Mapping Distance Graph Kernels using Bipartite Matching

Tetsuya Kataoka, Eimi Shiotsuki and Akihiro Inokuchi

School of Science and Technology, Kwansei Gakuin Uniyegsit Gakuen, Sanda, Hyogo, Japan
{tkataoka, inokuchi@kwansei.ac.jp

Keywords:  Machine Learning, Graph Kernel, Graph Mining, Graph Clisaiion.

Abstract: The objective of graph classification is to classify graphsimilar structures into the same class. This prob-
lem is of key importance in areas such as cheminformaticsandformatics. Support Vector Machines can
efficiently classify graphs if graph kernels are used instfafeature vectors. In this paper, we propose two
novel and efficient graph kernels called Mapping Distancen&lewith Stars (MDKS) and Mapping Distance
Kernel with Vectors (MDKV). MDKS approximately measuree thraph edit distance using star structures of
height one. The method runs @(u®), whereu is the maximum number of vertices in the graphs. However,
when the height of the star structures is increased to awidtaral information loss, this graph kernel is no
longer efficient. Hence, MDKYV represents star structurdssifht greater than one as vectors and sums their
Euclidean distances. It runs @(h(u2 +||u2)), whereZ is a set of vertex labels and graphs are iteratively
relabelech times. We verify the computational efficiency of the progbgeaph kernels on artificially gener-
ated datasets. Further, results on three real-world datsisew that the classification accuracy of the proposed
graph kernels is higher than three conventional graph kemathods.

1 INTRODUCTION Kernel methods such as Support Vector Machines

(SVMs) are becoming increasingly popular because
A graph is one of the most natural data structures for of their high performance (Bernhard, et. al, 1992).
representing structured data. For instance, a chemicaln an SVM, a hyperplane for classifying samples is
compound can be represented as a graph, where eachomputed from the inner products of the samples. An
vertex corresponds to an atom, each edge correspondiner product between two samples has a high value
to a bond between two atoms therein, and the label of if the two samples are similar. In general, it is hard
the vertex corresponds to an atom type. With the re- to represent graphs as feature vectors without losing
cent improvement in system throughput, the need for some of their structural information. However, the
the analysis of a large number of graphs have risen, application of SVM to graphs becomes possible by
and the topic of graph mining has raised great in- replacing the inner products of all pairs of vector-
terest because knowledge discovery from structuredized graphs with specifically designed graph kernels
data can be applied to various real world datasets.k(gi,gj). Furthermore, most methods using graph
For example, in cheminformatics, certain properties kernels are efficient because they deliberately avoid
of chemical compounds (e.g., mutagenicity or toxi- the explicit generation of feature vectors. The per-
city) can be identified by an analysis of their struc- formance of a graph kernel is evaluated in terms of
tural information. In bioinformatics, the prediction of computational complexity and expressiveness. Here,
protein-protein interactions is beneficial for drug dis- expressiveness means that the more and larger sub-
covery. One of methods for this application is graph graphs that; andg; contain in common, the higher
classification. k(gi,0;) will be in value.

According to the principle of Johnson and Mag- There are various frameworks for defining
giora, structurally similar chemical compounds have k(g;,g;). Two representative frameworks are based
common properties. Virtual screening methods in on graph edit distance (Neuhaus and Bunke, 2007)
cheminformatics assume that chemical compounds inand graph relabeling (Kataoka and Inokuchi, 2016).
a database that are structurally similar to a query haveThe graph edit distance between graghandg; is
the same physiological activities. Therefore, the ob- defined as the minimum length of the sequence of
jective of the graph classification problem is to clas- edit operations needed to transfogrinto gj, where
sify graphs of similar structures into the same class. one edit operation includes the insertion or deletion
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of a vertex/edge or substitution of a vertex label. The
problem of obtaining the exact graph edit distance
between graphs is known to be NP-hard. The other
framework iteratively relabels vertex labels in graphs  ;
using the adjacent vertices of each vertex, and then }
measures the similarity between sets of verticesinthe
graphs using the Jaccard index.

In this paper, we motivate to propose two more
accurate graph kernels by incorporating characteris- Figure 1: Subtree fovin a graph b= 2).
tics of the aforementioned frameworks than existing
graph kernels. The proposed graph kernels are calle
the Mapping Distance Kernel with Stars (MDKS)
and Mapping Distance Kernel with Vectors (MDKV).
One of them is based on a method for approxi-
mately measuring the graph edit distance between two

graphs. The method runs @(v®) for two graphs, (v,u) € E}. Further,L(N(V)) = {£(u) | u € N(v)} is

wrr;err(]esu $h;hﬁe?:]aeT'$l;1H; SuThbee(rec(i)iI (\j/|es rtg%ecsc‘asmailgn a multiset of labels adjacent to A sequence of ver-
grapns. P Yices fromv to u is called a path, and its step refers

star structures of height one obtained from the graphs.to the number of edges on that path. A path is called

When the height of the star structures is increased toSirnple if and only if the path does not have repeating

P y 'Givenv e V(g), st(v,h) is a subtree of heiglt, where

which prevents the efficient computation of this graph vis the root andi is child ofw if u andw are adjacent

kernel. To overcome this difficulty, in the other pro- in g. Here, the height of the subtree is the length of a

posed graph kernel, each of the star structures of ., fom the rooted vertex to a leaf vertex ENL Y
height higher than one is represented as a vector, an s a set of children of’ in st(v,h). Figure 1 shows an

the graph kernelis computed by summing up the Eu- : :
clidean distances on these vectors. The graph kemelexample oigg sgbiieenof hicightiyo Taasgiaph. As

i i 3 ! (\/.
between two graphs is computeddh(u®+ |5]u2)), shown in Fig. 1, when a vertex belongs toN’(v;)

. !(\s: i i
whereX is a set of vertex labels and graphs are itera- andh > 1, v algo belongs tV'(v;). Thatis,V'is a
. g grandchild of in st(v; h).
tively relabelech times.

The rest of this paper is organized as follows. The graph classification problem is defined as

. ; S follows. Given a set oh training exampledD =
Section 2 formalizes the graph classification problem (g} (i = 1,2 n), where each example is a
that this paper tackles and explains the kernel func- L\¥V71/J v = =" " "0
tion usedpinpSVM In Section 3IO we propose MDKS pa|r{con5|st|?g tha :]abileld gramE] ang the class

: . ' " Vi € {+1,-1} to which it belongs, the objective is to
ar;c:kl\s/lqrf\é:g.e;r:“’: exeplaépftvzﬁgz?);?: ketglilrz:;rgf?_ learn a functionf that correctly classifies the classes
w ' : , We verity putational €tli- - ¢ yp o test examples.
ciency of the proposed graph kernels on artificially Wi lassi hs using SYM and a G .
generated dataset and compare the proposed grapﬁ m ?CgRlcr?‘:‘vsv'fy %(rar?q Tusmngdx- e;n tar e\llussmn
kernels with conventional graph kernels in terms of te eth Ge vo eka p|6f>6 at'k J_a)‘:’. gag ?. e((j:-
classification accuracy using real-world datasets. Fi- aosrs, e Gaussian kernel functié(x;, x;) is define
nally, we conclude the paper in Section 5.

K(Xi,X;) = exp __Hxi_xjHZ
7 202 ’

%(g). Although we assume that only the vertices in
the graphs have labels, the methods in this paper can
be applied to graphs where both the vertices and edges
have labels (Hido and Kashima, 2009). The vertices
adjacent to vertex are represented a$(v) = {u |

2 PRELIMINARIES

whereo? is a parameter that adjusts the variance. Be-
cause it is hard to represent graphs as feature vec-
tors without a loss of their structural information, we
design a dissimilarityd(gi,g;j) betweeng; andg; to
replacé|x — x;j||. A kernel function for graphs is
called a graph kernel, denotedkds;, gj) and defined

This paper tackles the classification problem of
graphs. First, we define some terminologies used for
solving the problem. An undirected graph is repre-
sented ag = (V,E, X, /), whereV is a set of vertices,

E CV xV is a set of edges, = {01,02,--- ,05} is

a set of vertex labels, and V — % is a function that
assigns a label to each vertex in the graph. Addition- d(gi,g;j)?
ally, the set of vertices in grapl is represented as k(gi.9j) = exp(T2> :

@)
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hard and consequently, the graph kernels based on the

@ 61 @ @ e @ graph edit distance have drawback in terms of com-
gi putational efficiency. To address this drawback, we
@ @ -@ @@ @ propose a graph kernel based on the mapping dis-

es tance (Zhiping, et. al, 2009) (Riesen and Bunke,

2009), which is the suboptimal graph edit distance be-

@ ex @ €4 @ tween graphs.
g ‘ <4 ‘ < Here, we explain the mapping distance between
br—© bGb—0@ b — graphs. The distance is one method for approximately

_ _ _ _ measuring the graph edit distance, and this metric is
_Flgure 2: Sequence of edit operations for transforning  gptained inO(Ua), whereu = max{|V(gi)|, |V(gj)|}.
into gj. To obtain the mapping distance, we use star structures
in the graph. A star structurgv) for v in a graph
g is a subtree whose root isand leaves consist of
3 PROPOSED GRAPH KERNELS N(v). That is,s(v) is equivalent tast(v,1). Given a
graphg, |V (g)| star structures can be generated from
The definition ofd(g;, g;) is vital for the performance 9. The multiset of star structures generated from
of the classification model. There are various frame- g is denoted as§(g) = {s(v1),8(v2),---,S(Vjy(g)) }-
works for designing graph kernels. Two representa- The star edit distance betwes(vi) ands(v;) is the
tive frameworks among them are based on graph editminimum length of the sequence of edit operations
distance and graph relabeling. First, we propose aneeded to transforis(v;) into s(vj) and is denoted as
novel graph kernel based on the former framework, A(S(Vi),S(vj)), whereA(s(vi),s(v;)) is defined as
ggdbglﬁr;r\gre;]z\rsgﬁ(s: another novel graph kernel based AS(V), (Vi) = Ae(vi,v)) + Aa(N(W),N(V)))
+ A3(N(v),N(vj)),

3.1 Graph Kernels based on Graph Edit  where
Distance

A1(vi,v)) (L (Vi) £(vj)),

Graph edit distance is one of the most representative  A2(N(Vi),N(vj)) [IN(vi)| = IN(v))]|, and
metrics for definingl(gi,g;j), and a number of graph A3(N(Vvi),N(vj)) max{[N(vi)[, IN(vj)|}

kernels based on the graph edit distance have been —|L(N(v)) NL(N(v)))].
proposed (Neuhaus and Bunke, 2007). The graph edit o )

distance between graplgs and g; is defined as the Star edit distanc® (vi, vj) returns 1 if the roots of the
minimum length of the sequence of edit operations Star structures have identical labels and 0 otherwise,
needed to transforrg into gj, where one edit opera- which is equivalent to a substitution for the labels of
tion includes the insertion or deletion of a vertex/edge "00ts. Distanceé\a(N(vi),N(vj)) equals the required
and substitution of a vertex label. Although edit dis- number ofinsertions and/or deletions of edges i)
tance was originally proposed for measuring the dis- ands(vj). DistanceAs(N(vi),N(vj)) equals the re-
similarities between two strings, the metric was ex- quired number of substitutions for labels of leaves in
tended to graphs because edit operations were intro-S(Vi) ands(v;j). From the above\(s(vi),s(v;)) repre-

duced for graphs. sents the star edit distance betweén) ands(v;).
Figure 2 shows a certain sequence of edit oper- _ Given two multisets of star structur&g;) and
ations that consists of one deletion of vertes), S(gj), the mapping distance betwegnandg; is de-

one insertion of edgées), one deletion of edgée; ), noted asnd,(g;,gj) and defined as

and two substitutions of labelgs,es). The compu- N

tation needed to obtain the e(dit di)stance betwgen mch (gi,9j) = mplns(u)ezs( »))\(s(u),P(s(u))), (2)
and g; is equivalent to searching for the minimum o
length of the sequence of edit operations needed towhereP : S(g) — S(gj) is a bijective function. The
transformg; into gj. The method based on tiA¢ al- computation ofmdy(gi,g;) is equal to solving the
gorithm is a well-known method for computing the minimum weight matching on the complete bipar-
exact graph edit distance (P. Hart, et. al, 1968). How- tite graphg’ = (\,V|,E’) such that for every two
ever, this method cannot be applied to graphs of largevertices (vi,vj) € Vi x Vj, there is an edge whose
size, because the problem of obtaining the exact graphweight is the star edit distanck(s(vi),s(vj)) be-
edit distance between two graphs is known to be NP- tween s(v;) and s(vj). Given a square matrix in
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. @ v Algorithm 1: MappingDistanceKernell.
N ‘ Data: a set of graph® for training and
; 2
i s swaer o) () (@), varianceo=
3 ” “ Result kernel matrixk

(') 1 for gi,gj € D do

- 2 | while [V(g)| < |V(g;j)| do
3 | V(gi) + V(g) U{dummyvertex;
s(v1) 4 | while [V(gi)| > |V(gj)| do

5 | V(gj) «V(gj) U{dummyvertex;

6 for (va,vb) € V(gi) x V(gj) do
s(v2) 7 _)\(—O;
8 if 4i(va) # £j(Vp) then
9 L A1
s(vs3) 10 A <A+ |IN(Va)| — IN(Vp)]];
11 A <= A +max{[N(va)l, [N(vb)|} —
|L(N(va)) NL(N(vb))] ;
s(vs) 12 Tap < A;

s(vy) ﬁ -% 17 i
® @ ) ( © ® 13 | md; + HungarianT);
90N\ 7
@) .i%/:w” \x - 14 Kij < exp(—?)
@) @ : @

— - ' —
> & s(vs) 15 return K;

mdi(g:,9;) =3+1+0+5+2=11

Figure 3: Minimum weight matching to find the mapping kmpks(0i,0j) = exp<—
distance betweeg andg;.

mak(gi,g;j)?
202 .

Here, kvpks(9i,0j) is obtained inO(u3), which is
faster than graph kernels based on the exact graph edit
distance.

Algorithm 1 shows the pseudo-code for comput-
ing an MDKS kernel matrix for a set of grapbs In
Lines 2 to 5, the numbers of verticesgnandg; are
equalized. For each pair of verticesMitg;) x V(g;),
the star edit distance between star structsfeg and
S(Vp) is measured and set as tfeb)-th element in
square matrixr, which is given to the Hungarian al-
¢ gorithm. The Hungarian algorithm returns the map-
If [V (gi)| does not equaV (g;)], the matrix thatrep-  ping gistance according to the optimal bipartite graph
resents star edit distances among star structures is no atching in Line 13. In Line 14, Eq. (3) is computed.
square and cannot be used as an input for the Hungar—rpege nrocedures are repeated for every pair of graphs
ian algorithm. In order to obtain a square matrix, & j, pand Algorithm 1 finally returns a kernel matrix
dummy vertex (denoted ag in gj) whose label is 5. b This algorithm runs i©(n2(v3 + du?)), where
€ is inserted ing;j to equalizg the numbers _of Ver- 1y, andd are the number of graphs D, the max-
tices ing andgj. By applying the Hungarian al- i, \m humber of vertices in the graphs, and the av-
gorithm, the optimal bipartite graph matching (indi- o546 degree of the vertices, respectively. Becduse
cated by solid lines) is output and the final answer o ponded by, the computational complexity be-
madi(gi,9j) =3+ 1+0+5+2= 11 s obtained. comesO(n2u?).

Using the mapping distance, we propose a novel  \;pks has a drawback in terms of graph expres-

graph kemel called MDKS. __ siveness. The height of the subtrees between which
MDKS: We adopt the mapping distance defined in ;e measure the mapping distance is limited, and this

Eq. (2) to the graph kernel defined in EQ. (1). Given causes a leveling off of the graph expressiveness. It

two graphsg andg, the graph kernel in MDKS s ig gesirable to measure the edit distance between high

defined as follows: order subtrees, as the edit distance between trees with
m vertices is computed i©(m*) (E. D. Demaine,

3

which the(i, j)-element represents the star edit dis-
tanceA(s(vi),s(vj)), this matching problem is solved
by means of the Hungarian algorithm, which runs in
O(v®) (Kuhn, 1955), where = max{|Vi|,|V;|}.

Figure 3 shows an example of mappis;) to
S(gj) to obtainmdi(g;,gj). Given two graphg; and
0j, five star structures are generated frgnand four
star structures are generated frgm The table be-
tweeng; andg;j represents the star edit distance be-
tween every pair of star structures$g;) andS(g;).
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et. al, 2009). However, because the paths from the
root to leaves in a subtree are not simple in the graph
from which the subtree is generated, the number of
vertices in the subtrees increases exponentially for
h, which makes measuring the edit distance between
s(vi,h) ands(vj, h) intractable. Another way (Carletti,
et. al, 2015) is to use subgraphsgéach of which
consists of vertices withit step fromy; instead of
star structures os. However, we require exact dis-
tances between subgraphsgpfaind subgraphs afj,
which need computation time. In the next subsection,

Mapping Distance Graph Kernels using Bipartite Matching

g©

%1) d
© @ ’

Figure 4: Example of relabeling/© — g).

we propose another efficient graph kernel that com- @1
pares the characteristics of two subtres;, h) and

st(vj,h) forh > 1. o)
3.2 Graph Kernels based on Relabeling oL

Uz Uz Ug
(0,0,1) (0,1,0) (1,0,0)

Given a graply™ = (V,E,Z,¢M), all labels of ver-
tices in g" are updated to obtain another graph
g™ = (V,E, 2, (D), We call the operation a re-
label, and it is defined a&MV(v) = r(v,N(v),¢M). Labeling¢(" (v), obtained by iteratively relabeling
Weisfeiler-Lehman Subtree Kernel (WLSK) (Sher- times, has a distribution of labels that is reachable
vashidze, et. al, 2011), Neighborhood Hash Kernel within h steps fromv. Therefore,/(") (v) represents
(NHK) (Hido and Kashima, 2009), and Hadamard the characteristics (v, h). Let{g<0),g(1>,--- ,g(h>}
Code Kernel (HCK) (Kataoka and Inokuchi, 2016) be a series of graphs obtained by iteratively applying
are representative graph kernels based on this relabela relabelingh times, whereg'® is an original graph
ing framework. The vertex label of WLSK is repre- contained irD. Kernelk(gi,g;) is defined as
sented as a string and a relabel for venés defined © () W @
as a string concatenation of the labelsNifv). In k(gi,g;)) = k(gi,g;")+k(g.9;")

o+ k(g" o). )

NHK, the vertex label is represented as a fixed-length
bit string and relabeling is defined as logical oper-
ations such as an exclusive-or on the label®l(f). The Label Aggregate Kernel (LAK) (Kataoka and
The label of HCK is based on the Hadamard code, Inokuchi, 2016) is another graph kernel based on this
which is used in spread spectrum-based communica-framework. Next, we present a concrete definition of
tion technologies, and a relabel foiis defined as a  arelabel in LAK.
summation on the labels &f(v). In LAK, ef_o)(v) is a vector in|XZ|-dimensional
Figure 4 shows an example of the framework space. If a vertexin a graph has a labglrom the set
based on graph relabeling. Lgf be original graph = = {01,02,---,0/5/}, thei-th element in the vector
whose vertices have labeds b, andc. Each of the ; ) (v i
labels is relabeled to obtaii?). Although the con- :jse%i,nir;da;he other elements are 0. In LA (v) is
crete calculation depends on the method of relabeling h) (h-1)
such as NHK, WLSK, or HCK , it is common that a L) = (V) +
relabel forv is applied usings, N(v) and/©(v). In
the center of Fig. 4¢(%(v;) = b is relabeled intal
using adjacent vertice®, v, and its original label
b. Therefore/™ (v1) = d represents the characteris- § S, ). . '
tics of st(vy,1). The labels ofv; andvs in g¥ are mation on the distribution of labels st(v,h), which

identical labels becaus#(v, 1) = st(v3,1) in g©. It means thaw(Lh> (v) is more expressive than the star
is desirable to define labels as identical if and only Structures(v) used to measure the mapping distance.
if both their own labels and labels of adjacent nodes ~ We show an example of relabeling in LAK in
are also identical. However, realizing this condition Fig. 5, assuming thdE| = 3 and relabeling is applied
is hard, and it is important to design a relabel method only once. Consider grapii®, whose vertices have
that satisfies this condition as much as possible. labels(1,0,0), (0,1,0), and(0,0,1). We next apply
The label of each vertex is relabeled iteratively. the relabeling to the graphs to obtajtt. The label

Figure 5: Example of relabeling in LAK.

h—
S 4" ).
ueN(v)

Thei-th element irf(Lh) (v) equals the frequency of oc-
currence of; in st(v, h). Thereforez(,_h> (v) has infor-
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of vertexv in gV represents the distribution of labels

. . . . (44,2) 4,5,2) (3,3,6) (3,3,4)
contained inst(v,1). For instance, the label af in ”1 4 ul 3
Q) ; (1) o . T
gWis € (v5) = (2,1,1), which indicates that there S5 653 s i
are two vertices labele(l,0,0), one vertex labeled u K v u
(0,1,0), and one vertex labele@,0,1). This distri- 43 (" 5 0,00)
bution is equivalent to that of the labels contained in """\t g® T @ ="
st(vs,1). In LAK, the kernel function is defined as P2 ) 8en) ) 0n) 2(00) £2005)
Dw)| 424 469 245 245 6.00
k(gfh)agﬁm): Z 5(£(Lh> (Vi),e(Lh> (Vj)). t%:(m) 346 566 2.83 2.83 8.12
(h) (h) £’(ws)| 3.32 4.36  1.73 1.73 6.40
(Vi vj)EV(g)xV(gj) )| 458 (539 3.00 3.00 6.71
()| 469 648 374 3.74 837

Using the labels used in LAK, we propose another

novel graph kernel called MDKYV. & &)
MDKYV: Given two Iabels(Z(Lh)(vi) and Zﬁh)(vj), we
2 ) f) U2,
denote the distance betweéﬁ) (vi) and Zﬁh) (vj) as e )
h h !
16" (), (v})), defined as o P
h h h h
(e (). (vi) = 1e ) -4 )P )
D0y 3 (04
Given two graphgfh) andgﬁh) relabeled iterativelyn e e
times, the distance betwegﬁ) andgﬁm is denoted as D) D)

(h () .
m - /) and defined as
%(g.9; ) mdz (957, 9%7) = 6 +3.46 + 1.73 + 5.39 + 3.74 = 20.32

mdQ(gi(h),gﬁh)) = r%in > (6" (), 4" (Q(u))), Figure 6: Computation for obtainimgd (g%, ¢\?).

j
uev(g") (6)
h ), - B _ Figure 6 shows an example of the procedure to
whereQ: V(g ") — V(g 2\ is 5;1 bijective function. obtainmdz(gi(z),ggz)), assuming tha| = 3. Graphs
The computation ofndz(_gf ),gﬁ ) is also equal to ¢ andgﬁ2> are obtained by relabeling given graphs
solving the minimum weight matching on a complete g ) : ) ) [
bipartite graph and is obtained by means of the Hun- % andg;” iteratively twice. After relabeling, the
garian algorithm. By combining Egs. (1), (4), and Euclidean distance between every pair of labels in

mab, kvpkv (0, 9j) is defined as follows: gi(z) and g§2> are measured. The table betwegé%?
h and g<-2) represents the Euclidean distance of every
kmokv (Gi,9j) = %k(gft),g?)) pair of labels. To equalize the number of vertices in
= gi(z) andggz), a dummy vertex whose label {§,0,0)
t t
B h ox 7md2(gi( )795 ))2 is inserted tog(-z). The minimum weight matching
o tZD P 202 is solved by means of the Hungarian algorithm, and

the final answer orfndz(gi(z),gﬁa) =6+3.46+1.73+
The notable difference between MDKS and 539 3.74= 20.32 is obtained.
MDKY is that while the inputs fomd, are multisets Algorithm 2 shows the pseudo-code for comput-
of st(v, 1), the ones fomd, are multisets of vectors  ing an MDKYV kernel matrix for a set of graplis In
obtained from higher order subtregt$v,h). Thatis,  Lines 5 to 8, the numbers of verticesgnandg; are
the computation of MDKV between two graphs con- equalized. For each pair of vertices\iig) x V(g;),

tains larger subgraphs in the two graphs. If we di- : .
rectly measure the edit distance betwegn, h) and the Euclidean distance between two vectq(_fé(va)

s(vj,h), the number of vertices is(v,h) exponen- and¢,” (w) is measured and set as tfeb)-th ele-
tially increases whehincreases. In this case, MDKY ~mentinT. The Hungarian algorithm returns the map-
needs a huge amount of computation time to computePing distance according to the optimal bipartite graph
the edit distance. However, by using a vector repre- Matching in Line 11. lts output using the Gaussian
sentation for the vertices and their relabeling, our pro- kérnel is added t&;. In Lines 14 to 16, where is

posed kernel computes a mapping distance betweerf set of non-negative integetsis relabeled to obtain
s(vi,h) ands(v;, h) efficiently. g+, These processes in Lines 9 to 15 are repeated
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Algorithm 2: MappingDistanceKernel2. Table 1: Parameters of the artificial datasets.
Data: a set of graph® for training and Parameters | Defaults
varianceo? Number of graphs in a dataset n=100
Result kernel matrixK Average number of vertices in a grapt =50
1 K0; Average degrees of a graph d=2
2 DO« D; Number of distinct labels in a dataset |Z| =10
3 fort € [0,h] do
4 | forg,gjcDW do »
5 while |V (gi)| < |V(gj)| do < MDKV e
6 | V(gi) < V(g) U{dummyvertex; oo | ~-MDKS T
7 while [V (gi)| > [V(g;)| do St e
8 | V(gj) « V(gj) U{dummyvertex; g [ e
9 for (va,Vb) € V(gi) x V(gj) do ‘é 0t R
10 | Tab — (€ (va), £V () N TS
11 md, < HungarianT);
12 Kl] % Klj +exp(_F>’ 100 110 120 130 140 ;:O 160 170 180 190 200
13 DY 0; Figure 7: Computation time for various
14 | for ge D™D do
15 L g™« (V(9),E(g), 2, ¢t+D); nd|Z|u)), respectively. We generated graphs with a
16 Dt . pt+D) {g(t+1)}; set of four parameters . Their default values are listed
L in Table 1.
17 return K; For each dataseh graphs, each with an average

. . . . of U vertices, were generated. Two vertices in a graph
h+1 times. This algorithm runs i©(h(n?v + f 3 grap

n?|5|u2 + nd|Z|v)), because the computational com- V'€ connected_ with probabilityd., gnd one label
plexities of Lines 11, 10, and 15 a@u%), O(|Z|v?), from |Z| was assigned to each vertex in the graph. The
andO(d|z|v), respectively. Becauskis bounded by computation times shown in this subsection are the

v, the computational complexity of Algorithm 2 be- 2verage of ten trials. _
comesO(hr?(L3 + [|v2)). We first varied onlyn to generate various datasets

in which the other parameters were set to their default
values. The number of graphs in each dataset was
varied from 10 to 100. Figure 7 shows the computa-
4 EVALUATION EXPERIMENTS tion time needed to generate a kernel matrix for each
dataset for the proposed graph kernels. In this exper-
In this section, we compare the performance of our iment,h was set to 3. As shown in Fig. 7, the square
graph kernels MDKS and MDKYV through numeri- root of the computation time for the graph kernels is
cal experiments. We implemented the proposed graphproportional to the number of graphs in the dataset.
kernels MDKS and MDKYV in Java. All experiments That is, the computation time is proportional to the
were done on an Intel Xeon E5-2609 2.50 GHz com- square of the number of graphs in the dataset. This
puter with 32 GB memory running Microsoft Win- s because the proposed graph kernels are computed
dows 7. To learn from the kernel matrices generated for two graphs, and the kernels runs for all pairs of
by the above graph kernels, we used the LIBSVM graphs in the dataset. We next varied owljo gen-
packagé using 10-fold cross validation. erate various datasets with the other parameters set
to their default values. Figure 8 shows the computa-
4.1 Evaluation using Synthetic Datasets tion time required to generate a kernel matrix in each
dataset when the number of vertices in each dataset
We examine the computational performance of the Was varied from 50 to 120. The cubic root of the
proposed graph kernels by means of synthetic graphcomputation time for the proposed graph kernels is
datasets to confirm that the proposed graph kernels@lmost proportional to the average number of vertices

run in O(n(v3 + du)) and O(h(n?v® + n?|Z|u? + in the datasets. The parts that need a large amount
of computation time in Algorithms 1 and 2 are those
Thttp://www.csie.ntu.edu.twicjlin/libsvm/ that include the Hungarian algorithm. The computa-

67



ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

»- MDKV
12
~ -—MDKS | e
o P 1 -
Q 10 e
7] =
— o
o 8 e
E o P
= 6 o
+ = e
= - PR
= 4t e
4 F —
& P
oo
[} 2 F
0

50 55 60 65 70 75 80 8 90 95 100 105 110 115 120

v
Figure 8: Computation time for variows

tion time of the algorithm is proportional to the cube
of the number of vertices of the bipartite graph that
is given as input. In MDKV,T(Z(Lh> (vi),ZEh) (vj)) rep-
resents the dissimilarity betwesfv;,h) ands(vj, h).
The number of vertices iis(v,h) exponentially in-
creases alincreases. If we directly measure the edit
distance betwees{v;, h) ands(v;,h), MDKV needs a
huge amount of computation time. However, by using
a vector representation of vertices and the relabeling
for the vertices, our proposed MDKV kernel gener-
ates the kernel matrix efficiently.

In Figs. 9 and 10, we respectively varigd andd

to generate various datasets. MDKV needs a compu-

tation time that is proportional t&| in order to com-
pute the Euclidean distanaélﬁh)(vi),lfh)(vj)) and
relabel the vertices for th&| dimensional vectors.
The computation times for the propose graph kernels
are almost proportional to the average number of de-
gree of each vertex and the number of vertex labels.
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Figure 11: Computation time for variotns

varied from 0 to 15. The computation time is propor-
tional toh.

4.2 Classification Accuracy

MDKS needs a computation time that is proportional We compare the classification accuracies of the pro-
to d in order to measure the edit distance of the sub- Posed graph kernels with those of conventional graph
stitutions for the leaf labels in the star structures. In kernels based on the relabeling framework, WLSK,
contrast, MDKV needs a computation time thatis pro- NHK, and HCK, on three real world datasets, MU-

portional tod and|Z| in order to relabel graphs.
Finally, we varied onlyh for a dataset generated
with all other parameters set to their default values.
Figure 11 shows the computation time required to
generate a kernel matrix in each dataset whevas
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Figure 9: Computation time for varioys|.
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TAG (Debnath, et. al, 1991), PTC (Helma and
Kramer, 2003), and ENZYMES (Schomburg, et. al,
2004). Since HCK theoretically returns the same val-
ues as LAK returns, classification accuracies of HCK
are equivalent with those of LAK. The first dataset
MUTAG consists of 188 chemical compounds and
their classes are binary values representing whether
each compound is mutagenic. The second dataset
PTC consists of 344 chemical compounds, and their
classes are binary values representing whether each
compound is toxic. Generally, a chemical compound
is represented as a graph with labeled edges, which is
not a graph that is treated in this paper. We treated the
graphs with edge labels in the following two ways: 1)
we ignore the edge labels or 2) an edge labélttht

is adjacent to vertices andv in a graph is converted
into a vertex labeled that is adjacent te andv, as
explained in (Hido and Kashima, 2009). After con-
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Table 2: Description of evaluation datasets.

MUTAG PTC
edge labelg no edge labelg edge labelg no edge labels ENZYMES
The number of graphs 188 344 600
The number of classes 2 2 6
(class distribution) (125,63) (152,192) (100 per class
Maximum number of verticeg 84 40 325 109 126
Average number of vertices 53.9 26.0 77.5 25.6 32.6
Number of labels 12 8 67 19 3
Average Degree 21 21 2.7 4.0 3.9
Omin 10 10 1%
Omax 10° 10° 10*
Table 3: Classification accuracies.
MUTAG PTC
edge labelg no edge labelg edge labelg no edge labels ENZYMES

MDKS 92.6% 91.0% 64.2% 63.1% 61.2%

MDKV 94.1% 93.6% 64.0% 66.9% 65.3%

(h=3) (h=2) (h=0) (h=3) (h=2)

91.5% 90.4% 64.9% 64.0% 63.0%

StMDKVI h=78) | (h=3) | (h=18) (h=1) (h=4)

NHK 92.6% 90.4% 60.8% 55.8% 45.0%

WLSK 92.0% 90.4% 62.8% 64.2% 58.5%

(h=3) (h=1) (h=15) (h=10) (h=1)

HCK 92.0% 91.0% 63.1% 65.4% 57.2%

(h=3) (h=1) (h=15) (h=12) (h=4)

verting edges in graphs, labels are assigned to only theshown in Table 3, the classification accuracies of the
vertices. The third dataset, ENZYMES consists 600 proposed graph kernels outperform those of the con-
proteins and their classes represent Enzyme Commis-entional graph kernels. The valuestofor MDKV
sion numbers from 1 to 6. Table 2 shows a summary are relatively low, which indicates that the elements
of each dataset. in the vectors representing vertex labels exponentially
Before classifying a dataset that does not contain increase and distancéf.” (vi),Z(Lh) (vj)) becomes in-
graphs but consists of points inpadimensional fea-  adequate wheh increases. However, the values of
ture space, we usually normalize the dataset using then for St-MDKV are high. By normalizing the vec-
meanyy and standard deviatiasy, in theg-th feature  tors representing vertex labels, we adequately mea-
(1<g<p). By normalizing the dataset, we often sure the (dis)similarity betweesv;,h) ands(v;,h),
obtain an accurate model for classifying the dataset. which results in high classification accuracy for vari-
Similarly, we apply this procedure in MDKV. To do  gus datasets.

so, we use the meqyﬁ) and standard deviatioang)

for the|Z| dimensional vectors to represent the vertex

labels for each (1 <t <h)andq (1 <q< |¥|). Us-

ing this procedure, we avoid the exponential increase 5 CONCLUSION

in the elements in the vectors representing vertex la-

bels wherh is increased. We call the MDKV method In this paper, we proposed two novel and efficient

that uses this procedure St-MDKV. graph kernels called Mapping Distance Kernel with
Table 3 shows the classification accuracies of the Stars (MDKS) and Mapping Distance Kernel with

proposed and conventional graph kernels . We ex- Vectors (MDKV). MDKS approximately measures

amined the highest accuracy for each kernel and eachthe graph edit distance using star structures of height

dataset varying of the Gaussian kernel arid We one. The method runs i®(v®), whereu is the

varied theo from opmin to Omaxin intervals of 10 (see  maximum number of vertices in the graphs. How-

Table 2) andh from 0 to 15 in intervals of 1. As  ever, when the height of the star structures is in-
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creased to avoid structural information loss, this graph
kernel is no longer efficient. Hence, MDKV repre-
sents star structures of height greater than one as vec
tors and sums their Euclidean distances. It runs in
O(h(v3+|Z|u?)), wheres is a set of vertex labels and
graphs are iteratively relabelddtimes. We verified
the computational efficiency of the proposed graph
kernels on artificially generated datasets. Further, re-

sults on three real-world datasets showed that the clas-

sification accuracy of the proposed graph kernels is
higher than three conventional graph kernel methods.
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