
Mapping Distance Graph Kernels using Bipartite Matching

Tetsuya Kataoka, Eimi Shiotsuki and Akihiro Inokuchi
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan

{tkataoka, inokuchi}@kwansei.ac.jp

Keywords: Machine Learning, Graph Kernel, Graph Mining, Graph Classification.

Abstract: The objective of graph classification is to classify graphs of similar structures into the same class. This prob-
lem is of key importance in areas such as cheminformatics andbioinformatics. Support Vector Machines can
efficiently classify graphs if graph kernels are used instead of feature vectors. In this paper, we propose two
novel and efficient graph kernels called Mapping Distance Kernel with Stars (MDKS) and Mapping Distance
Kernel with Vectors (MDKV). MDKS approximately measures the graph edit distance using star structures of
height one. The method runs inO(υ3), whereυ is the maximum number of vertices in the graphs. However,
when the height of the star structures is increased to avoid structural information loss, this graph kernel is no
longer efficient. Hence, MDKV represents star structures ofheight greater than one as vectors and sums their
Euclidean distances. It runs inO(h(υ3 + |Σ|υ2)), whereΣ is a set of vertex labels and graphs are iteratively
relabeledh times. We verify the computational efficiency of the proposed graph kernels on artificially gener-
ated datasets. Further, results on three real-world datasets show that the classification accuracy of the proposed
graph kernels is higher than three conventional graph kernel methods.

1 INTRODUCTION

A graph is one of the most natural data structures for
representing structured data. For instance, a chemical
compound can be represented as a graph, where each
vertex corresponds to an atom, each edge corresponds
to a bond between two atoms therein, and the label of
the vertex corresponds to an atom type. With the re-
cent improvement in system throughput, the need for
the analysis of a large number of graphs have risen,
and the topic of graph mining has raised great in-
terest because knowledge discovery from structured
data can be applied to various real world datasets.
For example, in cheminformatics, certain properties
of chemical compounds (e.g., mutagenicity or toxi-
city) can be identified by an analysis of their struc-
tural information. In bioinformatics, the prediction of
protein-protein interactions is beneficial for drug dis-
covery. One of methods for this application is graph
classification.

According to the principle of Johnson and Mag-
giora, structurally similar chemical compounds have
common properties. Virtual screening methods in
cheminformatics assume that chemical compounds in
a database that are structurally similar to a query have
the same physiological activities. Therefore, the ob-
jective of the graph classification problem is to clas-
sify graphs of similar structures into the same class.

Kernel methods such as Support Vector Machines
(SVMs) are becoming increasingly popular because
of their high performance (Bernhard, et. al, 1992).
In an SVM, a hyperplane for classifying samples is
computed from the inner products of the samples. An
inner product between two samples has a high value
if the two samples are similar. In general, it is hard
to represent graphs as feature vectors without losing
some of their structural information. However, the
application of SVM to graphs becomes possible by
replacing the inner products of all pairs of vector-
ized graphs with specifically designed graph kernels
k(gi ,g j). Furthermore, most methods using graph
kernels are efficient because they deliberately avoid
the explicit generation of feature vectors. The per-
formance of a graph kernel is evaluated in terms of
computational complexity and expressiveness. Here,
expressiveness means that the more and larger sub-
graphs thatgi andg j contain in common, the higher
k(gi ,g j) will be in value.

There are various frameworks for defining
k(gi ,g j). Two representative frameworks are based
on graph edit distance (Neuhaus and Bunke, 2007)
and graph relabeling (Kataoka and Inokuchi, 2016).
The graph edit distance between graphsgi andg j is
defined as the minimum length of the sequence of
edit operations needed to transformgi into g j , where
one edit operation includes the insertion or deletion

Kataoka, T., Shiotsuki, E. and Inokuchi, A.
Mapping Distance Graph Kernels using Bipartite Matching.
DOI: 10.5220/0006112900610070
In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), pages 61-70
ISBN: 978-989-758-222-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

61

of a vertex/edge or substitution of a vertex label. The
problem of obtaining the exact graph edit distance
between graphs is known to be NP-hard. The other
framework iteratively relabels vertex labels in graphs
using the adjacent vertices of each vertex, and then
measures the similarity between sets of vertices in the
graphs using the Jaccard index.

In this paper, we motivate to propose two more
accurate graph kernels by incorporating characteris-
tics of the aforementioned frameworks than existing
graph kernels. The proposed graph kernels are called
the Mapping Distance Kernel with Stars (MDKS)
and Mapping Distance Kernel with Vectors (MDKV).
One of them is based on a method for approxi-
mately measuring the graph edit distance between two
graphs. The method runs inO(υ3) for two graphs,
whereυ is the maximum number of vertices in the
graphs. The kernel sums up the edit distances among
star structures of height one obtained from the graphs.
When the height of the star structures is increased to
avoid loss of structural information, the number of
vertices in each star structure exponentially increases,
which prevents the efficient computation of this graph
kernel. To overcome this difficulty, in the other pro-
posed graph kernel, each of the star structures of
height higher than one is represented as a vector, and
the graph kernel is computed by summing up the Eu-
clidean distances on these vectors. The graph kernel
between two graphs is computed inO(h(υ3+ |Σ|υ2)),
whereΣ is a set of vertex labels and graphs are itera-
tively relabeledh times.

The rest of this paper is organized as follows.
Section 2 formalizes the graph classification problem
that this paper tackles and explains the kernel func-
tion used in SVM. In Section 3, we propose MDKS
and MDKV after we explain two graph kernel frame-
works. In Section 4, we verify the computational effi-
ciency of the proposed graph kernels on artificially
generated dataset and compare the proposed graph
kernels with conventional graph kernels in terms of
classification accuracy using real-world datasets. Fi-
nally, we conclude the paper in Section 5.

2 PRELIMINARIES

This paper tackles the classification problem of
graphs. First, we define some terminologies used for
solving the problem. An undirected graph is repre-
sented asg= (V,E,Σ, ℓ), whereV is a set of vertices,
E ⊆ V×V is a set of edges,Σ = {σ1,σ2, · · · ,σΣ} is
a set of vertex labels, andℓ : V→ Σ is a function that
assigns a label to each vertex in the graph. Addition-
ally, the set of vertices in graphg is represented as

Figure 1: Subtree forv in a graph (h= 2).

V(g). Although we assume that only the vertices in
the graphs have labels, the methods in this paper can
be applied to graphs where both the vertices and edges
have labels (Hido and Kashima, 2009). The vertices
adjacent to vertexv are represented asN(v) = {u |
(v,u) ∈ E}. Further,L(N(v)) = {ℓ(u) | u ∈ N(v)} is
a multiset of labels adjacent tov. A sequence of ver-
tices fromv to u is called a path, and its step refers
to the number of edges on that path. A path is called
simple if and only if the path does not have repeating
vertices. Paths in this paper are not always simple.
Givenv∈V(g), st(v,h) is a subtree of heighth, where
v is the root andu is child ofw if u andw are adjacent
in g. Here, the height of the subtree is the length of a
path from the rooted vertex to a leaf vertex, andN′(v′)
is a set of children ofv′ in st(v,h). Figure 1 shows an
example of a subtree of height two in a graph. As
shown in Fig. 1, when a vertexv j belongs toN′(vi)
andh > 1, vi also belongs toN′(v j). That is,v′ is a
grandchild ofv′ in st(v,h).

The graph classification problem is defined as
follows. Given a set ofn training examplesD =
{(gi,yi)} (i = 1,2, · · · ,n), where each example is a
pair consisting of a labeled graphgi and the class
yi ∈ {+1,−1} to which it belongs, the objective is to
learn a functionf that correctly classifies the classes
of the test examples.

We can classify graphs using SVM and a Gaussian
kernel. Given two examplesxxxi andxxx j as feature vec-
tors, the Gaussian kernel functionk(xxxi ,xxx j) is defined
as

k(xxxi ,xxx j) = exp

(
−||xxxi− xxx j ||2

2σ2

)
,

whereσ2 is a parameter that adjusts the variance. Be-
cause it is hard to represent graphs as feature vec-
tors without a loss of their structural information, we
design a dissimilarityd(gi ,g j) betweengi andg j to
replace||xxxi − xxx j ||. A kernel function for graphs is
called a graph kernel, denoted ask(gi ,g j) and defined
as

k(gi ,g j) = exp

(
−d(gi,g j)

2

2σ2

)
. (1)

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

62

Figure 2: Sequence of edit operations for transforminggi
into g j .

3 PROPOSED GRAPH KERNELS

The definition ofd(gi ,g j) is vital for the performance
of the classification model. There are various frame-
works for designing graph kernels. Two representa-
tive frameworks among them are based on graph edit
distance and graph relabeling. First, we propose a
novel graph kernel based on the former framework,
and then we propose another novel graph kernel based
on both frameworks.

3.1 Graph Kernels based on Graph Edit
Distance

Graph edit distance is one of the most representative
metrics for definingd(gi,g j), and a number of graph
kernels based on the graph edit distance have been
proposed (Neuhaus and Bunke, 2007). The graph edit
distance between graphsgi and g j is defined as the
minimum length of the sequence of edit operations
needed to transformgi into g j , where one edit opera-
tion includes the insertion or deletion of a vertex/edge
and substitution of a vertex label. Although edit dis-
tance was originally proposed for measuring the dis-
similarities between two strings, the metric was ex-
tended to graphs because edit operations were intro-
duced for graphs.

Figure 2 shows a certain sequence of edit oper-
ations that consists of one deletion of vertex(e2),
one insertion of edge(e4), one deletion of edge(e1),
and two substitutions of labels(e3,e5). The compu-
tation needed to obtain the edit distance betweengi
and g j is equivalent to searching for the minimum
length of the sequence of edit operations needed to
transformgi into g j . The method based on theA⋆ al-
gorithm is a well-known method for computing the
exact graph edit distance (P. Hart, et. al, 1968). How-
ever, this method cannot be applied to graphs of large
size, because the problem of obtaining the exact graph
edit distance between two graphs is known to be NP-

hard and consequently, the graph kernels based on the
graph edit distance have drawback in terms of com-
putational efficiency. To address this drawback, we
propose a graph kernel based on the mapping dis-
tance (Zhiping, et. al, 2009) (Riesen and Bunke,
2009), which is the suboptimal graph edit distance be-
tween graphs.

Here, we explain the mapping distance between
graphs. The distance is one method for approximately
measuring the graph edit distance, and this metric is
obtained inO(υ3), whereυ = max{|V(gi)|, |V(g j)|}.
To obtain the mapping distance, we use star structures
in the graph. A star structures(v) for v in a graph
g is a subtree whose root isv and leaves consist of
N(v). That is,s(v) is equivalent tost(v,1). Given a
graphg, |V(g)| star structures can be generated from
g. The multiset of star structures generated from
g is denoted asS(g) = {s(v1),s(v2), · · · ,s(v|V(g)|)}.
The star edit distance betweens(vi) ands(v j) is the
minimum length of the sequence of edit operations
needed to transforms(vi) into s(v j) and is denoted as
λ(s(vi),s(v j)), whereλ(s(vi),s(v j)) is defined as

λ(s(vi),s(v j)) = λ1(vi ,v j) + λ2(N(vi),N(v j))

+ λ3(N(vi),N(v j)),

where

λ1(vi ,v j) = δ(ℓ(vi), ℓ(v j)),

λ2(N(vi),N(v j)) =
∣∣|N(vi)|− |N(v j)|

∣∣ , and

λ3(N(vi),N(v j)) = max{|N(vi)|, |N(v j)|}
−|L(N(vi))∩L(N(v j))|.

Star edit distanceλ1(vi ,v j) returns 1 if the roots of the
star structures have identical labels and 0 otherwise,
which is equivalent to a substitution for the labels of
roots. Distanceλ2(N(vi),N(v j)) equals the required
number of insertions and/or deletions of edges ins(vi)
and s(v j). Distanceλ3(N(vi),N(v j)) equals the re-
quired number of substitutions for labels of leaves in
s(vi) ands(v j). From the above,λ(s(vi),s(v j)) repre-
sents the star edit distance betweens(vi) ands(v j).

Given two multisets of star structuresS(gi) and
S(g j), the mapping distance betweengi andgi is de-
noted asmd1(gi ,g j) and defined as

md1(gi ,g j) = min
P

∑
s(u)∈S(gi)

λ(s(u),P(s(u))), (2)

whereP : S(gi)→ S(g j) is a bijective function. The
computation ofmd1(gi ,g j) is equal to solving the
minimum weight matching on the complete bipar-
tite graphg′ = (Vi ,Vj ,E′) such that for every two
vertices (vi ,v j) ∈ Vi ×Vj , there is an edge whose
weight is the star edit distanceλ(s(vi),s(v j)) be-
tween s(vi) and s(v j). Given a square matrix in

Mapping Distance Graph Kernels using Bipartite Matching

63

�

�

�

�

�

� ���� � � �

���� � � � �

� � ���� � �

� � � � ����

� � � ���� �

Figure 3: Minimum weight matching to find the mapping
distance betweengi andg j .

which the(i, j)-element represents the star edit dis-
tanceλ(s(vi),s(v j)), this matching problem is solved
by means of the Hungarian algorithm, which runs in
O(υ3) (Kuhn, 1955), whereυ = max{|Vi|, |Vj |}.

Figure 3 shows an example of mappingS(gi) to
S(g j) to obtainmd1(gi ,g j). Given two graphsgi and
g j , five star structures are generated fromgi and four
star structures are generated fromg j . The table be-
tweengi andg j represents the star edit distance be-
tween every pair of star structures inS(gi) andS(g j).
If |V(gi)| does not equal|V(g j)|, the matrix that rep-
resents star edit distances among star structures is not
square and cannot be used as an input for the Hungar-
ian algorithm. In order to obtain a square matrix, a
dummy vertex (denoted asv5 in g j) whose label is
ε is inserted ing j to equalize the numbers of ver-
tices in gi and g j . By applying the Hungarian al-
gorithm, the optimal bipartite graph matching (indi-
cated by solid lines) is output and the final answer
md1(gi ,g j) = 3+1+0+5+2= 11 is obtained.

Using the mapping distance, we propose a novel
graph kernel called MDKS.
MDKS: We adopt the mapping distance defined in
Eq. (2) to the graph kernel defined in Eq. (1). Given
two graphsgi andg j , the graph kernel in MDKS is
defined as follows:

Algorithm 1: MappingDistanceKernel1.

Data: a set of graphsD for training and
varianceσ2

Result: kernel matrixK
1 for gi ,g j ∈ D do
2 while |V(gi)|< |V(g j)| do
3 V(gi)←V(gi)∪{dummyvertex};
4 while |V(gi)|> |V(g j)| do
5 V(g j)←V(g j)∪{dummyvertex};
6 for (va,vb) ∈V(gi)×V(g j) do
7 λ← 0;
8 if ℓi(va) 6= ℓ j(vb) then
9 λ← 1;

10 λ← λ+ ||N(va)|− |N(vb)||;
11 λ← λ+max{|N(va)|, |N(vb)|}−

|L(N(va))∩L(N(vb))| ;
12 Tab← λ;

13 md1← Hungarian(T);

14 Ki j ← exp
(
−md2

1
2σ2

)
;

15 return K;

kMDKS(gi ,g j) = exp

(
−md1(gi ,g j)

2

2σ2

)
. (3)

Here, kMDKS(gi ,g j) is obtained inO(υ3), which is
faster than graph kernels based on the exact graph edit
distance.

Algorithm 1 shows the pseudo-code for comput-
ing an MDKS kernel matrix for a set of graphsD. In
Lines 2 to 5, the numbers of vertices ingi andg j are
equalized. For each pair of vertices inV(gi)×V(g j),
the star edit distance between star structuress(va) and
s(vb) is measured and set as the(a,b)-th element in
square matrixT, which is given to the Hungarian al-
gorithm. The Hungarian algorithm returns the map-
ping distance according to the optimal bipartite graph
matching in Line 13. In Line 14, Eq. (3) is computed.
These procedures are repeated for every pair of graphs
in D, and Algorithm 1 finally returns a kernel matrix
for D. This algorithm runs inO(n2(υ3+dυ2)), where
n, υ, andd are the number of graphs inD, the max-
imum number of vertices in the graphs, and the av-
erage degree of the vertices, respectively. Becaused
is bounded byυ, the computational complexity be-
comesO(n2υ3).

MDKS has a drawback in terms of graph expres-
siveness. The height of the subtrees between which
we measure the mapping distance is limited, and this
causes a leveling off of the graph expressiveness. It
is desirable to measure the edit distance between high
order subtrees, as the edit distance between trees with
m vertices is computed inO(m3) (E. D. Demaine,

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

64

et. al, 2009). However, because the paths from the
root to leaves in a subtree are not simple in the graph
from which the subtree is generated, the number of
vertices in the subtrees increases exponentially for
h, which makes measuring the edit distance between
s(vi ,h) ands(v j ,h) intractable. Another way (Carletti,
et. al, 2015) is to use subgraphs ofg each of which
consists of vertices withinh step fromvi instead of
star structures ofG. However, we require exact dis-
tances between subgraphs ofgi and subgraphs ofg j ,
which need computation time. In the next subsection,
we propose another efficient graph kernel that com-
pares the characteristics of two subtreesst(vi ,h) and
st(v j ,h) for h> 1.

3.2 Graph Kernels based on Relabeling

Given a graphg(h) = (V,E,Σ, ℓ(h)), all labels of ver-
tices in g(h) are updated to obtain another graph
g(h+1) = (V,E,Σ′, ℓ(h+1)). We call the operation a re-
label, and it is defined asℓ(h+1)(v) = r(v,N(v), ℓ(h)).
Weisfeiler-Lehman Subtree Kernel (WLSK) (Sher-
vashidze, et. al, 2011), Neighborhood Hash Kernel
(NHK) (Hido and Kashima, 2009), and Hadamard
Code Kernel (HCK) (Kataoka and Inokuchi, 2016)
are representative graph kernels based on this relabel-
ing framework. The vertex label of WLSK is repre-
sented as a string and a relabel for vertexv is defined
as a string concatenation of the labels ofN(v). In
NHK, the vertex label is represented as a fixed-length
bit string and relabelingv is defined as logical oper-
ations such as an exclusive-or on the labels ofN(v).
The label of HCK is based on the Hadamard code,
which is used in spread spectrum-based communica-
tion technologies, and a relabel forv is defined as a
summation on the labels ofN(v).

Figure 4 shows an example of the framework
based on graph relabeling. Letg(0) be original graph
whose vertices have labelsa, b, andc. Each of the
labels is relabeled to obtaing(1). Although the con-
crete calculation depends on the method of relabeling
such as NHK, WLSK, or HCK , it is common that a
relabel forv is applied usingv, N(v) andℓ(0)(v). In
the center of Fig. 4,ℓ(0)(v1) = b is relabeled intod
using adjacent verticesv2, v4, and its original label
b. Therefore,ℓ(1)(v1) = d represents the characteris-
tics of st(v1,1). The labels ofv1 andv3 in g(1) are
identical labels becausest(v1,1) = st(v3,1) in g(0). It
is desirable to define labels as identical if and only
if both their own labels and labels of adjacent nodes
are also identical. However, realizing this condition
is hard, and it is important to design a relabel method
that satisfies this condition as much as possible.

The label of each vertex is relabeled iteratively.

Figure 4: Example of relabeling (g(0)→ g(1)).

Figure 5: Example of relabeling in LAK.

Labelingℓ(h)(v), obtained by iteratively relabelingh
times, has a distribution of labels that is reachable
within h steps fromv. Therefore,ℓ(h)(v) represents
the characteristics ofst(v,h). Let {g(0),g(1), · · · ,g(h)}
be a series of graphs obtained by iteratively applying
a relabelingh times, whereg(0) is an original graph
contained inD. Kernelk(gi ,g j) is defined as

k(gi ,g j) = k(g(0)i ,g(0)j)+ k(g(1)i ,g(1)j)

+ · · ·+ k(g(h)i ,g(h)j). (4)

The Label Aggregate Kernel (LAK) (Kataoka and
Inokuchi, 2016) is another graph kernel based on this
framework. Next, we present a concrete definition of
a relabel in LAK.

In LAK, ℓℓℓ
(0)
L (v) is a vector in |Σ|-dimensional

space. If a vertex in a graph has a labelσi from the set
Σ = {σ1,σ2, · · · ,σ|Σ|}, the i-th element in the vector

is 1, and the other elements are 0. In LAK,ℓℓℓ
(h)
L (v) is

defined as

ℓℓℓ
(h)
L (v) = ℓℓℓ

(h−1)
L (v)+ ∑

u∈N(v)

ℓℓℓ
(h−1)
L (u).

Thei-th element inℓℓℓ(h)L (v) equals the frequency of oc-

currence ofσi in st(v,h). Therefore,ℓℓℓ(h)L (v) has infor-
mation on the distribution of labels inst(v,h), which

means thatℓℓℓ(h)L (v) is more expressive than the star
structures(v) used to measure the mapping distance.

We show an example of relabeling in LAK in
Fig. 5, assuming that|Σ|= 3 and relabeling is applied
only once. Consider graphg(0), whose vertices have
labels(1,0,0), (0,1,0), and(0,0,1). We next apply
the relabeling to the graphs to obtaing(1). The label

Mapping Distance Graph Kernels using Bipartite Matching

65

of vertexv in g(1) represents the distribution of labels
contained inst(v,1). For instance, the label ofv5 in

g(1) is ℓℓℓ
(1)
L (v5) = (2,1,1), which indicates that there

are two vertices labeled(1,0,0), one vertex labeled
(0,1,0), and one vertex labeled(0,0,1). This distri-
bution is equivalent to that of the labels contained in
st(v5,1). In LAK, the kernel function is defined as

k(g(h)i ,g(h)j)= ∑
(vi ,vj)∈V(g

(h)
i)×V(g

(h)
j)

δ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)).

Using the labels used in LAK, we propose another
novel graph kernel called MDKV.

MDKV: Given two labelsℓℓℓ(h)L (vi) and ℓℓℓ
(h)
L (v j), we

denote the distance betweenℓℓℓ(h)L (vi) and ℓℓℓ(h)L (v j) as

τ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)), defined as

τ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)) = ||ℓℓℓ(h)L (vi)− ℓℓℓ

(h)
L (v j))||2. (5)

Given two graphsg(h)i andg(h)j relabeled iterativelyh

times, the distance betweeng(h)i andg(h)j is denoted as

md2(g
(h)
i ,g(h)j) and defined as

md2(g
(h)
i ,g(h)j) = min

Q
∑

u∈V(g
(h)
i)

τ(ℓℓℓ(h)L (u), ℓℓℓ(h)L (Q(u))),

(6)

whereQ : V(g(h)i)→ V(g(h)j) is a bijective function.

The computation ofmd2(g
(h)
i ,g(h)j) is also equal to

solving the minimum weight matching on a complete
bipartite graph and is obtained by means of the Hun-
garian algorithm. By combining Eqs. (1), (4), and
md2, kMDKV (gi ,g j) is defined as follows:

kMDKV (gi ,g j) =
h

∑
t=0

k(g(t)i ,g(t)j)

=
h

∑
t=0

exp


−

md2(g
(t)
i ,g(t)j)2

2σ2




The notable difference between MDKS and
MDKV is that while the inputs formd1 are multisets
of st(v,1), the ones formd2 are multisets of vectors
obtained from higher order subtreesst(v,h). That is,
the computation of MDKV between two graphs con-
tains larger subgraphs in the two graphs. If we di-
rectly measure the edit distance betweens(vi ,h) and
s(v j ,h), the number of vertices ins(v,h) exponen-
tially increases whenh increases. In this case, MDKV
needs a huge amount of computation time to compute
the edit distance. However, by using a vector repre-
sentation for the vertices and their relabeling, our pro-
posed kernel computes a mapping distance between
s(vi ,h) ands(v j ,h) efficiently.

���� ���� ���� ���� ����������������

���������������� ���� ���� ���� ��	�

���� ���� ���������������� 	�
� ����

���� ������������				 ���� ���� ��
	

���� ���� ��
� ���������������� ���

����

����

����

���	

����

Figure 6: Computation for obtainingmd2(g
(2)
i ,g(2)j).

Figure 6 shows an example of the procedure to

obtainmd2(g
(2)
i ,g(2)j), assuming that|Σ| = 3. Graphs

g(2)i andg(2)j are obtained by relabeling given graphs

g(0)i andg(0)j iteratively twice. After relabeling, the
Euclidean distance between every pair of labels in

g(2)i and g(2)j are measured. The table betweeng(2)i

and g(2)j represents the Euclidean distance of every
pair of labels. To equalize the number of vertices in

g(2)i andg(2)j , a dummy vertex whose label is(0,0,0)

is inserted tog(2)j . The minimum weight matching
is solved by means of the Hungarian algorithm, and

the final answer ofmd2(g
(2)
i ,g(2)j) = 6+3.46+1.73+

5.39+3.74= 20.32 is obtained.
Algorithm 2 shows the pseudo-code for comput-

ing an MDKV kernel matrix for a set of graphsD. In
Lines 5 to 8, the numbers of vertices ingi andg j are
equalized. For each pair of vertices inV(gi)×V(g j),

the Euclidean distance between two vectorsℓℓℓ
(t)
L (va)

andℓℓℓ(t)L (vb) is measured and set as the(a,b)-th ele-
ment inT. The Hungarian algorithm returns the map-
ping distance according to the optimal bipartite graph
matching in Line 11. Its output using the Gaussian
kernel is added toKi j . In Lines 14 to 16, whereZ is
a set of non-negative integers,g is relabeled to obtain
g(t+1). These processes in Lines 9 to 15 are repeated

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

66

Algorithm 2: MappingDistanceKernel2.

Data: a set of graphsD for training and
varianceσ2

Result: kernel matrixK
1 K← 0;
2 D(0)←D;
3 for t ∈ [0,h] do
4 for gi ,g j ∈ D(t) do
5 while |V(gi)|< |V(g j)| do
6 V(gi)←V(gi)∪{dummyvertex};
7 while |V(gi)|> |V(g j)| do
8 V(g j)←V(g j)∪{dummyvertex};
9 for (va,vb) ∈V(gi)×V(g j) do

10 Tab← τ(ℓℓℓ(t)L (va), ℓℓℓ
(t)
L (vb));

11 md2← Hungarian(T);

12 Ki j ← Ki j +exp
(
−md2

2
2σ2

)
;

13 D(t+1)← /0 ;
14 for g∈ D(t+1) do
15 g(t+1)← (V(g),E(g),Z |Σ|, ℓ(t+1));
16 D(t+1)←D(t+1)∪{g(t+1)};

17 return K;

h+ 1 times. This algorithm runs inO(h(n2υ3 +
n2|Σ|υ2+nd|Σ|υ)), because the computational com-
plexities of Lines 11, 10, and 15 areO(υ3), O(|Σ|υ2),
andO(d|Σ|υ), respectively. Becaused is bounded by
υ, the computational complexity of Algorithm 2 be-
comesO(hn2(υ3+ |Σ|υ2)).

4 EVALUATION EXPERIMENTS

In this section, we compare the performance of our
graph kernels MDKS and MDKV through numeri-
cal experiments. We implemented the proposed graph
kernels MDKS and MDKV in Java. All experiments
were done on an Intel Xeon E5-2609 2.50 GHz com-
puter with 32 GB memory running Microsoft Win-
dows 7. To learn from the kernel matrices generated
by the above graph kernels, we used the LIBSVM
package1 using 10-fold cross validation.

4.1 Evaluation using Synthetic Datasets

We examine the computational performance of the
proposed graph kernels by means of synthetic graph
datasets to confirm that the proposed graph kernels
run in O(n2(υ3 + dυ)) and O(h(n2υ3 + n2|Σ|υ2 +

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

Table 1: Parameters of the artificial datasets.

Parameters Defaults

Number of graphs in a dataset n=100
Average number of vertices in a graphυ =50
Average degrees of a graph d =2
Number of distinct labels in a dataset |Σ|=10

�

�

��

��

��

��

��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ���

����

����

Figure 7: Computation time for variousn.

nd|Σ|υ)), respectively. We generated graphs with a
set of four parameters . Their default values are listed
in Table 1.

For each dataset,n graphs, each with an average
of υ vertices, were generated. Two vertices in a graph
were connected with probabilityd

υ−1, and one label
from |Σ|was assigned to each vertex in the graph. The
computation times shown in this subsection are the
average of ten trials.

We first varied onlyn to generate various datasets
in which the other parameters were set to their default
values. The number of graphs in each dataset was
varied from 10 to 100. Figure 7 shows the computa-
tion time needed to generate a kernel matrix for each
dataset for the proposed graph kernels. In this exper-
iment,h was set to 3. As shown in Fig. 7, the square
root of the computation time for the graph kernels is
proportional to the number of graphs in the dataset.
That is, the computation time is proportional to the
square of the number of graphs in the dataset. This
is because the proposed graph kernels are computed
for two graphs, and the kernels runs for all pairs of
graphs in the dataset. We next varied onlyυ to gen-
erate various datasets with the other parameters set
to their default values. Figure 8 shows the computa-
tion time required to generate a kernel matrix in each
dataset when the number of vertices in each dataset
was varied from 50 to 120. The cubic root of the
computation time for the proposed graph kernels is
almost proportional to the average number of vertices
in the datasets. The parts that need a large amount
of computation time in Algorithms 1 and 2 are those
that include the Hungarian algorithm. The computa-

Mapping Distance Graph Kernels using Bipartite Matching

67

�

�

�

�

�

��

��

��

�� �� �� �� �� �� �� �� 	� 	� ��� ��� ��� ��� ���

����

����

Figure 8: Computation time for variousυ.

tion time of the algorithm is proportional to the cube
of the number of vertices of the bipartite graph that

is given as input. In MDKV,τ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)) rep-

resents the dissimilarity betweens(vi ,h) ands(v j ,h).
The number of vertices ins(v,h) exponentially in-
creases ash increases. If we directly measure the edit
distance betweens(vi ,h) ands(v j ,h), MDKV needs a
huge amount of computation time. However, by using
a vector representation of vertices and the relabeling
for the vertices, our proposed MDKV kernel gener-
ates the kernel matrix efficiently.

In Figs. 9 and 10, we respectively varied|Σ| andd
to generate various datasets. MDKV needs a compu-
tation time that is proportional to|Σ| in order to com-

pute the Euclidean distanceτ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)) and

relabel the vertices for the|Σ| dimensional vectors.
The computation times for the propose graph kernels
are almost proportional to the average number of de-
gree of each vertex and the number of vertex labels.
MDKS needs a computation time that is proportional
to d in order to measure the edit distance of the sub-
stitutions for the leaf labels in the star structures. In
contrast, MDKV needs a computation time that is pro-
portional tod and|Σ| in order to relabel graphs.

Finally, we varied onlyh for a dataset generated
with all other parameters set to their default values.
Figure 11 shows the computation time required to
generate a kernel matrix in each dataset whenh was

�

��

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �� �� �� �� �� 	�

����

����

Figure 9: Computation time for various|Σ|.

�

��

���

���

���

���

���

���

���

� �� �� �� �� ��

����

����

Figure 10: Computation time for variousd.

�

���

���

���

���

����

����

� � � � � � 	 �
 ��

����

Figure 11: Computation time for varioush.

varied from 0 to 15. The computation time is propor-
tional toh.

4.2 Classification Accuracy

We compare the classification accuracies of the pro-
posed graph kernels with those of conventional graph
kernels based on the relabeling framework, WLSK,
NHK, and HCK, on three real world datasets, MU-
TAG (Debnath, et. al, 1991), PTC (Helma and
Kramer, 2003), and ENZYMES (Schomburg, et. al,
2004). Since HCK theoretically returns the same val-
ues as LAK returns, classification accuracies of HCK
are equivalent with those of LAK. The first dataset
MUTAG consists of 188 chemical compounds and
their classes are binary values representing whether
each compound is mutagenic. The second dataset
PTC consists of 344 chemical compounds, and their
classes are binary values representing whether each
compound is toxic. Generally, a chemical compound
is represented as a graph with labeled edges, which is
not a graph that is treated in this paper. We treated the
graphs with edge labels in the following two ways: 1)
we ignore the edge labels or 2) an edge labeledℓ that
is adjacent to verticesu andv in a graph is converted
into a vertex labeledℓ that is adjacent tou andv, as
explained in (Hido and Kashima, 2009). After con-

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

68

Table 2: Description of evaluation datasets.

MUTAG PTC
ENZYMES

edge labels no edge labels edge labels no edge labels

The number of graphsn 188 344 600
The number of classes 2 2 6

(class distribution) (125,63) (152,192) (100 per class)
Maximum number of vertices 84 40 325 109 126
Average number of vertices 53.9 26.0 77.5 25.6 32.6

Number of labels 12 8 67 19 3
Average Degree 2.1 2.1 2.7 4.0 3.9

σmin 10 10 102

σmax 104 105 104

Table 3: Classification accuracies.

MUTAG PTC
ENZYMES

edge labels no edge labels edge labels no edge labels

MDKS 92.6% 91.0% 64.2% 63.1% 61.2%

MDKV
94.1% 93.6% 64.0% 66.9% 65.3%
(h= 3) (h= 2) (h= 0) (h= 3) (h= 2)

St-MDKV
91.5% 90.4% 64.9% 64.0% 63.0%

(h= 7,8) (h= 3) (h= 1,8) (h= 1) (h= 4)

NHK
92.6% 90.4% 60.8% 55.8% 45.0%

(h= 3,4) (h= 2) (h= 3,5) (h= 1,2, · · · ,15) (h= 8)

WLSK
92.0% 90.4% 62.8% 64.2% 58.5%
(h= 3) (h= 1) (h= 15) (h= 10) (h= 1)

HCK
92.0% 91.0% 63.1% 65.4% 57.2%
(h= 3) (h= 1) (h= 15) (h= 12) (h= 4)

verting edges in graphs, labels are assigned to only the
vertices. The third dataset, ENZYMES consists 600
proteins and their classes represent Enzyme Commis-
sion numbers from 1 to 6. Table 2 shows a summary
of each dataset.

Before classifying a dataset that does not contain
graphs but consists of points in ap-dimensional fea-
ture space, we usually normalize the dataset using the
meanµq and standard deviationσq in theq-th feature
(1 ≤ q ≤ p). By normalizing the dataset, we often
obtain an accurate model for classifying the dataset.
Similarly, we apply this procedure in MDKV. To do

so, we use the meanµ(t)q and standard deviationσ(t)
q

for the|Σ| dimensional vectors to represent the vertex
labels for eacht (1≤ t ≤ h) andq (1≤ q≤ |Σ|). Us-
ing this procedure, we avoid the exponential increase
in the elements in the vectors representing vertex la-
bels whenh is increased. We call the MDKV method
that uses this procedure St-MDKV.

Table 3 shows the classification accuracies of the
proposed and conventional graph kernels . We ex-
amined the highest accuracy for each kernel and each
dataset varyingσ of the Gaussian kernel andh. We
varied theσ from σmin to σmax in intervals of 10 (see
Table 2) andh from 0 to 15 in intervals of 1. As

shown in Table 3, the classification accuracies of the
proposed graph kernels outperform those of the con-
ventional graph kernels. The values ofh for MDKV
are relatively low, which indicates that the elements
in the vectors representing vertex labels exponentially

increase and distanceτ(ℓℓℓ(h)L (vi), ℓℓℓ
(h)
L (v j)) becomes in-

adequate whenh increases. However, the values of
h for St-MDKV are high. By normalizing the vec-
tors representing vertex labels, we adequately mea-
sure the (dis)similarity betweens(vi ,h) ands(v j ,h),
which results in high classification accuracy for vari-
ous datasets.

5 CONCLUSION

In this paper, we proposed two novel and efficient
graph kernels called Mapping Distance Kernel with
Stars (MDKS) and Mapping Distance Kernel with
Vectors (MDKV). MDKS approximately measures
the graph edit distance using star structures of height
one. The method runs inO(υ3), where υ is the
maximum number of vertices in the graphs. How-
ever, when the height of the star structures is in-

Mapping Distance Graph Kernels using Bipartite Matching

69

creased to avoid structural information loss, this graph
kernel is no longer efficient. Hence, MDKV repre-
sents star structures of height greater than one as vec-
tors and sums their Euclidean distances. It runs in
O(h(υ3+ |Σ|υ2)), whereΣ is a set of vertex labels and
graphs are iteratively relabeledh times. We verified
the computational efficiency of the proposed graph
kernels on artificially generated datasets. Further, re-
sults on three real-world datasets showed that the clas-
sification accuracy of the proposed graph kernels is
higher than three conventional graph kernel methods.

REFERENCES

Schölkopf, Bernhard, and Smola, Alexander J.. 2002.
Learning with Kernels. MIT Press.

Kashima, Hisashi, Tsuda, Koji, and Inokuchi, Aki-
hiro. 2003. Marginalized Kernels Between Labeled
Graphs. InProc. of the International Conference on
Machine Learning (ICML). 321–328.

Zhiping, Zeng, Anthony K.H. Tung, Jianyong Wang, Jian-
hua Feng, and Lizhu Zhou. 2009. Comparing Stars:
On Approximating Graph Edit Distance. InProc. of
the VLDB (PVLDB). 2(1): 25–36.

Riesen, Kaspar, and Bunkle, Horst. 2009. Approximate
graph edit distance computation by means of bipar-
tite graph matching.Image Vision Computing. 27(7):
950–959.

Hido, Shohei, and Kashima, Hisashi. 2009. A Linear-Time
Graph Kernel. InProc. of the International Confer-
ence on Data Mining (ICDM). 179–188.

Shervashidze, Nino, Schweitzer, Pascal, Jan van Leeuwen,
Erik, Mehlhorn, Kurt, and Borgwardt, Karsten M..
2011. Weisfeiler-Lehman Graph Kernels.Journal of
Machine Learning Research (JMLR): 2539–2561.

Kataoka, Tetsuya, and Inokuchi, Akihiro. 2016. Hadamard
Code Graph Kernels for Classifying Graphs. InProc.
of the International Conference on Pattern Recogni-
tion Applications and Methods (ICPRAM). 24–32.

Schölkopf, Bernhard, Tsuda, Koji, and Vert, Jean-Philippe.
2004. Kernel Methods in Computational Biology.
MIT Press.

Kuhn, Harold W.. 1955. The Hungarian Method for the
Assignment Problem.Naval Research Logistics. 2:
83–97.

Bernhard E. Boser, Isabelle, Guyon, and Vladimir, Vapnik.
1992. A Training Algorithm for Optimal Margin Clas-
sifiers. InProc. of the Conference on Learning Theory
(COLT). 144–152.

Hart, Peter E., Nilsson, Nils J., and Raphael, Bertram. 1968.
A Formal Basis for the Heuristic Determination of
Minimum Cost Paths.Journal of IEEE Trans. Systems
Science and Cybernetics. 4(2): 100–107.

Debnath, Asim Kumar, Lopez de Compadre, Rosa L., Deb-
nath, Gargi, Shusterman, Alan J., and Hansch, Cor-
win. 1991. Structure-Activity Relationship of Mu-
tagenic Aromatic and Heteroaromatic Nitro Com-
pounds. Correlation with Molecular Orbital Energies

and Hydrophobicity.Journal of Medicinal Chemistry
34: 786–797.

Helma, Christoph, and Kramer, Stefan. 2003. A Survey of
the Predictive Toxicology ChallengeBioinformatics
19(10): 1179–1182.

Schomburg, Ida, Chang, Antje, Ebeling, Christian, Gremse,
Marion, Heldt, Christian, Huhn, Gregor, and Schom-
burg, Dietmar. 2004. BRENDA, the Enzyme
Database: Updates and Major New Developments.
Nucleic Acids Research32D: 431–433.

Chang, Chih-Chung, and Lin, Chih-Jen. 2001. LIBSVM: A
library for support vector machines. Available online
at http://www.csie.ntu.edu.tw/cjlin/libsvm.

Neuhaus, Michel, and Bunke, Horst. 2007. Bridging the
Gap Between Graph Edit Distance and Kernel Ma-
chines.World Scientific.

H. W. Kuhn. 1955. The Hungarian Method for the Assign-
ment Problem.Naval Research Logistics, 2: 83–97.

E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann.
2009. An Optimal Decomposition Algorithm for Tree
Edit Distance.ACM Transaction on Algorithm, 6 (1).

Carletti, Vincenzo, Gaüzère, Benoit, Brun, Luc, and Vento,
Mario. 2015. Approximate Graph Edit Distance Com-
putation Combining Bipartite Matching and Exact
Neighborhood Substructure Distance.Graph Based
Representations in Pattern Recognition (GbRPR),
188–197.

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

70

