The real time monitoring of the patient’s respiratory 
cycle allows the identification of respiratory phases 
and the definition of the instants for breath collection. 
The identification of the alveolar air portion assumes 
critical importance due to the presence of diverse 
constituents from endogenous origin in equilibrium 
with the alveolar capillary blood vessels.  

Presently the most used method for identification 
of the different phases of the breathing cycle is the 
capnography which allows to monitor the 
concentration or partial pressure of carbon dioxide 
(PCO2) in the respiratory gases by providing 
information about the production of carbon dioxide, 
pulmonary perfusion, alveolar ventilation and 
respiratory patterns (Bhavanishankar et al., 1995; 
Mimoz et al., 2012; Bhavanishankar et al., 1992).  

Yet, the use of capnography has some limitations 
regarding the collection of selective samples of 
exhaled air, because it varies with (a) the inherent 
variation of breath composition and concentration of 
each constituent throughout the breathing cycle; (b) 
the speed of the breath, which affects the composition 
of the mixture between alveolar air and dead space 
air; (c) the depth and frequency of breathing, which 
control changes from autonomous to conscious 
breathing, when a person is asked to provide a sample 
of breath. 

 

 

Figure 1: Graphical comparison between respiratory flow rate (at the top) and time capnogram (at the bottom). The ab segment 
represents inspiration and the ba segment represents expiration on the respiratory waveforms. The red area represents the 
alveolar air region, while the shaded area under the CO2 curve represents the inspiratory phase of the respiratory cycle, thus 
constituting rebreathing. (Adapted from Bhavani-Shankar and Philip, 2000). 
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Despite the possibility of diagnose several diseases,     
the modifications in the shape of capnograms (related 
with such diseases) also difficult clear identification 
of the expiratory segments (Kodali et al., 2013).  

The problems remaining to be solved comprise 
the question of how to achieve accurate, selective and 
repeatable sampling, how to ensure easy and safe 
handling, and maybe most importantly, the issue of 
sample stability to allow a proper chemical analysis. 
Therefore, the actual research in breath analysis tries 
to pursue a suitable device and a precise protocol for 
sampling exhaled air independently of the subject’s 
metabolic production of CO2, the smoking habits, the 
type of food eaten, the stomach, esophagus and mouth 
condition of the patients.  

Bear that in mind, this particularly work aims to 
describe the influence of the implementation of 
machine learning for selective breath sampling by 
using a novel technology where a respiratory cycle 
model is adapted to individual breathing 
characteristics of the user. 

2 BREATH MODELLING & ITS 
IMPLEMENTATION 

Due to the above mentioned limitations of the 
capnography and, since the measurement of the 
respiratory flow rate may yield the same effect of 
determining the respiratory phases in a cheaper and 
easier way, both were compared to identify the region 
corresponding to the alveolar air and to modulate it in 
a mathematical function. By overlapping a time 
capnogram with a fluxogram (Bhavani-Shankar and 
Philip, 2000), the area related to the end-tidal breath 
was clearly identified (figure 1). Considering that, 
only a flowmeter can be used for selective assessment 
to the last segment of the expiration in a fluxogram 

which corresponds to the alveolar region with higher 
CO2 concentration.  

2.1 Respiratory Cycles’ Modelling 

The collection of selective portions of exhaled air by 
using respiratory flow measurements, implies the use 
of reference respiratory rhythms for the users to 
follow. By measuring the exhaled air flow of multiple 
subjects and by determining the total time of each 
respiratory cycle and the transition between 
respiratory phases (inspirations and exhalations), 
Vassilenko et. al. (2013) were able to calculate 
average signals that best describe three breathing 
rhythms (slow, normal and fast). The average signals 
for the three respiratory rhythms are shown in figure 
2 and were used as references for development of 
mathematical models which precisely characterises 
breath rhythms of every patient (Vassilenko et al., 
2013).  

Since it overcomes the disadvantages regarding 
the imprecise identification of selective portions of 
exhaled air (associated with variable depth and 
frequency of breathing), the proposed method for 
monitoring and selective sampling of exhaled air 
through respiratory flow sensing represents a reliable 
alternative method to capnography approaches. 

2.2 Implementation of Respiratory 
Cycles’ Models 

The prototype developed by the authors performs real 
time flow measurements and captures alveolar air by 
synchronizing modelled respiratory cycles with the 
user’s breathing cycle. The prototype comprises 
hardware cells controlled by an intelligent control 
software    loaded    on   several   computing   devices 

 
Figure 2: Representation of the average signals obtained for each pace imposed to tested individuals (Vassilenko et al., 2013). 
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(laptops, desktops, smartphones, tablets, etc.). The 
hardware module is responsible for data acquisition, 
processing and its transmission to the software, and 
for channeling the portion of exhaled air through the 
sampling or elimination outlets.  

The software comprises a graphical interface 
that imposes a breathing pace to the user according to 
its age, gender and physiological state and, by using 
an algorithm identifies the instants of sampling and 
communicates with the hardware to trigger the 
sample to be stored either in a bag or go directly to an 
analytical analyser. Both of that software components 
were updated with the implementation of a machine 
learning process in the algorithm and the imposition 
of breath rhythm to the user according to its age.    

The algorithm implemented in the intelligent 
control software was configured to: measure the 
user’s respiratory flow; detect user’s breathing 
frequency; distinguish inspiratory and expiratory 
breath phases; synchronize the user’s respiratory 
cycle with the representative and modeled respiratory 
cycle; and to calculate the average time of expiration 
of the user. The average time of expiration allows the 
selection the fraction of exhaled air to sample.  

The machine learning process implemented in 
the algorithm of the software is based on the 
continuous calculation and saving of the average 
exhalation time values, allowing the prediction of the 
time of occurrence of a new expiration and, 
consequently, the prediction of the precise time-frame 
for the acquisition of the fraction of exhaled air to 
sample. By this way, the machine learning process 
learns the respiratory cycle of the user, and test it on 
the modelled respiratory intrinsically contained in the 
algorithm of the software.

In addition to the definition of global variables of the 
operation and from the subject (genre, age and 
physiological/health condition), the graphical 
interface also provides a feedback mechanism for 
communicating with the user/operator. This feedback 
mechanism presents a central part of the system 
because it provides multiple indicators for showing 
the breathing rhythm to be followed by the user or if 
the moments of breath air acquisition are occurring. 

According to the information defined in the 
graphical interface, the user is asked to breathe 
according to a specific respiratory rhythm (figure 3). 
When the breathing pace of the user is matched the 
representative and modelled respiratory cycle, the 
initial and final instant of the exhaled air’s fraction of 
interest is identified in the respiratory cycle. This 
information is communicated with the remaining 
system of device in order to sample the portion of 
interest of exhaled air between these instants. This 
process ensures that only a fraction of exhaled air is 
diverted to a collection reservoir or directly analysed 
by an analytical analyser.  

3 TESTS OF PERFORMANCE 

To evaluate the effectiveness of the machine learning 
process implemented on the software of the prototype 
and the influence of a breath rhythm imposition, two 
groups of individuals with different age groups (15 
patients between 2 and 5 years old – children – and 
30 within 18 and 27 years old – university students) 
were asked to make breathing test in the prototype. 
The patients had to achieve the beginning of breath 
collection and, simultaneously, the minimum number 

   

Figure 3: Prototype for alveolar air collection used on experimental tests (on the left) and the graphical interface related with 
breath rhythm imposition to the user (on the right). 
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of cycles, the time required to start breath sampling 
and the average time of exhalation (ATE) were 
registered. This method was applied two times for 
each individual, in which firstly patient’s autonomous 
breath rhythm was suggested and then with a 
respiratory pace imposition to the subject through the 
feedback present on the graphical interface. 

3.1 Number of Respiratory Cycles 

The results show that the number of cycles needed to 
begin breath sampling are lower when a breath 
rhythm was imposed to both groups of patients. More 
specifically, when the university students breathed 
autonomously, the number of cycles registered till the 
acquisition started are higher (9.70 ± 2.22; mean ± 
standard deviation) comparably with the same 
number for an imposed breathing (8.56 ± 2.12). The 
results are more evidently with children when 
comparing the number of respiratory cycles needed to 
initiate the sampling by an autonomous breathing 
(17.61 ± 3.31) and an imposed one (13.93 ± 2.49). 

3.2 Average Time of Exhalation 

The results presented in figure 4 illustrate the 
comparison of the average time of exhalation (ATE) 
between an imposed/controlled breathing rhythm and 
an autonomous rhythm of the patients, and the 
relationship of such feature for two aging groups. 

For both aging groups (children and university 
students), when respiratory rhythm was autonomous, 
the distribution of ATEs is significantly uneven when 

compared with the distribution of ATEs for an 
imposed breathing rhythm. The values of the standard 
deviation for an autonomous breathing (424 and 966 
ms, for children and university students, respectively) 
are almost 4 times higher when compared with the 
corresponding values of standard deviation for the 
imposed rhythm (120 and 250 ms, for children and 
university students, respectively). For both 
acquisition methods, the average values of ATEs are 
also significantly lower for children (974 and 1032 
ms, for autonomous and controlled breathing, 
respectively) comparably to the older university 
students (2031 and 1752 ms, for autonomous and 
controlled breathing, respectively). 

3.3 Time Required to Start Breath 
Sampling 

Figure 5 displays box and whiskers plots related to 
the time necessary to begin sampling the portion of 
interest of exhaled air in order to distinguish both 
procedures of breath sampling (with and without an 
imposed rhythm) for both aging groups. 

The time required to start breath sampling 
presents several differences regarding the type of 
breathing applied to the patients. For children (2-5 
years old), the time needed to begin sampling the 
portion of interest of exhaled air with a controlled 
rhythm of breathing (32.89/31.88-34.60/s; 
median/interquartile range/) is lower when compared 
with an autonomous breath rhythm of the patient 
(35.51/33.65-41.06/s). However, this decrease in the  

   

Figure 4: Distribution of results of average time of exhalation (ATE)) for free breath cycles (autonomous breathing) and for 
an optimized imposed rhythm (controlled breathing) with children (on the left) and university students (on the right). 

2 - 5 years 
18 - 27 years 
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Figure 5: Time required to start breath sampling for free breath cycles (autonomous breathing) and for an optimized imposed 
rhythm (controlled breathing) with children (on the left) and university students (on the right). Data are displayed in box and 
whiskers plot (box depicts median with first and third quartiles, whiskers show first quartile – 1.5 interquartile range and third 
quartile+1.5 interquartile range). 

time required to start the sampling is not so evidently 
for university students (18-27 years old) where, for an 
autonomous breathing (33.59/29.04-43.73/s), this 
required time is similar compared with time obtained 
for an imposed breathing rhythm (30.41/27.48-
34.79). Of note, the decreased interquartile range of 
the time need for breath sampling with the controlled 
rhythm for both groups of patients compared with the 
time obtained for an autonomous rhythm. 

4 DISCUSSION 

The results of performance tests applied to the 
prototype show that, when concerning the number of 
respiratory cycles and time needed begin the breath 
sampling, the imposition of breath rhythm to the 
patients (children and university) is more efficient 
since less time is spent and the user is not required to 
make unnecessary long breaths, which can lead to 
fatigue (Roussos et al., 1996). This increased 
efficiency in start of selective exhaled air sampling is 
related with a quicker prediction of the time of 
occurrence of a new expiration and, consequently, the 
prediction the precise time-frame for its collection 
which are ultimately related with the machine 
learning process implemented in the prototype. These 
results of the prototype’s performance tests are more 
evident for children, where the suggestion of an 

appropriated breath rhythm have crucial importance 
due to their inability of autonomously maintain a 
breath rhythm.  

The results obtained for average time of 
exhalation (ATE) show that the breath rhythm 
imposed to patients should be adapted according to 
their aging group and physiological/health condition. 
Moreover, the stabilized values of ATE and the lower 
interquartile range of the time required to begin 
sampling the portion of interest of exhaled air, for 
both aging groups, indicates the imposition of an 
aging-suitable breath rhythm as the reliable way of 
using the prototype for collection of exhaled air.  

The majority of the existent breath samplers and 
ventilators comprise several algorithms to analyse 
respiration cycles of the user in order to detect 
inspiration and expiration phases and to, 
consequently, determine the time-window for breath 
sampling. However, and for cases of dyspnea with 
erratic respiratory rhythms, that determined time-
window for sampling can be too short and can 
brought up multiple difficulties when obtaining such 
small portions of exhaled air. Only the system 
patented by Capnia, Inc. (patent number 
WO2015143384 A1, 2015) is configured to impose a 
breath frequency to users (young children and non-
cognizant patients) in order to avoid those erratic 
respiratory episodes. Even so, that imposed frequency 
does not adapts and “learns” with the user’s breathing 
pace such as the proposed system does. 

BIODEVICES 2017 - 10th International Conference on Biomedical Electronics and Devices

168



The protocol necessary to use the prototype, in 
which the patient has to follow the directions given 
by the system and try to maintain the breathing with 
the same rhythm that appears on the graphical 
interface, also suggests the introduction of 
improvements in the accuracy and precision on 
obtaining samples of a specific part of the respiratory 
tract, which consequently led to the increase in the 
repeatability of the analysis applied to these samples. 
Furthermore, it is excluded the introduction of 
variability during breath sampling related with 
breathing frequency, amplitude of the respiratory 
cycle, the mental and physical condition of the 
patient, as well as, the method applied by the person 
who asks for the patient to breathe. 

5 CONCLUSIONS 

The research work demonstrated herein presents a 
suitable and novel technology and related protocol of 
using it for selectively sampling exhaled air regarding 
the subject’s: metabolic production of CO2, smoking 
habits, type of consumed food, stomach, esophagus 
and oral cavity conditions. Moreover, the 
implementation of a user-dependent’s respiratory 
cycle model on the prototype used in this work could 
allow a more accurate way to collect portions of 
exhaled air according to the exhaled air’s respiratory 
origin. This collection is done from single or multiple 
exhalations, for online or posterior analytical analysis 
for medical diagnosis and/or therapy monitoring, in a 
quick, reliable, non-invasive way, applied at any 
stage of life.  

The imposition of a respiratory rhythm 
according to the characteristics of the user (age, 
gender and physiological/health condition) and the 
machine learning process implemented on the 
prototype led to improvements in the accuracy in 
sampling breath from specific parts of the respiratory 
tract and decreases the variability of the samples 
related with breath frequency, amplitude of the breath 
cycle, mental and physical condition of the patient.  

However, the implemented algorithm have to be 
optimized for better performance in real healthcare 
environments and the respiratory rhythm appearing in 
graphical interface should be interactively adapted 
according to all age groups, especially to the elderly 
and children who have more difficulty to follow this 
method. We also believe that future and similar 
applications for mobile devices should be developed 
to help the patients to learn and train the respiratory 
rhythm while the respective portable sampling 
equipment for analysis is not commercially available. 

The final application should be suitable to different 
group stages simplifying the breath sampling process. 
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